AFFINE-DISTANCE SYMMETRY SETS
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ABSTRACT. The affine distance symmetry set (ADSS) of a plane curve is an affinely invariant
analogue of the euclidean symmetry set (SS) [7, 6]. We list all transitions on the ADSS for
generic 1-parameter families of plane curves. We show that for generic convex curves the possible
transitions coincide with those for the SS but for generic non-convex curves, further transitions
occur which are generic in 1-parameter families of bifurcation sets, but are impossible in the
euclidean case. For a non-convex curve there are also additional local forms and transitions
which do not fit into the generic structure of bifurcation sets at all. We give computational and
experimental details of these.

Keywords: symmetry set, affine differential geometry, bifurcation set, medial axis, affine
skeleton. Subject classification: 58C27, 53A15.

1. INTRODUCTION

Affine-invariant symmetry sets of planar curves were first introduced and studied Giblin and
Sapiro (see [12, 14]). The idea was to mimic the numerous different constructions of the euclidean
symmetry set to produce analogous affine-invariant symmetry sets for affine plane curves. One
of the first, and most striking, observations was that, although the different constructions for the
euclidean symmetry set led to identical sets, the affine-invariant analogues of these constructions
resulted in genuinely different sets. Thus there is no single affine-invariant symmetry set, but
instead a number of affine-invariant sets which individually capture some aspects of local affine
symmetry.

In this article we consider one of the affine-invariant symmetry sets as introduced in [12, 14],
namely the Affine Distance Symmetry Set (ADSS), defined by replacing euclidean distance with
‘affine distance to a curve’ in the sense of Izumiya [16]. The local structure of the ADSS was
classified in these articles, on the assumption that the curve contained no inflexions. The present
article extends this to curves with inflexions and gives a complete list of the transitions on the
ADSS of generic 1-parameter families of curves, following the analogous procedure given in
[6] for the euclidean symmetry set. We find that ovals (strictly convex smooth closed curves)
behave very much as do generic curves relative to the euclidean symmetry set. However, when
we allow non-ovals, several transitions which were barred in the euclidean case become possible,
and transitions directly involving inflexions are completely new.

The paper is organised as follows. In §2 we introduce the basic notions of affine plane differen-
tial geometry needed in the sequel. In §3 we recall the definition of the ADSS, in §4 we describe
the theoretically possible transitions on symmetry sets and in §5 we show which of these can
actually occur. In §6 we describe the special, and apparently highly degererate (but generic!)
transitions which directly involve inflexions. Here we rely on computation and experiment in
the absence of a theoretical framework. Finally in §7 we describe further directions for research.

The second author acknowledges the support of an EPSRC research studentship. Several
figures were drawn with the Liverpool Surfaces Modelling Package (LSMP); see [17].

2. PLANAR AFFINE DIFFERENTIAL GEOMETRY

Here we briefly present some basic concepts and definitions of planar affine differential ge-
ometry. For more information, see for example [12, 18, 19]. Let y(¢): S* — R? be a simple
1
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closed smooth planar curve parametrized by t. A reparametrization using the ‘affine arclength’
parameter s satisfying

(1) [Y'(5),7"(s)] = 1,
where ' denotes derivative with respect to s and [x, #|] denotes the determinant of the 2 x 2 matrix
defined by two vectors in R?, is invariant under affine transformations of determinant 1. (The
symmetry set we define in §3 is invariant under arbitrary affine transformations.) The vectors
7' (s) and " (s) are respectively the affine tangent and the affine normal to v at y(s).

Geometrically, the straight line in the direction of the affine normal at a point of a curve v is
the locus of centres of conics having (at least) 4-point contact with 7 at that point. Since (1)
cannot hold at inflexion points of <y, this means that affine differential geometry is not defined
at these points: however, since inflexions are affine-invariant, we circumvent this problem in
practice by segmenting the curve into convex portions. The limiting affine normal at an inflexion
is parallel to the tangent and of infinite length. Note also that for an oval (a closed curve without
inflexions) the condition [y',~"] = 1 forces an anticlockwise orientation.

From expression (1) it follows that for an arbitrary parametrization ¢,

(2) ds = [%,4)/3dt,

where " (dot) denotes derivative w.r.t. t. We also have the following relationship between the
affine tangent 7' and the Euclidean tangent T':

v = kT3,

Lemma 2.1. Two curves share the same affine tangent at a point if and only if neither has
an inflexion and they have (at least) 3-point contact there. Two curves share the same affine
tangent and normal at a point if and only if neither has an inflexion and they have (at least)
4-point contact there. O

Differentiating (1) w.r.t. s we obtain

[V (s),7"(s)] = 1,
for all s, and therefore

(3) 7" (s) + wy'(s) =0,

for some real function p(s), the the affine curvature) of +: it is the simplest non-trivial affine
differential invariant, and defines a curve uniquely up to (equi-) affine transformation (see [2]),
just as the euclidean curvature defines a curve up to euclidean transformation. Bracketing both
sides of expression (3) with v"(s) gives us

(4) p(s) = [v"(s),7" (s)].
Curves of constant affine curvature are conics: pu < 0 for a hyperbola, u = 0 for a parabola
and p > 0 for an ellipse. Two curves having 5-point contact at a point have the same affine
tangent, normal and curvature there. In particular the osculating (5-point contact) conic at a
non-inflexional point of a curve is a hyperbola, parabola or ellipse according as u <,=,> 0.

The centre of affine curvature at y(s) is the centre of the osculating conic at that point, that
is, the point y(s) + (1/u(s))y"(s), and the locus of these points is the affine evolute of 7, the
affine-invariant analogue of the Euclidean evolute: furthermore, with analogy to the Euclidean
situation, the affine evolute is the envelope of the affine normal lines to the curve. A point for
which p/(s) = 0 is called an affine vertez of a curve, or a sextactic point: at such a point there
exists a conic having 6-point contact with the curve. The centre of a sextactic conic lies at a
cusp of the evolute. There are at least six points on a closed curve for which p'(s) = 0 (see [2]
for a proof of this; see also [9] for a short exposition on the existence of sextactic points).

We now recall the definition of affine distance, which is based on area and is invariant under
equi-affine transformations.
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Definition 2.2. Let x be a point in the plane, and v(s) a planar curve parametrized by affine-
arclength s. The affine distance between x and a non-inflexional point v(s) on the curve is
given by

(5) d(x,s) = [x = (s),7(s)]-
In [16], it is shown that the affine evolute is the bifurcation set of the family of affine-distance

functions and this fact is used to study the local structure of the affine evolute.
Using Arnold’s standard Ay notation for singularities of functions of one variable, we have:

Proposition 2.3 ([16]). Away from affine inflexion points of vy, the affine distance function d
defined on vy ezxhibits the following singularities:

A>q < x—(s) is parallel to 7" (s): x is then on the affine normal line to v at y(s).

A>o = u(s) #0 and x = y(s) + ﬁ’y”(s): x is then at the centre of affine curvature of

at v(s), that is, on the affine evolute of .
A>z <= u(s) #0, x = y(s) + ﬁ’y"(s) and p'(s) = 0: x is then on the affine evolute of v

at an affine verter.
Proof. See [16]. O

Finally in this section we give some formulae which are useful in converting from arbitrary
parametrizations to affine-invariant parametrizations. The proofs are straightforward.

Suppose (t) is an arbitrary regular parametrization of a plane curve y. We will use ~ (dot)
for d/dt,' (prime) for derivative w.r.t. affine-arclength, and write k(t) = [¥,%¥]. We have

_1/3. —9y3. L. _eia
(6) V() =kT(), o =k = SRR,

For a graph v(z) = (z, f(z)) we have

V(@) = f°3 <—%IJF($)J($)2> .

Thus the affine normal vector is in direction

(), -3)?).
3. THE AFFINE DISTANCE SYMMETRY SET

Recall that the (euclidean) symmetry set of a simple closed plane curve + is the closure of
the locus of centres of circles tangent to - in two (or more) places. The symmetry set together
with the (euclidean) evolute constitute the full bifurcation set of the family of distance-squared
functions on v ([6]).

The analogous symmetry set in the affine case is the affine distance symmetry set (ADSS):
the closure of the locus of points x € R? on (at least) two affine normals and affine-equidistant
from the corresponding points on the curve. The ADSS of «y is the closure of the set of points x
which are the common centre of (at least) two conics sharing the same affine radius and having
(at least) 4-point contact with ~.

The ADSS, together with the affine evolute, form the full bifurcation set of the family of affine
distance functions on <. Using this, we obtain the first four parts of the following theorem, where
for example A; As means an affine-distance function with these two singularity types at the two
points of 7y, and A? refers to three type A; singularities for the affine-distance function. In parts
5 and 6 of the theorem the affine-distance function is not defined and the result is obtained only
by a hands-on calculation [15] with power series expansions. Nevertheless both these situations
occur generically as limiting points of the ADSS. We do not know how to fit them into the
general theory of bifurcation sets. Some details of the required calculations are given following
the statement of the theorem.
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Theorem 3.1. Locally, the affine distance symmetry set of a generic plane curve v a point x
is as follows.

(1) Smooth when both conics have ezactly 4-point contact with y (A32).

(2) An ordinary cusp when one of the conics has 5-point contact with v (x is then on the
affine evolute of y too, at a smooth point of it) (A1 As).

(3) An endpoint when x is the centre of a 6-point contact conic, that is, a conic tangent
to vy at a sextactic point: the endpoint is then in a cusp of the affine evolute (As).

(4) A triple crossing when there are three conics centred at x having equal affine radius
and 4-point contact with v (A3).

(5) An ordinary cusp at the intersection point of two inflexional tangents to vy. This cusp
does not lie on the affine evolute, in contrast to case 2 above. In this case we can regard
each conic as being a repeated inflexional tangent line. In that case each conic has 6,
rather than 4-point contact with v. See Figure 1.

(6) A (5,6)-singularity (like > = y®) at the point where an inflezional tangent cuts the
curve again. In this case we can regard the two conics as being repeated tangent lines,
one inflerional tangent and one ordinary tangent. The contacts are therefore 6 and 4,
yet this gives a far more degenerate singularity than the preceding case! See Figure 1.

In order to explain the calculations leading to parts 5 and 6 of the theorem we shall need the
following criterion and formula, from [12].

Proposition 3.2 (ADSS Condition). Suppose v(s) is a smooth, simple closed curve. The nec-
essary and sufficient condition for distinct s1, s2, with neither of y(s1),v(s2) being an inflexion
of the curve, to give a point of the ADSS is

(7) 7v(s1) —v(s2) parallel to v"(s1) — 7" (s2),

" being derivative with respect to affine arc-length. In fact

n 1

Y(s1) —v(s2) = do (7" (s1) —7"(s2)) »

where dy is the common affine distance from the ADSS point to v at y(s1),v(s2).
The corresponding point of the ADSS is

(8) ’)’(81) + [7(51) _7(32)’ ’7”(31)] ”(81).

O

We say that the condition (7) defines the pre-ADSS : the parameter pairs which are needed
to determine the ADSS itself. We do of course include limiting points of (7) which lie on the
diagonal s; = sg; these give the end-points of the ADSS itself. Some examples of the pre-ADSS
are given in the figures in §6.

Remark 3.3. It is interesting to note that smooth points of the pre-ADSS where the curve is
tangent (2-point contact) to a line s; = constant or s, = constant correspond conveniently to
cusps as in Theorem 3.1(2), ezcept that they also arise for pairs satisfying (7) when the tangent
at 7y(s1) meets the curve again at y(s3), or vice versa. This is a generic occurrence and happens,
e.g., in Figure 7, left. Cusps of the type in Theorem 3.1(5) do not make themselves evident on
the pre-ADSS.

Of course we cannot use (7) or (8) in a neighbourhood of an inflexion, since 4" is undefined
there. In order to obtain results on the limiting behaviour of the ADSS when one or both points
of « are inflexion points we have to resort to ‘bare hands’, as follows. Take one segment of -y to
be the curve y; with an inflexion at the origin, say v1(s) = (s,as® + bs* + ...). Take another
segment of v to be parametrized by ¢ say; of course s is not affine arclength, and we do not need

t to be either. We use (6) to write (7) in terms of s and ¢ and multiply up by kf/ 3kg/ % to clear
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FI1GURE 1. Left: Inflexional tangents at A and B intersect at C, where the ADSS
will have an ordinary cusp; at D and E the ADSS will have a singularity of type
(5,6). See Theorem 3.1, parts 5 and 6. Right: an actual example of a curve 7 (in
grey) exhibiting these features on the ADSS (thinner black curve). The affine
evolute is also drawn (thicker black curve); it has inflexions at the inflexions of
and four cusps in the figure—at the right there is a crossing, not a cusp, where
the figure is clipped. The ADSS has endpoints in the four cusps of the affine
evolute (Theorem 3.1, part 3), two cusps on the affine evolute (part 2), a cusp at
the intersection of inflexional tangents of 7y (part 5), and two (5,6) singularities
where inflexional tangents of 7 meet the curve again (part 6).

denominators, where k; = [};,¥i], the dots referring to differentiation with respect to s or ¢. It
is then convenient to express k; as a power series in s, and hence to obtain
100
K/ = (6a)%/35 (1 +—s+.. ) ,
a
where 5 = s%/3. Writing y; = (X;,Y;) we arrive at the pre-ADSS condition replacing (7) of the
form ¢; = ¢33, where

v 1. . . 1. .
o = (Xi— Xa)kY? (lel - §k1Y1> — (Y - Ya)k? (k1X1 - §k1X1> :

106 .. 1. . .. 1. .
co = (60,)5/3 (1 + —s+4.. ) ((Xl — XQ) (kQYQ — §k2Y2>) — (Y1 — Yz) (kQXQ — ngXz) .

a

Finally, to make the functions smooth everywhere we actually use for the pre-ADSS condition

(9) ¢l =c33%, thatis ¢ = c3s.
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This can be expanded as a power series in s and ¢ for computational purposes. The result can
be substituted in (8) to obtain a local power series expansion of the ADSS. In this way we find
the results 5 and 6 of Theorem 3.1. (The full calculations are in [15].) O

4. TRANSITIONS ON BIFURCATION SETS

In the study of 1-parameter families of Euclidean Symmetry Sets in [6], a full list of all the
possible transitions that may occur on the full bifurcation set of a generic 2-parameter family
of functions of one variable is obtained. We shall reproduce here in Figure 2 only the list which
is relevant to the current situation; for the other cases (‘Morse’ transitions and those involving
D singularities) see [6].

A%(a) - -
A1 (b) ~ T

A% A (a)

AT Az (b)

A1A3(a)

In [6] it is shown that not all of these transitions may actually occur for the euclidean symmetry
set: the transitions A7(b), A2A2(b), A1 A3(b) are ruled out by geometrical considerations, whereas
the respective (a) transitions do occur.

We now carry out a similar analysis of the transitions on 1-parameter families of affine distance
symmetry sets, in order to classify the transitions which may actually occur on the ADSS of a
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A1A3(b) " - BN -

A3(a)

N , N , N /
N . N , N /
N , N , N ’
N / N , N 7
N , N N /
N ’ N ’
N ’, N ’,
N N
NI N
2 PN
4 N _ _ 2N
’ N / N ’, N
’ N , N ’ N
< N , N ’
/ N , N , N
’ N , N , S
7 N , N 7 \
, N , R / .

N / _ \\ ,’/@
Ay N - .

FIGURE 2. Local transitions on symmetry sets in generic 1-parameter families of
plane curves, omitting the ‘Morse’ transitions and those related to D singularities.

smooth plane curve as this curve is deformed through a 1-parameter family. In the next section
we avoid inflexion points of the underlying curve . Nevertheless it will turn out that there is a
striking difference between the cases of oval and non-oval curves 7.

In §5 we illustrate the method with an example, that of the A; A3 transitions. Similar proce-
dures apply to the other transitions; the details are in [15].

In §6 we give some details of the strange transitions which occur when we have inflexions on
the curve 7, as in Theorem 3.1(5) and (6). At present we are not able to predict the details of
these transitions theoretically: as in the theorem, we are forced to do bare-hands calculations
and experiments since the affine-distance function to which we wish to apply the techniques of
singularity theory is undefined at the relevant points. The transitions appear to be, from the
usual standpoint, highly degenerate, though in the present context they are generic.

5. TRANSITIONS ON THE ADSS

We will now sketch proofs of the following two theorems, the main results of this article. For
this section we avoid inflexion points of the underlying curve . (Compare §6.) The proofs
proceed on a case-by-case basis and we illustrate with a typical case below, that of A;As.

Theorem 5.1. The transitions Af(a), A2As(a), A1As(a), A3(a), A2(b) and A4 (as illustrated

in Figure 2) may occur on the Affine Distance Symmetry Set of a generic family of ovals, but
the transitions A}(b), A?A5(b), A1 A3(b) may not.
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The crucial point to note about the above is that the proof is restricted to ovals only: the proof
depends fundamentally on the fact that we are restricting the family of curves to ovals, and if we
lose this restriction, then there is no reason to rule out the A$(b), A2A5(b), A; A3(b) transitions
from occurring on the ADSS. In fact, our arguments show, by finding explicit conditions on
curve segments (e.g. (10) below), that the other transitions do occur on families of non-oval
plane curves, and in fact by means of examples it is possible to observe these ‘extra’ transitions
occurring on the ADSS of a non-oval. (This task is non-trivial due to the extremely complicated
nature of the ADSS.) We are able to conclude:

Theorem 5.2. The transitions Af(a), A}(b), A?As(a), A1As(a), A1A3(b), A2A5(b), A3(a),
A2(b) and Ay (as illustrated in Figure 2) may occur on the ADSS of a generic family of plane
curves.

Example: the A; A3 transitions

We follow the procedure as outlined in [6] in the A; A3 singularity case in order to illustrate
the methods by which we hope to classify the transitions that may occur on 1-parameter families
of Affine Distance Symmetry Sets.

Consider the standard multi-versal unfolding of an A; A3 singularity, given by

G:R? xR 5 R,

where R(?) denotes parameters t;, to (near zero), R? denotes the space of unfolding parameters
y = (1, Y2,v3), and multi-versal unfolding G is given by the two unfoldings

Gl(tlay) = t%a
Ga(ta,y) = 5+ t5 + taya + ys.

Note that there is a choice of sign in G: this ambiguity will not effect our calculations, and
without loss of generality we will from now on take the positive sign.

Step One: Finding the ‘Big Bifurcation Set’

The first task is to find the ‘Big Bifurcation Set’ (BBS) of standard unfolding G, which sits
in y-space: this object contains all the possible bifurcation sets in a neighbourhood of the A; A3
singularity of which G is a multi-versal unfolding. The A; As-point itself sits at the origin in this
space. The individual bifurcation sets can be recovered as the level sets of a generic function
on the BBS. The BBS will comprise an A?-set (the ‘big symmetry set’) and a As-set (the ‘big
evolute’), situated in Ry-space. The A?-set itself is in two parts: the first is the ‘swallowtail’
surface defined by

yo = —4t3 — 2boy,
ys = 3t5 + t3y1,
and the second is the half-plane {y; < 0,92 = 0}. The Aj-set is the cuspidal edge in the
y3-direction, with y; <0, given by
Y1 = —6t3
yo = 8t3
ys arbitrary
Figure 3(a) shows the BBS.

Step Two: Finding the ‘bad planes’

We call a plane through the origin in ]R3y a bad plane if it contains the limit of tangent spaces
to a stratum of the BBS at smooth points tending to the origin. Our task is to find all of these
bad planes: it is precisely these planes which we wish to avoid as kernel planes to generic linear
functions on the BBS. Let such a linear function be

h = a1y1 + a2y2 + azys,
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(b) a3 =0

a1:0

FIGURE 3. (a) The Big Bifurcation Set for the standard unfolding of an AjAs
singularity. It consists of a swallowtail surface, a half-plane, and the ‘big evolute’
which is the cuspidal edge, shown dashed. (b) Each point in this RP? represents
a plane through the origin in y-space: the lines a1 = 0 and a3 = 0 represent
the set A corresponding to the ‘bad directions’; these are the kernel directions of
non-generic linear functions on the BBS.

Consideration of the limiting tangent planes shows that the only ‘bad’ planes are those orthogo-
nal to (1,0,0) and (0,0,1). We denote this set of bad planes in RP? by A, shown in Figure 3(b).
The components of RP? — A represent collections of normals to planes which, as kernels of dh(0),
give stratified C%-equivalent functions h: that is, each component in the region swept out by
normals to planes giving stratified C%-equivalent families of sections.

Remark 5.3. For relevant remarks on stratified CY equivalence, and in particular a discussion
of why this is the correct equivalence to use here, see [6, p.199].

Step Three: Families of sections (level sets of generic functions) We can distinguish
between the regions of Figure 3(b) by considering the sign of a;as. We find:

Proposition 5.4 (A;As condition). A point (a1: az: a3) is in a shaded/unshaded region of
Figure 3(b) depending on whether

aias
is positive/negative respectively, and the corresponding full bifurcation set ezhibits a transition
of type A1Az(a)/A1A3(b) (see Figure 4). O
A1A3(a) / .
ajaz >0
A1As3(b)
araz <0

FIGURE 4. The AiAs transitions for aiaz > 0 and ajaz < 0. The evolute (As-
set) is shown as a dashed line.

Step Four: Relating standard model to the ADSS
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It remains to relate the A; A3 condition of Proposition 5.4, which distinguishes between the
occurrence of the two different A; A3 transitions on a generic full bifurcation set, to the particular
family of functions at hand, namely those given by affine distance. The calculations are from
now on specific to this case.

Let x = (z1,22) € R?, and denote by xq the A;A3z-point on the ADSS. Then the family of
affine distance functions on the family of curve segments will be

F:RxRxR%(0,0,%x0) = R,
given by
r1 — Xui(ti) X, ;(t:)
Fi(ti,u,x) = [x — Yu,i(ti), v,:(ti)] =
zo — Yy i(t) Y, (t)

for i = 1,2, where ' (prime) will always denote 9/0t;, and t; is assumed to be the affine-arclength
parameter along the corresponding curve segment ;. We are able to show that

0B, 0B
a) = —— and az = ———
oy y=0 0y3 y=0
where B is equivalent to the map h on the standard A;Az-set. We then deduce that
ikl (2E2) 82 (oF) 82 (0F 8B; 8B 8B
at2 \ du ot2 \ dzy ot2 \ dzo a1 Bya B3
Iy = 2 (8F, o (8F 2 (0F: X 9B, 9B2 9B,
3 ot ( u ) 9t \ 9z1 9t \ dzs Oyr  Ody2  Oys
B, B, B,
OF, _ 0F, 0F, _ OF: 0F: _ OF ol ol
Ou du 0z dz1  Ozo D (A(t,0),x0) y=0

where I3 is the (3 x 3) identity matrix. We will denote by JB the matrix of partial derivatives
of By, By and Bs, evaluated at y = 0. We will not need the 0F»/0u components, since we only
require terms from the top row of JB, which are given as cofactors in the matrix of partial
derivatives of F, Fy. If we write

A(t,0) = ant + aot? + . ..

for coefficients a; € R (a1 # 0), then the system becomes

9By 0B1 90B1
dyr  Oya  Oys
1 00 * a2Y2”+?ﬁY2’” —ang—cﬁxg' o5 om o
— 2 2 2
O 1 O = * O[1Y2 —a1X2 X 3_y1 3—y2 3_313
0 01 * Y2'—Y1' —X§+X{
0By 0Bz 0Bs
Oyr  Oy2  Oys y=0
This tells us that
0B, | Y —ax?
W lyeo | YY) X34 X| |
_ ! '
= —ai[y —71,%),
Bun = —ailn,7%']
Y3 ly=0

Thus

4
ajaz = 011[75 - ’YL’Y&I] : [’Yg,’ygl],

is the expression that we wish to interpret. Now as usual we denote the affine curvature of -y
m

at to = 0 by 2 = [v5,74'], and thus we have:
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Theorem 5.5 (A; A3 condition for the ADSS). The ADSS at an A1 Az-point exhibits a transition

of type A1As(a)/A1As(b) depending upon whether

(10) —H2[Y] — 72, 75]

is positive/negative respectively. O
In what follows we interpret this condition for ovals, showing that the expression (10) can

take only one sign for ovals. Then we disregard the condition that the curves are ovals and show
that this expression can take both negative and positive signs for generic plane curves.

Interpretation of A; A3 condition for ovals We will assume that our curve points y; and
72 lie on the same oval, with corresponding affine tangents 7{,~v5. We use the following result,
which follows from the fact that affine arclength forces an anticlockwise orientation on an oval.

Lemma 5.6 (Oval Condition). If 7;, 7v; are two distinct points on an oval parametrized by
affine-arclength, then

i = 3>l > 0,
where as usual ' (prime) denotes derivative w.r.t. affine-arclength. O

We also use the ADSS Condition of Proposition 3.2. Now since we have an As singularity of
the affine distance function at 7o, we know that the A; A3 ADSS point xy can be expressed as

— 1 "
X0=72+—79,
M2

(see Proposition 2.3), and the fact that v; and o must be the same affine distance dy from xg
implies that dy = —1/u2, and therefore

=y
X0 =7+ Y1-
12
We substitute this into the Oval Condition [y; — y2,7]] > 0 to get
1
[E%’ - 71’),71] >0,

1
(g, "] +1) >0,

e —
2
1
= —(1-MuLnr)) >0,
K2
1
< E(h’é - ’7{,’)’5]) > 07 since [’Yéa’yg] = 17

which proves that the expression (10) takes only positive values for ovals. Thus the transition
A1A3(b) will not occur on the ADSS of a family of ovals. The transition A; A3(a) may occur,
and indeed explicit examples can be constructed ([15]).

Proposition 5.7. The transition A1As(a) may occur generically on the ADSS of a family of
ovals, but the transition Ay As(b) does not. O

Interpretation of A; A3 condition for non-ovals

We will now show that, if we disregard the assumption that the points v; and 7, lie on
the same oval, then the expression (10) may take both negative and positive values. We will
construct two situations in turn, one with ps > 0 and the other with s < 0, and show that (10)
is positive and negative respectively.

Case (i): p2 >0
Consider Figure 5(a), where without loss of generality we have fixed 72, 7}, and xg, and also the
71 point and the tangent line at this point. We can deduce from [v5,~5] = 1 that +4 has the
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FIGURE 5. (a) Fiz v, 75, X0, 71 and the tangent direction at ;. Then we can

deduce Yy, and we see that pg > 0. (b) It then follows that 7| is as shown, and
hence we can deduce via. It is then clear that [vi2,v4] < 0.

direction and length as illustrated. Then, since the -y point corresponds to an Aj singularity of
the distance function, we know that

X0=72+ ivé’
po

and thus pe > 0. Also, since xp must be the same affine distance from ~; as it is from o, we
can deduce that 7 has length and direction as shown in Figure 5(b), and from this it follows
that the vector vis =4} — 74 has orientation as shown.

We recall here the following proposition from [12].

Proposition 5.8 (Concurrent Tangents Condition). Suppose two points y(s1), v(s2) contribute
point x to the ADSS of a curve 7, parametrized by affine-arclength s. (As usual, we use '
(prime) to denote derivative w.r.t. s.) Then the tangent line to the ADSS at x is
e in the direction v'(s1) —'(s2), and
e concurrent with the corresponding tangent lines at y(s1),v(s2).
0

In the current context this tells us that vis is in the direction of the line joining the intersection
of the tangents lines at v; and 7s.
Thus

[Vi2,75] <0,
and therefore
—p2[vi2, 73] > 0.
Remark 5.9. In this case, 1 and 9 may lie on the same oval with corresponding affine tangent
vectors 7] and ~4, although they need not.

Case (ii): p2 <0

Consider Figure 6(a), where without loss of generality we have fixed 72, 75 and x¢, and also
the point ; and the corresponding tangent line through this point. Since [v},~4] = 1, we can
deduce the direction and length of 4 as shown. Then, since the 2 point corresponds with the
Ajs singularity of the affine distance function, we know that

— ]‘ "
Xo =72 + —72,
M2

and hence uo < 0. Also, since x¢ must be the same affine distance from ~y; as it is from 79, we
can deduce that 7| has direction and length as shown in Figure 6(b), and from this it follows
that vio = 74} — +4 has orientation as shown. (As before, the Concurrent Tangent Condition
tells us the direction of vi5.) Thus

[V12, ’Yél] < 07
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FIGURE 6. (a) Fiz v, v, %0, 71 and the tangent direction at v1. Then we can
deduce vy, and we see that pg < 0. (b) It then follows that +| is as shown, and
hence we can deduce viy. It is then clear that [vi2,v4] < 0.

and therefore

—p2[viz, 2] <0.
Remark 5.10. In this case, 7; and 7, cannot lie on the same oval with corresponding affine
tangent vectors ] and ).

Hence we have shown that the expression (10) can take both signs when we disregard the oval
assumption, and thus we have:

Proposition 5.11. The ADSS of a generic family of plane curves may exhibit transitions of
type A1Asz(a) and A1 As(b). O

It is now possible to take two polynomial branches of a smooth curve v and calculate the con-
dition on the coefficients which separates the two cases. Explicit families can now be constructed
which exhibit the transitions. This is done in [15].

For the other cases, here are the conditions which determine which of the two alternative
transitions occur. In all of these, dropping the oval condition permits both signs of the expression
to be realised. The details of calculations are in [15]. As with the A; A3 transition, the crucial
point is that, for non-ovals, both signs can occur so that both transitions are possible. The
notation is that of Figure 2.

Proposition 5.12. (1) At (a) or (b) according as

1 =772 — 3]l — 73,73 — Yallvs — Y va — Yllva — Y — ]
18 positive or negative.

(2) A2Ay  (a) or (b) according as [Y, — %, V[Vl — 74, 7Y!] is positive or negative. Here
is the branch contributing the As singularity.

(3) A2A2 (a) or (b) according as p'ph is positive or negative. Here u is the affine curvature.
In the situation of the Euclidean symmetry set both cases occur and are distinguished by
the signs of the derivative of Fuclidean curvature.

(4) The single Ay transition also occurs generically on the ADSS. O

6. TRANSITIONS INVOLVING INFLEXIONS

In this section we present some experimental results which show how the ADSS transforms
when inflexions on the curve « are involved. We do not as yet know how to fit these transitions
into the framework of singularity theory. We shall briefly consider four cases:

(1) Two inflexions merging locally in a higher inflexion cause an ordinary cusp at the inter-
section of the inflexional tangents, as in Theorem 3.1(5), to disappear.

(2) Two inflexions merging in a higher inflexion cause two ordinary cusps, at the intersection
with another fixed inflexional tangent, as in Theorem 3.1(5), to interact.



14 P.J.GIBLIN & P.A.HOLTOM

(3) The inflexional tangent at (s1) meets the curve v again in two points which come into
coincidence; as in Theorem 3.1(6) two (5,6) singularities on the ADSS then merge.

(4) Two inflexions merging cause two (5,6) singularities to merge since the inflexional tan-
gents meet 7y in two further points which come into coincidence.

1. The cusp at the intersection of two inflexional tangents is very close to an endpoint of the
ADSS (in a cusp of the affine evolute). As the inflexions merge another branch of the ADSS
approaches and at the moment of transition this branch is tangent to the curve . The rest of
the ADSS has locally become identified with «y itself. After the transition, when v no longer
has inflexions locally, the ADSS has three branches all ending in cusps of the affine evolute. See
Figure 7.

~

FIGURE 7. Left: a curve with two nearby inflexions. The ADSS has a single
cusp at the intersection of the two inflexional tangents (Theorem 3.1(5)). Below
is drawn the pre-ADSS, plus the diagonal. The cusp on the ADSS is not evident
on the pre-ADSS and the horizontal/vertical tangents to the pre-ADSS do not
indicate cusps on the ADSS. See Remark 3.3. Centre: the moment where the two
inflexions merge. The pre-ADSS (below) has become highly singular: even ignor-
ing the diagonal part there are three branches through the singular point. The
right-hand diagram shows the curve, now having no inflexions locally, together
with the ADSS—three branches with endpoints—and also for good measure the
affine evolute (drawn heavily), which can be seen to have cusps at the endpoints
of the ADSS.

2. Here, there are two cusps as in Theorem 3.1(5)—see Figure 8, left. One branch of  has two
inflexions very close together and the other branch has one inflexion. The two cusps approach
one another, touch, and separate, as shown in Figure 8. After separation, there are no inflexions
to cause cusps on the ADSS; these cusps of of the type in Theorem 3.1(2), and can be predicted
from the pre-ADSS which has two horizontal tangent lines, as shown in the figure.

3. The ADSS ‘pulls away’ from one branch of the curve v in the manner of Figure 9.

4. Two inflexional tangents at nearby inflexions on one branch of v meet another branch of ~
and at each of these intersections the ADSS has a (5,6) singularity. These merge as the inflexions
come into coincidence, and separate into two ordinary cusps. See Figure 10. Note the vertical
tangents to the pre-ADSS in the right-hand figure.

7. CONCLUSION AND FURTHER RESEARCH

We have considered the affine distance symmetry set (ADSS) of a plane curve, which is
defined in a way closely analogous to the euclidean symmetry set. For the case of oval curves
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FI1GURE 8. Left: One branch of v has two inflexions which are very close together.
The tangents to v there meet the tangent to the other inflexional branch of +,
creating two cusps on the ADSS. The pre-ADSS is shown below. As the two
inflexions on the first branch of v merge (centre) the pre-ADSS undergoes a
transition reminiscent of a Morse transition. After the two inflexions on the first
branch have disappeared (right) there are still two cusps on the ADSS, caused
now by the two horizontal tangents of the pre-ADSS.

/%/%/\/

FIGURE 9. An inflexional tangent meets the curve again in two points which
come into coincidence. The two (5, 6) singularities predicted by Theorem 3.1(6)
(left) merge (centre) into a nonsingular branch of the ADSS (right).

the transitions occurring on the ADSS in a generic 1-parameter family of curves are in fact
identical with those occurring on the euclidean symmetry set of a generic family of curves.
When we come to consider curves with inflexions, two things happen. Firstly other transitions,
barred in the case of euclidean symmetry sets and ADSS for ovals, now occur. Secondly, there
are transitions which involve inflexions directly, and these do not resemble those of the euclidean
symmetry set at all. It would clearly be desirable to embrace these, and the anomalous structures
of the ADSS, in the same framework of bifurcation sets which allows us to analyse the more
regular cases.

In the euclidean case, there is a subset of the symmetry set called the ‘medial axis’, which is
obtained by restricting the bitangent circles to ones whose radius equals the minimum distance
from their centre to the curve v (‘maximal circles’). A similar restriction is possible to turn the
ADSS into the affine distance medial axis, and some preliminary work has been done on this in
[13].
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F1GURE 10. Here, v consists of a curve segment «; with two inflexions very close
together, and another segment v, without inflexions which intersects the two
inflexional tangents transversely. At these two intersection points the ADSS will
have (5,6) singularities, as in Theorem 3.1(6). The segment 7; will be off the
picture, and 7o is not shown, but it goes roughly horizontally through the two
fairly obvious kinks in the ADSS in the left hand figure. The pre-ADSS is shown
above. After the inflexions have merged and disappeared the ADSS is left with
two ordinary cusps, as in the right-hand figure.

There are several other promising candidates for the role of an affinely invariant symmetry

set. Some of these are explored in [14, 1] but the transitions which occur in 1-parameter families
have not been investigated.
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