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Abstract
We investigate the convergence to values and p-cycles of iterative sequences based
on the Möbius transformation, the general exponential function, the quadratic
function and the Newton-Raphson method. In this analysis we demonstrate
some particular and general theorems applicable to iterative sequences based on
functions. We further look at the types of diagrams useful for understanding
sequences. Lastly we briefly discuss the nature of complex iterative sequences
and the understanding they bring to the subject.
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1 The Möbius Sequence

The Möbius function can be interpreted many ways, it is a prime example of how wonderful
iterative sequences can be. In our analysis of it we will see how a small change in the set
up can result in very different results.

Let us begin by considering the Möbius function for real numbers:

M(x) =
ax+ b

cx+ d
(1)

Let us now define what an iterative sequence based on M is. By using the recurrence
relation with an arbitrary x0 we have the following

xn+1 = M(xn), for n = 0, 1, 2, 3...

⇔ xn+1 =
axn + b

cxn + d

In the case of c = 0 it is trivial to see that the iterative sequence grows unimpeded, simply
being the iteration of an arithmetic sequence which is to say that every term gets bigger
at a constant rate. Consequently, there is no limit to the sequence and so we are not
interested in the case of linear functions, in other words we will always take c 6= 0. Note
that it is therefore always possible to take c = 1 simply by dividing through by c for this
reason.

The sequence is somewhat curious in its behavior. It is certainty not clear from the
set up (that is the configuration of a, b, c, and d) what will happen as we iterate. For
example, suppose a = 1, b = 1, c = 1, d = 1 with x0 = 1, then it s not hard to see that
xn = 1 for all n (though this case is quite boring). Furthermore, if we chose another
starting point, say x0 = −1, every term is now −1.

However, if we make a small change to the set up, say let b = 2, then the first 5 terms
of the sequence are:

1.500000000

1.400000000

1.416666667

1.413793103

1.414285714

The last number is recognizable as the decimal expansion of
√

2, in fact we can quite
easily deduce that as we iterate infinitely we do end up with

√
2 as the continued fraction

is
√

2 = [1, 2, ..., 2]. (For a detailed explanation of continued fractions and number theory
see [1]). We call sequences like this, where the terms get arbitrarily close to some value,
converging. They will form a major part of our analysis.

More formally a convergent sequence is one in which all the terms beyond a certain
point have a specified difference from a number L which would be the limit of the sequence.
If a sequence is convergent, then for any number ε > 0 there is an N dependent on ε such
that for all n ≥ N we have |xn − L| < ε.

We will meet convergent sequence and other types of convergence later on, but for
now suppose we simply make a = 3 in our set up. As we iterate we find that xn keeps
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getting larger. In fact we find that xn → ∞ as n → ∞. When this happens we call it
a diverging sequence as it does not get closer to any value; an example of a family of
diverging sequences based on M is the case of c = 0. What is surprising is that to go from
converging to diverging we only changed one parameter by a little amount.

Another very simple configuration, which is similar to the first case, is (a, b, c, d) =
(1, 1,−1, 1) with x0 = 3 and this has the really strange result

3

− 2

− 1
3
1
2

3

This is a cycle, more precisely a 4-cycle as the 4 successive value are different but the 5th

term is the same as the first, or if preferred x0 = x4 = 3. This too will be a significant
part of our analysis. Once more we have a very simple set up, but an entirely different
result occurs.

The different cases presented here are very intriguing and so we seek to analyse why
the small differences in their configurations give such fundamentally different outcomes.
We could not tell from the set up what would happen. This analysis on the Möbius
sequence will attempt to deduce what the relationships between the parameters have to
be so that we get the different cases seen.

1.1 Stationary Values

We saw that for some configurations of M , with certain starting values, the function never
changes. That is to say the sequence is stationary at that value, we therefore name these
values stationary values.. (We may also call them fixed points). These values for the
Möbius sequence have the definition,

x = M(x) =
ax+ b

cx+ d
(2)

So to find the stationary values of a particular set up, we must simply solve the above
equation. We begin by rearranging to get the following quadratic,

cx2 − (a− d)x− b = 0 (3)

and solve it like any other. As with all quadratics there are three cases that can arise
for different coefficients; either there are 0, 1 or 2 roots. It is also possible to distinguish
between these cases simply by looking at the discriminant of the quadratic,

∆ = (a− d)2 + 4bc

From the above we can easily see that if (a − d)2 + 4bc ≥ 0, then there are one or
two roots to the equation. These roots we will call α and β and from (1) we see that
cα+ d, cβ + d 6= 0 for any set up. Of course we can now easily compute these stationary
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values simply by solving (3). For now we shall restrict ourselves to the case where ∆ ≥ 0
as we wish to only use real numbers.

We have now deduced the conditions and the value(s) for which the sequence is sta-
tionary. However, it should be remarked that it is only stationary for particular values of
x0, that is to say when x0 = α, β. What happens if we chose another x0 is the subject of
the next subsection.

This algebraic understanding of the values is extremely useful, but to get a complete view
of what these values are we shall look at their geometric significance too. It is easy to see
that if we were to graph the Möbius function in (x, y) space we would use the equation

y =
ax+ b

cx+ d
(4)

and from this it is quite easy see that, from the definition of the stationary values given
in (1), the values α and β are where the lines 4) and y = x intersect;

Figure 1: M has the configuration (a, b, c, d) = (2, 1, 1, 1)
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1.2 Convergence of the Möbius Sequence

The stationary values of an iterative sequence have a very powerful relationship with what
it converges to. In fact it happens that if the sequence converges, then it converges to one
of its stationary values. The question we must now answer is under what conditions the
sequences converges? and when it does,to which of the stationary values does it converge?

Since we know that the limit of the sequence is related to the fixed points it might be
useful to relate the terms directly to the stationary values and see what happens. In fact
from our definition of convergence we see that what is really important is that the value
|xn − α| gets very small, we can use this since if

α =
aα + b

cα + d
and xn+1 =

axn + b

cxn + d
, then

⇔ xn+1 − α =
axn + b

cxn + d
− aα + b

cα + d

⇔ xn+1 − α =
(axn + b)(cα + d)− (aα + b)(cxn + d)

(cxn + d)(cα + d)

⇔ xn+1 − α =
caxnα + bd+ bcα + adxn − (caxnα + bd+ bcxn + adα)

(cxn + d)(cα + d)

⇔ xn+1 − α =
bcα + adxn − bcxn − adα

(cxn + d)(cα + d)

⇔ xn+1 − α =
ad(xn − α)− bc(xn − α)

(cxn + d)(cα + d)

⇔ xn+1 − α =
(ad− bc)(xn − α)

(cxn + d)(cα + d)
(5)

The exact same manipulation would be true if we replaced all the αs with βs. So assuming
that x0 6= β, as this would a stationary sequence, we divide the above by its β version.

xn+1 − α
xn+1 − β

=

(ad−bc)(xn−α)
(cxn+d)(cα+d)

(ad−bc)(xn−β)
(cxn+d)(cβ+d)

⇔ xn+1 − α
xn+1 − β

=

(xn−α)
(cα+d)

(xn−β)
(cβ+d)

⇔ xn+1 − α
xn+1 − β

=

(
cβ + d

cα + d

)(
xn − α
xn − β

)

This equation is hugely significant because it is very simple and manageable whilst telling
us something very interesting about the sequence. We see that since it relates the xn term
to the xn+1 term it is a recursively deified sequence, however because of its form we may
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manipulate it further such that we get

x1 − α
x1 − β

=

(
cβ + d

cα + d

)(
u0 − α
u0 − β

)
⇔ x2 − α

x2 − β
=

(
cβ + d

cα + d

)(
x1 − α
x1 − β

)
⇔ x2 − α

x2 − β
=

(
cβ + d

cα + d

)2(
x0 − α
x0 − β

)
...

⇔ xn − α
xn − β

=

(
cβ + d

cα + d

)n(
x0 − α
x0 − β

)
(6)

This stunning result is the nth term of the sequence which is an incredibly useful tool.
(Sadly it is not one we will be able to use again in any of the other sequences investigated
henceforth.) This is so wonderful because first we see that it has turned the Möbius
function into a geometric sequence which we can understand better and second it is a
very good way of analysing what happens as n gets very large which is what we are
interested in as we want to know when it converges.

It is obvious from (6) that if

∣∣∣∣cβ + d

cα + d

∣∣∣∣ < 1 and n→∞, then the RHS will disappear.

Further we know that if RHS → 0, then it must be true that xn → α by looking at the
LHS so the sequence converges. (Taking the reciprocal and applying the same argument
works just as well for β). Therefore we now know that if this weird constant ratio has
size less than one, then the sequence converges to whichever stationary value is in the
denominator of it.

The danger of the formula, is that we must observe that if we have implicitly taken
α 6= β as this would cancel 6 down completely and give us no information. So as we
progress, for now we will take the stationary values to be distinct.

We know what condition will give us a limit, but we wish to know when that condition
is satisfied. For this we will leave our wonderful new formula briefly and look at the
derivative of the Möbius function at the stationary value as this might illuminate what
the function is doing to the sequence

M ′(x) =
ad− bc

(cx+ d)2
(7)

⇒M ′(α) =
ad− bc

(cα + d)2
(8)

Already we see something interesting as we observe that the denominator of (8)is the
same as the square of the denominator of the constant ratio in the formula for the nth

term. The numerators are very different though and so it is interesting to look at when
(cα + d)(cβ + d) = ad− bc as we know this means the sequence converges.

Let’s return to equation (3) where we got α and β from in the first place; we find that
the coefficient of the constant term and the linear term of this equation can be written as

αβ =
−b
c

and α + β =
a− d
c
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Using the above identities in the quadratic we may see that,

(cα + d)(cβ + d) = c2(αβ) + cd(α + β) + d2

= c2(
−b
c

) + cd(
a− d
c

) + d2

= −cb+ d(a− d) + d2

= ad− bc

This result is truly wonderful! We have shown is that if α and β exists, this was the
only assumption, then (cα + d)(cβ + d) = ad − bc. This means that we can rewrite the
derivative in the following way,

M ′(α) =
ad− bc

(cα + d)2

=
(cα + d)(cβ + d)

(cα + d)2

=
(cβ + d)

(cα + d)
(9)

We have now found that the constant ratio of the formula was in fact just the derivative
at one of the stationary values, thus we see that a sufficient condition for the sequence
to converge when there are two stationary values is that |M ′(α)| < 1, and we know this
means α is the limit. Moreover, the arguments have all been independent of x0 which tells
us that if the condition on the derivative is true, and there are two distinct stationary
values, the function will converge for all starting values.

Further we can see that the same arguments will work for β and that using (9) we
may conclude that

M ′(α)M ′(β) =
(cβ + d)

(cα + d)

(cα + d)

(cβ + d)
= 1

This tells us that at any one point only one of the roots can have the condition for
convergence. So when α and β exist and α 6= β, the function will converge for all x0 to
one, but never the other, stationary value.

To complete the analysis on the convergence of the sequence based on the Möbius function
we must ask what happens if α and β exist and α = β? Of course this renders the
wonderful formula given in (6) useless. If we review the geometric interpretation of the
stationary values from the last subsection we see that this means that the line y = x
meets the line y = M(x) only once and it is not hard to see that this happens if y = x
is tangent to y = M(x), which is to say M ′(α) = 1 something we have not looked at
before. (Note that the curious thing is that when |M ′(α)| 6= 1 it was quite simple to
deduce what happens, but the case of |M ′(α)| = 1 is very strange. In fact the two cases
of M ′(α) = 1 and M ′(α) = −1 are vastly different, so different that the latter case in
fact belongs to section 1.3 where we discuss another kind of limit.) This time we will
commence by creating a new sequence with the definition below, which using (5) can be
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simplified in the following way,

un =
1

xn − α

⇔ un+1 =
1

xn+1 − α

=
(cxn + d)(cα + d)

(ad− bc)(xn − α)

We see that we have some familiar factors on the RHS so by substituting (8) when
M ′(α) = 1 we get that

un+1 =
cxn + d

(cα + d)(xn − α)

=
c

(cα + d)
+

1

(xn − α)

=
c

(cα + d)
+ un

This result is impressive because previously after some manipulation we turned the Möbius
function into something very well behaved, a geometric sequence, this time we have turned
it into a arithmetic progression. In fact as can be done with all arithmetic sequence we
could turn this into a formula for the nth term, but this is unnecessary. We have already
discussed arithmetic progression and it was easy to see that they always diverges as n
goes to infinity. However, from the definition of un we see that this can only be the
case if |xn − α| → 0 and this is only true if xn → α which means that the sequence
converges. Once more this argument has been entirely independent of x0 which tells us
that it converges for all starting values.

Therefore, we may now conclude that the Möbius function is convergent whenever it
has two stationary values or the line y = x is a tangent to it. Further, we know that in
both these cases it will converge for any x0 ∈ R to its stationary value(s).

1.3 Möbius Sequence Cycles

So far when we have discussed convergence we have done so with the definition that a
sequence xn is convergent if xn → k where k is some finite constant. However, being
convergent simply means that the sequence is approaching something, this something
does not have to be a number it could be a set of numbers. When a sequence converges
a set of numbers we call this a cycle as we saw in the introduction. Suppose a sequence
converges to a 2-cycle, then the sequence has the properly that x2n → k1 and x2n+1 → k2
as n→∞ where k1 6= k2. To generalise this definition, let

Mn(x) = M(M(M(M(M(...)))))︸ ︷︷ ︸
n-times

( = M ◦M ◦M ◦M ◦ ... ◦M)

Then, a cycle with period length p has the property that

Mp(k) = k

Mi(k) 6= k for 0 < i < p
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We will take α to represent the first term of the cycle, β represents the second term,
γ represents the third term of the cycle... and so on such that in a p-cycle we have
x0 = α = Mp(α) = xp, x1 = β = Mp+1(β) = xp+1...

Function of the form f(g(x)) are called composite functions and they can be very
cumbersome to handle. For example, trying to write M3(x) out is possible after some
effort, but then to attempt to manipulate it afterwards would be extremely difficult.
Therefore to understand cycles we will think about the Möbius function in a somewhat
different way than previously. So far we have thought of it analytically as a function
mapping one value of the sequence to the next, now we will think of it as a matrix
transforming one vector to another where the vectors represent values in the sequence.
This is a useful thing to do as unlike functions an n by n matrix always stays an n by
n matrix after however many iterations are wanted. In fact when we think about it like
this we see that the Möbius function is a transformation.

Before we begin looking into cycles, we will return briefly to convergence to specific
values as we wish to understand how the matrix interpretation works. In doing this we
will also gain some useful relationships and formulae for later on. We have the Möbius
matrix defined as

M =

(
a b
c d

)
We then apply this matrix to a vector based on the intimal term of the sequence get a
vector representing the next value,

M

(
x0
1

)
=

(
µ0

µ1

)
=

(
ax0 + b
cx0 + d

)

From this it is easy to see how we may compute the next value,

x1 =
µ0

µ1

⇔M

(
x0
1

)
= µ1

(
x1
1

)

It is obvious that µ1 is a real number dependent on x0, but let’s generalise the above
statement and see that there exists a real number µn, dependent on xn+1 such that

M

(
xn
1

)
= µn+1

(
xn+1

1

)
, where µn+1 = cxn + d

The above is quite obvious from the definition of the Möbius sequence, but let us take it
even further. Suppose there was a way of short-cutting µ, with some value νk which has
the property that

Mk

(
x0
1

)
= νk

(
xk
1

)
(10)

The proof of the existence of the number ν is fairly straight forward.
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Proof. Let’s assume that statement (10) is true for some n = k and prove that if this is
the case, then it is true for n = k + 1.

Mk+1

(
x0
1

)
= MMk

(
x0
1

)
= Mνk

(
xk
1

)
= νkM

(
xk
1

)
= Mνkµk

(
xk+1

1

)
= Mνk+1

(
xk+1

1

)
Since νk and µk are both real numbers, we have shown that if the proposition (10) is true
for k, then it is true for k + 1. We know that it is true for k = 1 as this is identical
to taking ν1 = µ1 when we defined the transformation, hence it is true for k = 1, 2, 3....
QED.

The existence of ν has remarkably let us deduce nth term of the Möbius transformation
in to a quite manageable formula which will come to be very helpful to us.

We will now proceed and use the matrix form to our advantage in another way, namely
to find a relationship between the eigenvalues, the characteristic values, of the matrix
and the stationary values of the Möbius transformation. The eigenvalues of a matrix are
found by solving the characteristic equation,

det (M − λI) = 0

⇔ det

[(
a b
c d

)
−
(
λ 0
0 λ

)]
= 0

⇔ det

(
(a− λ) b

c (d− λ)

)
= 0

⇔ (a− λ)(d− λ)− bc = 0

⇔ λ2 − (a+ d)λ+ ab− dc = 0

⇔ λ =
(a+ d)±

√
(a+ d)2 + 4bc− 4ad

2
(11)

We learnt in section 1.2 that to compute the fixed points of the sequence we must simply
use the quadratic formula to solve (3),

cx2 + (d− a)x− b = 0

⇔ x =
(a− d)±

√
(d− a)2 + 4bc

2c

Note that at this stage we do not know how many stationary values there are as we have
not restricted the parameters in anyway other than to say that there are real stationary
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values. Both the equations we have found have a similar structure, they are both cases
of the quadratic formula, and they both use the same numbers. Therefore to link them
there are three identities we may wish to consider,

(d− a)2 ≡ (a− d)2

(a− d)2 ≡ (a+ d)2 − 4ad

a− d ≡ a+ d− 2d

These identities appear in our formulae and so after substituting we find that,

x =
(a+ d− 2d)±

√
(a+ d)2 + 4bc− 4ad

2c

⇔ x =
1

c

(
−d+

(a+ d)±
√

(a+ d)2 + 4bc− 4ad

2

)

λ =
(a+ d)±

√
(a+ d)2 + 4bc− 4ad

2

⇔ x =
λ− d
c

(12)

This is really interesting, it tells us that the eigenvalues of M have a very simple relation-
ship with the limit of the iterative sequence based on the Möbius transformation. We can
certainly use this to our advantage.

We now have a sufficient understanding of the matrix interpretation of the sequence
and so can finally proceed to the problem of cycle. We will begin this by addressing the
promised case of M ′(α) = −1. When looking at (8) we can see that the condition on the

derivative is true if and only if ad− bc = −(cα + d)2. The very strange thing about this
is that by rearranging 12 we see that the RHS of it may be written in terms of λ fully,

bc− ad = λ2

⇔ λ = ±
√
bc− ad

This above tells us that there are two eigenvalues and that they are the negatives of each
other, we then use this information and deduce using (11) that a + d = 0. This is very
useful because it allows us to eliminate one of the terms in matrix M, either a or b, and
therefore get a simpler transformation from which we see that,(

a b
c d

)
=

(
a b
c −a

)
⇔
(
a b
c −a

)2

=

(
a2 + bc 0

0 a2 + bc

)
This result is so shocking because it says that M2 is a scalar matrix meaning it has the
same effect as multiplying by a constant. This property together with (10) gives us,

M2

(
x0
1

)
= k

(
x0
1

)
= ν2

(
x2
1

)
10



It is trivial that if x0 = α, then this is just a 1-cycle so we will assume that is not true.
In which case above we have demonstrated that x2 = x0 which is the defining property
for a 2-cycle! The surprising thing here is that the only condition we set is M ′(α) = −1
which is sufficient to make a 2-cycle. Furthermore, this last bit of argument works for
higher powers of M too, which is to say in order to form p-cycle we must just have the
configuration of M satisfy the property

Mp = kI (13)

where I is the identity matrix. As an example, let p = 4 which would give us the following
matrix expansion

M3 =

(
(a2 + bc)2 + (ab+ db)(ac+ dc) (a2 + bc)2(ab+ db) + (d2 + bc)(ab+ db)

(a2 + bc)(ac+ dc) + (d2 + bc)(ac+ dc) (d2 + bc)2 + (ab+ db)(ac+ dc)

)
We then use this formula to get the system of equations which we solve for a, b, c and d
by setting it equal to a scalar matrix,

(a2 + bc)2 + (ab+ db)(ac+ dc) = k

(d2 + bc)2 + (ab+ db)(ac+ dc) = k

(a2 + bc)(ab+ db) + (d2 + bc)(ab+ db) = 0

(a2 + bc)(ac+ dc) + (d2 + bc)(ac+ dc) = 0


To solve this system let us first combine the last two equations and get the following
formula which proves to be very exciting,

(a+ d)(a2 + 2bc+ d2) = 0

The first factor is the same as the condign we saw for a 2-cycle. It shows up here because
a 2-cycle is an improper 4-cycle; the 0th value and 4th value are the same, but the 2nd

value is the same as the other two which contradicts the definition of a p-cycle with p = 4
given at the start of this section. This problem shows up whenever we try to formulate
non-prime p-cycles as the factors of p always form improper p-cycles, therefore to find
the condition for a p-cycle we must always deduce which factor we want first. Here we
are interested in the second factor only.

When we solve for d, substitute the result into the first two equations and subtract
them we find that both sides become 0. This is important as it tells us that this is
a sufficient condition to satisfy the system. Let’s, therefore, use this to construct a
configuration which has a 4 cycle. Solving for d we get the formula

d = ±
√
−a2 − 2bc

This is clearly satisfied by a = 1, b = 1, c = −1 ⇒ d = 1, which gives us the cycle below
when we arbitrarily chose x0 = 3,

3

− 2

− 1
3
1
2

3
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The above cycle is familiar, in fact it is the 4-cycle we met when we introduced the curious
properties of the Möbius sequence. (The reason we jumped straight into the cycle rather
than having to converge to it is because the stating value x = 3 is a solution to the system
M4(x) = 0,M(x) 6= 0).

Hence, we have completed the demonstration of the one and only necessary condition (13)
under which we form a p-cycle. We have applied this in an example to demonstrate how
it could be used for a 4-cycle and lastly we have seen that the mysterious case we met in
1.2, where M ′(α) = −1, is in fact the only condition to form a 2-cycle.

1.4 Complex Möbius Function

We purposefully restricted ourselves to a, b, c, d, x ∈ R at the start of the investigation.
In fact much more curiosity and splendor can be found in the complex plane, the Möbius
transformation is one of the sequences that want to be complex. What we will see is that
when we renamed it ’transformation’ earlier, we were in some manner premature and in
fact it is from the treatment in this section where we will really appreciate what it is
doing. To begin, however, we will first introduce the concept of conjugate maps.

Suppose we had two sequences defined on different function such that

xn+1 = xn(1− xn) (Sequence 1) (14)

un+1 = u2n +
1

4
(Sequence 2) (15)

These two sequences have an interesting property which is that to get from sequence 1
to sequence 2 we must simply rotate the function by π radians and then translate (0, 0)
to (1

2
, 1
2
). This transformation if applied to the defining function of the sequences. The

appropriate substitution to achieve this is x = −u+ 1
2
;

xn = −un +
1

2

xn+1 = −un+1 +
1

2

= (−un +
1

2
)(1− (−un +

1

2
)) (sequence 1)

=
1

4
− u2n

⇔ un + 1 = u2n +
1

4
(sequence 2)

We have shown that by stating with the first sequence we can end up with the second
sequence via this substitution, what this means is that the sequence they are conjugate.
It follows that any information deduced about the sequence 1 can be applied to sequence
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2 and vice versa. This relates to function by a simple change of notation,

xn+1 = f(xn), (sequence 1)

T (u) = −u+
1

2
T (un+1) = f(T (un))

⇔ un + 1 = T−1(f(T (un)))

= g(un), (sequence 2)

This is exactly the same argument with the function notation. (Note that for the argument
to valid in both cases the transforming function T, or substitution, has to be invertible
and both sides of it must be continuous).

Whenever two functions f and g have this type of relationship we call them conjugate,
they are considered to be the same as far as iterative sequences are concerned because
whatever is true for one is true for the other. That is to say whatever is true about
sequence 1 of function f is also true about sequence 2 of function g. A very important
property to note is that (T−1fT )n = T−1fnT and pacifically for our use of conjugate maps
we have that fn = e ⇔ gn = e where e is the identity and subscript n means repeated
application of the function.

To continue without investigation of the Möbius transformation we will use this idea of
conjugant maps. We will also restrict ourselves to the case where b is negative, b = −p2
for some real constant p and secondly a = d such that,

M(z) =
az + b

z + a

The reason we apply these restriction is so that (3)only has complex roots because we
force ∆ < 0. These roots are still the stationary values and can be computed in the same
way resulting in the result that,

α = ±ip

Let us now create a transforming function T with the definition,

T (z) =
z − ip
z + ip

Note that this transforming function is continuous as we are in C ∪ {∞} and so it does
not matter that we are sending one of the stationary values to infinity. Therefore it meets
all the conditions for the transform to be valid. Now to perform the transformation, after
a short calculation we find that,

T ◦M ◦ T−1 =
a− α
a2 + p2

z

This is incredible. Once we see that the constant has modulus one we understand that
the conjugate map to M is in fact just a rotation in the complex plane. Another curious
thing is that the constant has the strange property that

M ′(α) =
a− α
a2 + p2
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The conjugate map being a rotation is very interesting because rotations are easy to
handle in the complex plane. We can apply Euler’s equation with the quick result

eiθ =
a− α
a2 + p2

⇔ cos θ =
a2 − p2

a2 + p2
,

⇔ sin θ = − 2ap

a2 + p2

At this stage we have three unknowns, θ, α and β, and two equations. However, we can
chose what θ is so that we end up with a system of two equation with two variables.

For example, suppose that we want the 6th iteration of M on some z to be equal to z,
in functional notation M6(z) = z. We see that via the conjugate map that this is identical
to choosing θ = π

3
as this will result in 6 iterations transforming, or turning, z through

2π radians back to where it started.
In fact this is a 6-cycle as no fewer iterations will return to z, the identity. We can

now solve for the constants,

cos θ =
1

2
=

a2 − p2

a2 + p2

sin θ =

√
3

2
= − 2ap

a2 + p2

p = 1 ⇔ b = −1

a = ±
√

3

Hence, we have found the specific conditions where we get a 6-cycle in the complex plane
when a = d. Naturally, we could get a p-cycle in the exact same way by choosing an
appropriate value for θ, this value obviously being θ = 2π

p
.

1.5 Conclusion on Möbius Function

Overall, the Möbius sequence is an incredibly interesting. Its very nature is threefold;
it can be thought of as a function mapping one value to the next; we may consider it a
matrix transforming one vector to the next which represent values in the sequence; or it
can be a rotation in the complex plane.

This last nature is the one which could use much further exploration than we had time
for. We have so far seen that it is in some manner easy to make Möbius sequence make
a complex cycle. In reality T simply moves the stationary values to 0 and ∞, yet the
result we get is so astounding we can’t help but be impressed with the ease with which
this transformation results in such a simple conjugate map to the rather complicated M.

There is much further study to be carried out here which is left up to the reader.
For example, what is the relationship between the rotation in the complex plane and the
gradient? The sequence has shown so much promise already and so we expect that there
are some truly remarkable properties yet to come.
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2 The Exponential Sequence

In this section we will be looking at an iterative sequence defined on the exponential
function which has base ’a’. The actual sequence we are interested in is defined recursively
as

E(x) = ax (1)

xn+1 = axn for n = 0, 1, 2...

In this investigation we will restrict ourselves to a ∈ R+ as some of this sequence wonder
lies in its unprecedented simplicity. In general exponents can cause some real problems,
especial when considering no-integer exponents as is the majority of our investigation. Yet
despite expectations this sequence drops out to be extremely well ordered and aesthetic.
For example, if we simply take x0 = 0 we get the very predictable sequence,

0, 1, a, aa, aa
a

... (2)

Although one should not get the impression that this means there is a formula for the nth

term of the sequence, this is a privilege we are not afforded thus making it slightly more
difficult to handle than the Möbius sequence.

To understand better the behaviour of this sequence let’s plot a graph of a against xn,
as n → ∞, so that we can see how changing a yields some quite interesting features in
the limit of the sequence;

Figure 2: (Appendix A) How the limit of xn as n → ∞ changes as the parameter a
changes.

Note that this graph was in fact not obtained by taking the limit but rather by doing a
few hundred iterations of sequence and plotting the last 10 values. This is not analytically
perfect, as can be seen by the vertical stretches of points formed in the diagram, but it
is sufficiently accurate to get a good idea for what is happening (any further would go
beyond our computational limit).
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When we look at the above graph we see that there are three interesting regions which
we should remark on;

for 0 < a < 0.1 there is a 2-cycle;

for 0 < a < 1.4 the sequence xn → α;

for 1.4 < a < 2 the sequence xn →∞.

The numbers on the bounds for a are approximate and so in this investigation we will be
focusing on computing what they actually are: when does xn converge? and when does
it go to a cycle or a value?

The observations are useful to us as it suggests an approach for the analysis. It may
seem as though we should move left to right for values of a until we find these strange
changes, but in fact we see that it would be wiser to move from the right to the left as
this means we wont have to convert ourselves with divergence too much later on. As it
happens we will be splitting the sequence up into two different ranges of a not based on
what the sequence is doing, directly, but rather on what the function E(x) is doing.

2.1 Convergence

The function E(x) is entirely dependent on a and has quite different properties as this
parameter is varied. So much so that there are three very distinct cases;

Figure 3: (A) a < 1 (B) a = 1 (C) 1 < a

Case (B) where a = 1 is trivial as the sequence xn is stationary at 1 for all x0 ∈ R so we
will ignore this value. However, the other two cases need some analysis as they exhibit
some quite interesting properties. So since we can see in figure 2 that the case of (A) has
the added complication of a cycle, we will begin by looking at the last case, where a > 1,
first.

2.1.1 The range a > 1

Let us first observe that from image (C) we see that the function is strictly increasing
as the graph is pointing upwards. Indeed, we may deduce this simply by taking the first
and second derivative of the function given in (1). What we see is that not only is the
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function strictly increasing, but it is also convex because as it is easy to see that:

E ′(x) = ax(ln a) < 0 (3)

E ′′(x) = ax(ln a)2 > 0

When we consider the graph of this function we see that there are three possible scenarios
for the stationary values; there are two values α and β; there is only one value α; or there
are no stationary values.

In this last case it is obvious that the sequence will diverge because if a sequence
converges it converges to a stationary value and so by the contrapositive if there are no
stationary values then the sequence does not converge. Therefore, we propose that there
exists a number A with the property that

xn → α for 1 < a ≤ A

xn →∞ for a > A

To calculate A we must simply ask what is the greatest possible stationary value the
sequence can have? The corresponding parameter a would have to be A from the above
definition. So we simply need to maximise A in the below equation, which defines the
stationary value of the sequence xn based on the exponential function,

Ax = x (4)

This is an optimization problem: to find A we must just compute the stationary points,
or rather the local maxima, the bounds of a and then compare which gives the greatest
value. To find the local maxima we differentiate and solve for the stationary points,

A′ =
x

1
x

x2
(1− lnx) = 0

⇔ lnx = 1

⇔ x = e

We see here that A only has one stationary point and when we look at the graph below
we see quite clearly that this value must be a local maximum.
However, we wish to prove this analytically and to do so we must simply observe that

if x→ e+ , then A′ < 0 as ln(x)→ 1+ and,

if x→ e− , then A′ > 0 as ln(x)→ 1−

Another way to prove that x = e is a local maximum is by taking the second derivative,
but this gives a very complicated equation and is quite unnecessary. The actual value of
A corresponding to he local maximum is e

1
e .

Now it is simply necessary to check the bounds of (4) to make sure that x = e is a
global maximum. So we ask two question: is A larger when x → 0+? and is A larger
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Figure 4: The function A = x1/x

when x→∞? The first can be answered by a simple substitution,

u =
1

x

⇒ A = lim
x→0+

x
1
x

= lim
u→∞

1

u

u

= lim
u→∞

1

uu
= 0

Which means that the limit is 0. This is obviously less than the value we got for the local
maximum, hence the first bound is checked and the question is answered is answered in
the negative.

The second case of x → ∞ is slightly more difficult to work out. To answer this
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question we will first manipulate it to a much more manageable limit;

A = lim
x→∞

x
1
x

= lim
x→∞

e
ln x
x

= elimx→∞
ln x
x

The last line is interesting because we can finally take the limit using L’Hôpital’s rule as
we have an indeterminate form,

lim
x→∞

lnx
x

=
∞
∞

⇒ lim
x→∞

lnx
x

= lim
x→∞

1
x

1
= 0

∴ A = lim
x→∞

x
1
x = e0 = 1

This limit once again is below the value of the local maximum, hence the value A = e
1
e is

the global maximum. Therefore we have found the largest value of A which satisfies (4),
this is the last a for which there exists a stationary value of the sequence xn. Meaning, we
have found what the largest a such that sequence possibly converges. It follows therefore
that we must only look at 0< a < e

1
e a much smaller range than from 0 to infinity.

We know that if xn converges, then it converges to a stationary value. However, we do
not in fact know if the sequence xn+1 = E(xn) converges at all.

Suppose we wanted to graphically see how successive values of the sequence related
to each other. It is obvious that both the lines y = x and y = E(x) are important, and
naturally we must mark all the points of the sequence on this diagram with the coordinate
(xn, xn+1). Doing this would give us a plane with two lines, a collection of points and
disorder. So to see the relationship between successive iterations we will connect the
corresponding points to successive with lines such that we get the above diagrams.

Figure 5: (Appendix B) (A) x0 < α (C) α < x0 < β (B) x0 < α

This type of diagram is called a cobweb diagram and it can be very revelling. For example
we can see not only if the sequence approaches a limit, but how it does so. Certainly from
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the above it looks as though the sequence always converges to the lower stationary value
and that to deduce this we must just consider the line y = x with respect to y = E(x).
We see that the relative positions of these two lines results in the different cobwebs,
namely one the sequence ascends and the other it descends. However, we may simplify
the question a little if we observe that the behaviour in the range of 0 ≤ x0 < α is the
same as the range β < x0. So we must just ask what happens when 0 ≤ x0 < α and when
α < x0.

Firstly, suppose 0 ≤ x0 < α, we see that this means that the line y = x is below the
line y = E(x) meaning that E(x > x ⇔ xn+1 > xn from the definition of the sequence.
This is true for all a in the range we know that function is strictly increasing and y = E(x)
crosses the y-axis at (0, α). Furthermore, we see that if 0 < xn < α, then 1 < xn+1 < α
for n > 2 by substituting the bounds into the function. This means that the sequence is
strictly increasing, but is always below the upper bound which implies it converges to the
upper bound in this case that is α.

Secondly, suppose that we had α < x0. We see that this means y = x is above the
line y = E(x) meaning that xn+1 < xn. Additionally we see again that the range of xn
is the same as the range of xn+1. Therefore we know the sequence will converge to the
lower bound, α in this case.

We have now shown that in both cases the sequence will converge and we know what it
will converge to. However, in the argument we never referred to anything that defines the
function or the sequence in anyway other than to say the function was strictly increasing.
Therefore we may call this a general theorem.

General Theorem 1. Increasing Functions
Let f be a strictly increasing function in the range r0 ≤ x ≤ r1, and let an iterative
sequence be based on f such that xn+1 = f(xn). The values r are either stationary values
of the sequence or are the boundary of where the function is an increasing function. The
sequence xn will converge to r0 if the line y = x is above the function and to r1 if the lines
is below. Further, xn will always stay on the same side of the limit as x0.

Let us note that from the above theorem if x0 is larger than the last stationary value and
the line y = x is above the function f, then the sequence must diverge which is indeed in
accordance with (C) from the earlier diagram.

We now fully understand what happens in the range a > 1. If x0 is below the last root,
then

xn → α as n→∞ for 1 ≤ a ≤ e
1
e

xn →∞ as n→∞ for a > e
1
e

2.1.2 The range of 0 ≤ α < 1

The difference between this range and last is that here the function E(x) is strictly
descending, but still convex. We can easily see this because the first and second derivatives
are

E ′(x) = ax(ln a) < 0

E ′′(x) = ax(ln a)2 > 0
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The problem we have is that General Theorem 1 no longer applies. So to understand the
sequence we will need quite a different analysis than before.

Let’s begin by looking at the cobweb diagram of the sequence in this range, This is

Figure 6: (Appendix B) A cobweb diagram for the case of a < 1.

very different from what we have seen before, the sequence is oscillating above and below
the stationary value closing in as it does. In fact, it’s from pictures like this that we get
the name ’cobweb’, the diagrams we have seen so far are sometimes called ’staircases’. In
the diagram it looks as though the sequence has the property that,

x0 < x2 < x4... < α < ... < x5 < x3 < x2 (5)

If we can prove that these inequalities hold, then we will have shown that the sequence
xn does converge.

We will begin by looking at (2) which quite quickly gives us the very useful subse-
quence,

x0 < x2 < x1 (6)

This is important because we can use it to show that repeated application of the E(x) on it
gives us the full sequence inequality. It is important to see that (5) is actually composed
of three rules which define the whole; the even subsequence, the odd subsequence and
their relationship:

x2n+2 = E2(x2n)

x2n+3 = E2(x2n+1)

x2n compared to x2n+1

Where E2(x) means the composite function E(E(x)). The conjectures we wish to demon-
strate are these:

x2n < x2n+2,

x2n+1 > x2n+3 and

x2n < x2n+1.

We will prove each of these statements in turn.
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Theorem 2.1. : The Even Subsequence
If E(x) = ax and xn is an iterative sequence defined such that xn+1 = E(xn), then for
0 < a < 1, the even subsequence has the property that: x2k < x2k+2, while the sequence is
not in a cycle.

Proof. We begin by assuming that the theorem is true for some n = k,

x2k < x2k+2

We will prove that if this is the case, then the statement it is true for n = k + 1;

x2k+2 < x2k+4

To begin we write the two sides of the above inequality in terms of the case n = k by
using the definition of the sequence:

x2k+2 = E2(x2k) = aa
x2k and,

x2k+4 = E2(x2k+2) = aa
x2k+2

Since the sequence is not in a cycle either it is true that x2k+2 < x2k+4 or it is true that
x2k+2 > x2k+4. If we assume that second is true we get,

aa
x2k > aa

x2k+2

⇔ ax2k ln(a) > ax2k+2 ln(a)

⇔ ax2k < ax2k+2

⇔ x2k > x2k+2

which is a contradicts the statement of the case n = k. Thus if there exists such case,
then it must be true that x2k+2 < x2k+4. Hence, we have shown that if the conjecture is
true for some n = k, then it must be true for n = k+ 1. We know from (6) that it is true
for n = 0, so it must be true for n=0, 1, 2, 3... QED.

Theorem 2.2. The Odd Subsequence
If E(x) = ax and xn is an iterative sequence defined as xn+1 = E(xn), then for 0 < a < 1
the odd subsequence has the property that: x2k+3 < x2k+1, if the sequence is not in a cycle.

Proof. We assume that the sequence is true for some n = k,

x2k+1 > x2k+3

We will prove that if this is true, then the theorem is true for n = k + 1;

11x2k+3 > x2k+5

Since there isn’t a cycle either it is true that x2k+3 > x2k+5 or it is true that x2k+3 < x2k+5.
We will assume the latter and, recalling the fact that a < 1, by using the definition of the
sequence we get;

x2k+3 < x2k+5

⇔ aa
x2k+1

< aa
x2k+3

⇔ ax2k+1 > ax2k+3

⇔ x2k+1 > x2k+3
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This is a contradiction of the case n = k. Thus, the opposite must be true such that
x2k+3 > x2k+5. Hence, we have shown that if the theorem is true for some n = k, then
it must be true for k + 1. Since we know that it is true for n = 0, we know it is true for
n = 0, 1, 2, 3... QED.

Theorem 2.3. The Relationship between Odd and Even terms
If E(x) = ax and xn is an iterative sequence defined such that xn+1 = E(xn), then every
odd terms is greater than every even term: x2k < x2k+1. If the sequence does not enter a
cycle.

Proof. We assume the statement for some n = k:

x2k < x2k+1

We will prove that if this is true, then the theorem is true for n = k + 1,

x2k+2 < x2k+3

Either the above statement is true, it its opposite is true. If we assume the latter then
we get that,

x2k+2 < x2k+3

⇔ aa
x2k < aa

x2k+1

⇔ ax2k > ax2k+1

⇔ x2k > x2k+1

This contradicts the statement for some n = k, therefore the opposite must be true.
Hence, we have shown that if it is true for n = k, it is true for n = k + 1. We know it is
true for n = 0 because of (6) and so we know that it is true for n = 0, 1, 2... QED.

One may notice that all three proofs follow the exact same form and in fact the first two
cross through each other. For example at one point in the first theorem we compare odd
terms and in one case of the second theorem we compare even terms. In reality these are
the same proofs shifted by one iteration, they are presented here separately for clarity
though.

We have now succeeded in proving all three features which define (5) and therefore we
have proved the statement itself: the sequence xn converges for 0 < a < 1. There is only
one problem with our proof which is that we assumed that there were no cycles. However,
from figure 2 we can see that one forms for very small a so we must now deduce what he
limit is.

2.2 Exponential Sequence Cycles

There are two possible cases, either the sequence converges to a cycle or to a value. To
continue our investigation, therefore, we must understand what at is it about a stationary
value which means that a sequence will converge to it rather than to a cycle around it.

We shall introduce another general theorem here which will help us solve this problem.
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General Theorem 2. Attracting Stationary Values
If an iterative sequence xn is defined recursively as xn+1 = f(xn), for some differentiable
function f, and the sequence is convergent such that xn → α as n → ∞. Then, the size
of the derivative at α is |f ′(α)| ≤ 1.

Proof. From the definition of the derivative at some point we have that

f ′(α) = lim
x→α

f(x)− f(α)

x− α

Now since we have the sequence xn and its limit is the stationary value f(α) = α we can
write

f ′(α) = lim
x→α

xn+1 − α
xn − α

If we assume that |f ′(α)| > 1 we get that

|xn+1 − α| > |xn − α|

which contradicts the fact that xn → α. Hence we have that f ′(α) ≤ 1. QED.

This theorem is really fascinating because we can create similar theorems to show that
for any recursive sequence based on a differentiable function f with a stationary value at
α we have the following statements:

α is attracting if |f ′(α)| < 1

α is indifferent if |f ′(α)| = 1

α is repelling if |f ′(α)| > 1

These statement are quite revealing about sequences, they tell us that if we know a
sequence converges to a value then we know which value it converges to. For example,
suppose that we had a convergent sequence xn based on a function f with two stationary
values, α and β, and we could compute the derivative at these values. Suppose now that
f ′(α) < 1, but f ′(β) > 1, then we know that it must converge to α by the above General
Theorem. This is so useful because f might be incredibly difficult to manipulate.

In fact we already used these theorems: we saw that if |M ′(α)| < 1, then the iterative
sequence defined on M will converge to α. Furthermore, we saw that if the sequence xn
based on M converges and |M ′(α)| = 1, then the sequence is indifferent as we cannot
tell if it converges to a cycle or a value without further analysis. We also saw that if
|M ′(α)| < 1, then |M ′(β)| > 1 which means that β is a repelling stationary value and
indeed we concluded that the sequence never converges to β when we did the analysis in
the last section.

We know that in the range 0 < a < 1 the sequence converges, but let’s suppose that
for some a we have that |E ′(α)| ≥ 1 and |E ′(β)| ≥ 1 such that the stationary value is
repelling or indifferent. Meanwhile |E ′2(α)| < 1 and |E ′2(β)| < 1 so that the even and odd
subsequences. The values α and β are stationary values ofE2(X).

In reality this argument works for a p-cycle too and is in fact a corollary of the above
theorem.
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Corollary 2.1. Let an iterative sequence be based on a function f with the property that
|f ′p(α)| < 1 and |f ′k(α)| > 1 for all 0 < k < p. Then the p-subsequences each converge to
a different values, such that the sequence forms a p-cycle.

So using this we may propose that there exists an amin = A such that the following
conditions are satisfied;

xn → α as n→∞ for A ≤ a < 1

xn → 2-cycle as n→∞ for 0 < a < A

To deduce where the above is true we need to ask

for what a = A is |E ′2(α)| > 1 and,

if |E ′2(α)| ≤ 1 does xn → α?

The first question can be answered by looking at where the derivative of the second
iteration of E(x) at α satisfies the condition set. However, it is easier for us to ask when
is the opposite true? That is to say, we will look at when the sequence converges to a
value rather than a 2-cycle. If the sequence converges to a value, then the 2-subsequence
must also do so such that by the above General Theorem

|E ′2(α)| = ln(α)2 ≤ 1

⇔ 1

e
≤ α < 1

⇔ (
1

e
)e ≤ a < 1

The last step is true because section 2.1 told us that the function x
1
x is strictly increasing

in the range 0 < x < 1 for that range of a. Hence, from this we can see that A = (1
e
)e

as this is the minimum bound for which the condition on the derivative is true. We may
notice that the remark in 2 suggesting that the cycle starts at a ≈ 0.1 is supported here
as A ≈ 0.065988... which is very close.

We must now answer the second question which asks; can we prove that for the range
A < a < 1, the sequence xn converges to a value? This may seem obvious, and it may
seem like we already proved it in the last section, however we need to be careful not to
confuse convergence with convergence to a value. We do not in fact know whether it
converges to a 2-cycle or a value in this range.

To prove this we will show that there is only one stationary value in each of the
even and odd subsequences and these values are one and the same: this means that
there cannot be a cycle and since the sequence converges, it must therefore converge to
a number. Therefore, we must simply ask how many times the line y = x and the line
y = E2(x) intersect for the range (1

e
)e ≤ a < 1 as these are the stationary values. We

begin by looking at the inflexion point(s) t of E2, which we deduce from the definition
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has the property that

E ′′2 (x) = aa
x

(ax)2 ln(a)4 + aa
x

ax ln(a)3

⇔ aa
t

(at)2 ln(a)4 + aa
t

at ln(a)3 = 0

⇔ t =
ln( −1

ln(a)
)

ln(a)

⇔ at =
−1

ln(a)

⇔ aa
t

=
1

e

From this we understand that if (1
e
)e ≤ a < 1, then t must be on the left of, or equal to,

the stationary value as E2(x) is strictly increasing. Indeed, we may see that if (1
e
)e ≤ a <

1⇔ 1
e
)e ≤ α < 1, then we get the result that

aa
t

=
1

e
≤ α = aa

α

The reason this is so useful is that since there are no points of inflection on the right of
α the function E2(x) must be strictly decreasing for all x > α and since we computed
earlier that E ′(α) ≤ 1, we see that the lines y = E(x)2 and y = x are getting further
away from each other as the gradient of y = x is one, hence they never meet again. So
we may conclude that there is only one stationary value for E2(x) which tells us that in
the limit the even and odd subsequence must converge to the same value. We have thus
succeeded in answering both the question we set out to do.

2.3 Conclusion on the Exponential Sequence

We have now completed the analysis on the entire valid range of a for the sequence based
on E(x). To sum up our results we have shown that as n→∞,

for a ≤ 0, xn 6∈ R;

for 0 < a ≤ (
1

e
)e, xn → 2-cycle

for (
1

e
)e < a ≤ e

1
e , xn → α or β;

and for e
1
e < a, xn →∞

Which means that for all a ∈ R+ we understand what the sequence is doing. We have seen
here that even though a function may appear to be complicated for solving equations,
modelling, calculus etc. when it comes to sequences it can be very well behaved and
understandable despite expectations.

However, the analysis presented is in fact incomplete. In the last part of 2.2 it was
only proved that xn does not converge to 2-cycle for (1

e
)e ≤ a < 1. We have not shown

that it does not form a p-cycle for odd p > 2. This last statement we believe can be
proved in a similar way as for the 2-cycle because the first and second derivatives of the
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iterated function follow a very clear pattern:

E ′p(x) = ln(a)p axaa
x

...︸ ︷︷ ︸
until height p

= ln(a)p
p∏
i=1

Ei(x)

E ′′p (x) = E ′p(x)

p∑
i=1

E ′i(x)

Ei(x)

The task of deducing that there are no p-cycles in the range is left up to the reader using
the above or otherwise. Indeed, it looks as though it may be easier to prove it without
the above, though the formulae are very interesting and aesthetic. General Theorem 3
which we meet later on may also be useful.

On a similar note, it would indeed be interesting to complete an full analysis of x0, a ∈
C. That is to say we have only looked at a very restricted range of these values when in
fact we may ask what happens when x0 = 1 and a = i where i =

√
( − 1). Though this

would certainly be a very long and technical investigation, it would be very wonderful to
do.

27



3 Quadratic Sequence

Suppose that there was a pond in which there were some fish. We would expect the size
of the population to have a maximum; after which the food would begin to run out as the
demand was too high. This would mean that the population would be reduced as there
are not enough resources for them to survive.

We could model such a situation with a graph of the percentage of maximum popula-
tion on the vertical axis and the ratio of food to fish on the horizontal,

Figure 7: A model for population rise and decline.

Suppose in month zero there was a food to population ratio x0, we then apply the model
to see what the ratio x1 will be after one month. The next question we may ask is what
happens as we apply the model again and again such that we find the food to population
ratio x2 after two months of monitoring the pond and then the ratios x3, x4, x5... Let xn
be the percentage of the maximum possible population after n months, we may compute
this figure by the recursion relation,

Q(x) = λx(1− x)

xn+1 = Q(xn) for n = 1, 2, 3...

⇔ xn+1 = λxn(1− xn)

Where λ is some parameter to configure the model. The question we want to ask ourselves
is what is the long term population, how many fish can we expect to eventually have? This
model was in fact invented through a problem such as the one above and is sometimes
called the ’logistic map’ and it was invented through a problem like the one presented.

Clearly this is a problem in iterative sequences, the reason it is so interesting is because
it is actual conjugate to all quadratic sequences of the form

xn+1 = ax2n + bxn + c

The proof of this will not be reproduced here as an explanation of it was already presented
in section 1.4. However, reader may want to do the demonstration for themselves with
the substitutions,

x = −
(

2aα + b

a

)
u+ α

⇒ λ = 2aα + b

28



Therefore if this map is conjugate to the general quadratic map, then if we understand
what happens if we iterate using the logistic map, we understand what happens when we
iterate all quadratic functions.

We saw in section 2 that complicated function can be quite simple as iterative se-
quences, this time we shall see the converse as though second order polynomials are quite
easy to manipulate, the sequence produced is a prime example of chaos. It so happens that
changing the only parameter λ by a little bit can result in impossibly different outcomes
of the sequence, and therefore of our fish population.

To demonstrate this more clearly observe the diagram below which has λ on the
horizontal and x∞ on the vertical starting with x0 = 1

2
as this is the maximum possible

population.

Figure 8: (Appendix C) A period doubling bifurcation diagram for the quadratic sequence.

This diagram has some very interesting features;

the graph converges to 0 for 0 ≤ λ ≤ 1 and then

to some non-0 for 1 < λ ≤ 3

After which, however, it does something very strange indeed called period-doubling bi-
furcation where it splits into;

a 2-cycle for 3 < λ ≤ 3.45;

a 4-cycle for 3.45 < λ ≤ 3.55.

As λ grows there is chaos, the period of cycles doubling and coinciding giving unpredictable
even and odd cycles.

As if this was not bizarre enough for such a small range of λ not even reaching λ = 4,
it ’crystallises’ in a strange way such that amid the long-cycles we get a beautiful 3-cycle
at about λ ≈ 3.8. We will need to investigate what this mysterious figure is as it is such
a wonderful point of order. It would appear that though this sequence should be well
behaved, it is in fact very chaotic and hard to understand.
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Furthermore, it should be noted that where we stated that the vertical axis represented
x∞ this was an exaggeration. In fact as can be seen in the appendix, the vertical values are
found after a few hundred iterations of the function and the last 50 of these are plotted.
We must not rely too much on the diagram therefore as it can do no more than give us a
good idea of what is happening as we iterate.

In this analysis we will not concern ourselves so much with ’why’ it has this strange
behaviour, but rather with ’when’ it happens. That is to say we want to be able to
compute, and prove, where we get the convergence to numbers and p-cycles culminating
in the remarkable 3-cycle. Lastly, not that as we cannot have negative or complex fish or
food in the pond, we shall take λ, x ∈ R+ in the whole investigation.

3.1 Convergence in the range 0 < λ ≤ 3

We have the theorem which says that if a function converges, then it must converge to its
stationary values. Let’s therefore begin by deducing what the stationary values are for
particular values of λ, it is obvious that the origin is always a stationary value, the other
one may be computed as

α = Q(α)

⇔ α = λα(1− α)

⇔ α = 1− 1

λ
(7)

The formula for α is very interesting because it tells us that there are no valid values for
α in the range 0 < λ ≤ 1 as the formula gives only negative values or 0 in this range, so
the only stationary value is at the origin. Now let’s look at the derivative,

Q′(x) = λ(1− 2x) (8)

It is easy to see that for all 0 < x < 1
2

when we restrict the range of λ in this way we may
apply General Theorem 1 to see that the sequence converges to the origin as we expected
from the diagram. We end up with no fish. We may apply the theorem because function
is increasing and the line y = x is above the lines y = Q(x) as there are not stationary
values other than (0, 0). However, we must now investigate what happens for the range
of 1

2
≤ x0 ≤ 1 to get a complete picture of the function.

When we look at 7 we see that for all x in this range, the function return a smaller
value. Indeed by a similar argument to the above we see that this is true as y = x is
above the function and there are no stationary value other than the origin. Eventually,
since xn is getting smaller, the sequence will be in the range we have already proved with
the General Theorem.

We may interpret this therefore as saying that when the population has a maximum
of less than a quarter the threshold of the pond, as λ ≤ 1⇒ Qmax ≤ 1

4
by completing the

square, then the population cannot sustain itself and dies out.

There rest of this analysis is similar, indeed it is just an application of the general theorems
in the specific case of the logistic map except the case of λ = 3 which is quite unique.
As can be seen in the diagrams at the end of this section there are several different cases
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which may arise, some we have already taken care of, and the subtle difference means
individual analysis is necessary.

Firstly, we will restrict ourselves to the range 1 < λ < 2, we now know from (7) that
this means there exists a stationary value α:
1) Suppose 0 < x < α, we see that this means that the line y = x is below the line
y = Q(x) and if we take α ≤ 1

2
then the function is strictly increasing again so the

General Theorem tells us the sequence converges α as this s the upper bound.
2) Suppose instead that we were to look at the case α ≤ x ≤ 1

2
, then we see that y = x

is above the line y = Q(x) meaning that we once more can apply General Theorem 1 to
see we converge to the lower bound α as the function is stall strictly increasing.

Secondly, we will restrict ourselves to the range 2 < λ ≤ k where we understand that
α is on the right hand side of the function. We have left in k as we do not know where the
bifurcation starts. Let us first deduce the range of α using equation (7) which is strictly
decreasing as it is a hyperbola, so that we get

1

2
< α ≤ 1− 1

k

Now we ask what the last value for which the stationary value is attracting is, as this is
the last time we know the function definitely converges to a value. Such that by using
General Theorem 2 we may deduce the following,

|Q′(αmax)| < 1

⇔ |k(−1 + 2/k)| < 1

⇔ |2− k| < 1

⇔ 2 < k < 3

This is a very interesting result, we have shown after this short calculation that for
2 < λ < 3 the sequence converges to a value. The population of our fish stabilises.

This is in fact not surprising though, as we saw in the period-doubling diagram the
sequence now splits into a 2-cycle. We must, however, not be fooled into thinking that
we have found the whole range where the sequence is convergent to value as when the
stationary value is indifferent it could still be the limit of the sequence. It is not clear
what happens when λ = 3, since α is indifferent, so some extra argument is needed here.
Roughly, we will simply have to prove that all p-cycles have a single stationary value for
this parameter, and therefore all subsequences converge to the same limit. What makes
the following argument so difficult is that when λ = 3 the sequence bifurcates for the first
time, and so the analysis becomes much harder.

We will begin by looking at the case of potential 2-cycles as we may generalise these
results. To do this we want to begin by familiarising ourselves with some of the features
of the second iteration of the map, the very first statement we wish to see is that Q2(x)
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is symmetric about the line x = 1
2
, we may deduce this as

Q2

(
1

2
− x
)

= λ(
1

2
− x)(1− (

1

2
+ x))

= λ(
1

2
− x)(

1

2
+ x)

= λ(
1

2
+ x)(1− (

1

2
− x))

= Q2

(
1

2
+ x

)
This will half our investigation as everything we know about one side of the function we
may apply to the other. Now we wish to find the maximum values s of this function, after
a short calculation we achieve the following,

Q′2(x) = −4λ3x3 + 6λ3x2 − 2λ3x− 2λx+ λ2 = 0

⇒ −λ2(−1 + 2x)(2λx2 − 2λx+ 1) = 0

⇔ s1 =
l +
√
λ2 − 2λ

2λ
⇔ s2 = 1− s1

⇔ Q′2(s1) =
λ

4

⇔ Q(s1) =
1

2

Using the above statements we may see that for all λ in the range,

α < Q(1
2
) < s1 (9)

Q2(
1
2
) >

1

2

The last thing we wish to observe is that there are no other stationary values than α in
this range of λ, we may simply deduce this from the definition,

Q2(x) = x

Though this is a quantic, we can solve it without too much difficulty as we already know
that x = 0, α are roots of it. This tells us that the function is below the line y = x for
the entire range of λ up to x = α.

We will now use a wonderfully interesting trick to effectively solve for 2-cycles, from
this we can confirm that λ = 3 is not a 2-cycle and we may generalise this to see that it
does not form a p-cycle. The principle of this trick is hat a 2-cycle has the property that
for some value Q2(α) = α and Q(α) 6= α, to eliminate this second case we simple send it
to infinity,

Q2(x)− x
Q(x)− x

= q2(x) (10)

= λ2x2 − (λ2 + λ)x+ (λ+ 1)
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This new function has a brilliant property which is that whatever stationary value it has
is a 2-cycle, it cannot be anything else. We can therefore quite easily see that in the
special case of λ = 3 there are no real solutions and so this is definitely not a 2-cycle. It
is now clear that,

x < Q2(x) < α, for
1

2
≤ x < α,

x > Q2(x) > α, for αx ≤ s1,

It follows that the sequence x2n = Q2n(x0)→ α for all 1
2
≤ x0 ≤ s1, and if we take x0 = 1

2

as does x1, x2x3... because from (9) we get x1 = Q(1
2
).

The next task is to generalise this statement and show that xn = Qn(x0)→ α for all
x0 in (0, 1). The bounds have been excluded because they are trivial. This task relies on
one feature, which is to show that for some n depending on x the function Qn(x) lies in
[1
2
, s1] as we know it must converge once it is in this range by the above argument.

Firstly, let x < 1
2

then by General Theorem 1 we know Q(x) > x such that when
iterating x→ 1

2
which is in the range we know the sequence converse for, hence it converges

for all 0 ≤ x0 ≤ 1
2
.

Secondly, suppose now that 1
2
< x < 1, it is not hard to see that in this case effectively

the same thing happens. This time the function Q(x) will first map to the case where
x < 1

2
and then the same process applies so that after n iterations we are in the case of

the previous argument where w know the sequence converges.
Hence, we have seen that when λ = 3 the sequence conversed for the whole of the

valid range of x and so we have proved that the sequence xn is convergent for the range
0 ≤ λ ≤ 3 and is non-zero for 2 ≤ λ ≤ 3. The fish are happy.

On the following page are all the cases we have looked at to demonstrate the conver-
gence of the sequence; from left to right are the cases of x0 <

1
2
, x0 = 1

2
and x0 >

1
2
. (The

script used to generate all of the images may be found in Appendix D).
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Convergence to a value of the sequence xn+1 = Q(xn) for various starting points:

Figure 9: The case of 0 < λ < 1.

Figure 10: The case of 1 < λ < 2.

Figure 11: The case of 2 < λ ≤ 3.
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3.2 Converging to 2-cycles

In the last section we already discovered many of the conditions and properties of the
second iteration of the logistic map, and from the bifurcation diagram we approximated
that for λ in (3,3.45] the sequence xn converges to a 2-cycle. We will now look more in
detail at what is happening in this range and what the significance of the upper bound
is.

The first thing to note is that the graph of y = Q2(x) being a quartic looks quite
different than the normal parabola, but many of the things deduced in the last section
can be seen on the diagram quite easily. So the analyst may be easier if we have a picture
of what we are investigating:

There are now 4 fixed points to consider, we shall call them 0, α, β and γ in increasing
order, recalling that this α is not the same as in the last section. Indeed, we already know
the value of two of them as they are the stationary values of the sequenced based on Q(x),
we may remove these happily so that we are left with the two new roots α and γ. These
values are the solutions to the equation q2(x) = 0,

xα,γ =
λ+ 1±

√
(λ+ 1)(λ− 3)

2λ
(11)

Now since we know the values of α and γ we may observe that they form a 2-cycle. This
can be checked through substitution or by the argument that since Q(α)(6= 0, β) is a fixed
point of Q2(x), then Q(α) = γ and hence Q(γ) = Q2(α) = α.

To investigate this 2-cycle we may propose that the nature of the stationary values is
the same, that is to say attracting, repelling or indifferent. We may even propose that
the value of their slopes is exactly identical, this is the theorem below.

General Theorem 3. Multiplier of a Periodic Point
Let xn be the nth term of a sequence based on a function f such that xn+1 = f(xn) with
some arbitrary starting value. Then the derivative of fp takes the same value at every
point in the cycle. That is to say if α, f(α), ..., fp−1(α) form a p-cycle, then the slope at
each one of these points is identical.

Proof. By the chain rule we may differentiate fp(x),

f ′p(x) = (f(fp−1(x)))′

= f ′(fp−1(x))f ′p−1(x)

= f ′(fp−1(x))(f(fp−2(x)))′

= f ′(fp−1(x))f ′(fp−2(x))f ′p−2(x)

...

= f ′(fp−1(x))...f ′(f(x))f ′(x)

First substitute x = α,

f ′p(α) = f ′(fp−1(α))...f ′(f(α))f ′(α)

then substitute x = f(α),

f ′p(f(α)) = f ′(fp−1(f(α))...f ′(f(f((α)))f ′(f(α))

= f ′(fp(α))...f ′(f2(α))f ′(f(α))
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Since by definition fp(α) = α, we deduce from the last two equations that f ′p(f(α)) =
f ′p(α). We then use this to see that,

f ′p(α) = f ′p(f(α)) = f ′p(f2(α)) = ... = f ′p(fp−1(α))

Which says that the derivative at every point in the cycle is identical. QED.

The title comes from the convention that if α is a periodic point of f with period p,
then f ′p(α) is called the multiplier of α. Thus we may restate the theorem as saying that
the multiplier of all values in a p-cycle is the same. We may use this in conjunction with
General Theorem 2 to see that we can classifies periodic values as

attracting if |fp(α)| < 1

indifferent if |fp(α)| = 1

repelling if |fp(α)| > 1

Now we may wish to know what the multiplier of the stationary values in our 2-cycle is
so we may determine if its attracting or not. By the above general theorem it is sufficient
to compute the value at one of the values in the cycle,

f ′2(α) = f ′(f(α))f ′(α)

= f ′(γ)f ′(α)

= λ2(1− 2γ)(1− 2α)

= λ2(1− 2(α + γ) + 4αγ)

= λ2
[
1− 2

(
λ+ 1

λ

)
+ 4

(
λ+ 1

λ

)]
= 4 + 2λ− λ2

As expected the awkward case of λ = 3 is also indifferent in this case as f(α) = 1. However,
as λ increases beyond 3 the multiplier decreases so that we enter an attracting 2-cycle
for 3 < λ < 1 +

√
6 ≈ 3.44948974, the upper bound being recognisable as our earlier

estimate when looking at the bifurcation diagram. At this upper bound the sequence
bifurcates again and we expect it to be similar to the first period-doubling event at λ = 3
and ultimately that the sequence xn converges to a 2-cycle for 2 < λ ≤ 1 +

√
6. For a

much more general investigation than wham will be presentable see [3].
It is important to stress that being attracting is not the same as being the limit, the

proof of General Theorem 2 assumes that the sequence converges when in fact we do not
know it does. So f0r the range of λ ∈ (3, 1 +

√
6) we must simply prove that the sequence

is convergent.

General Theorem 4. Convergence to an Attracting stationary value
There exists a costive number δ such that if |x0−α| < δ, then sequence xn+1 = f(xn)→ α
as n → ∞. Where x0 is the intimal value of the sequence, α is an attracting stationary
value and f is some real differentiable function.

Proof. Chose a number r such that |f ′(α)| < r < 1, then since

f ′(α) = lim
x→α

f(x)− α
x− α
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there is a positive number δ such that for 0 < |x− α| < δ,∣∣∣∣f(x)− f(α)

x− α

∣∣∣∣ ≤ r

⇒ |f(x)− f(α)| ≤ r|x− α|
⇒ |f(x)− α| ≤ r|x− α|

since f(α) = α. Now suppose that |x0 − α| < δ, then

|x1 − α| = |f(x0)− α| ≤ |x0 − α|

so that |x1 − α| < δ. If we apply the general statement for r repeatedly we obtain the
statement

|xn − α| ≤ rn|x0 − α|

From this it is easy to see that since 0 < r < 1, the sequence xn → α as n→∞ because
rn → 0. QED.

Notice that the smaller |f ′(α) is the smaller we may chose the value r to be, which means
that the sequence converge much faster. Of course this means that the convergence is
extremely fast when f ′(α) = 0 and therefore call such values superattracting.

From this theorem on values we may gain a similar one for p-cycles which are what
we are in fact interested in, the below theorem does just that.

General Theorem 5. Convergence to an Attracting p-cycle
If α is an attracting periodic value of a function f , then there exists a positive number δ
such that whenever |x0 − α| < δ,

(fp(x0))n = fpn(x0)→ α as n→∞

Using this theorem we need just to deduce the value of δ and then we have found our basin
of attraction, that is the range of x0 for which α is the limit, and we have demonstrated
that the sequence is convergent. Certainly we know that there is a δ which satisfies the
condition.

To compute δ we need to first maximise r from the proof as this will give us the largest
possible range, we therefore take r → 1− ¡ 1. Knowing this we need to find the largest
x− α which satisfies the condition that for some α dependent on λ,∣∣∣∣Q2(x)−Q2(α)

x− α

∣∣∣∣ < 1 (12)

This is an optimization problem in multivariable calculus as we have two variables x and
λ with the constraint being the above statement. However, to do the actual calculation
for this is unrealistic as the functions are very large and complicated.

Instead we will approach it as a non-linear programming problem with the objective
function δ = |x − α| and the goal to maximise it. Plotting x0 against λ we end up with
the graph on the top of the next page. We will not prove analytically that the feasible
region in the graph is true, that the region has no holes, but the reader is invited to do
this for themself using the information found in section 3.1 about the function.
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Figure 12: (Appendix E) Feasible region for constraint (12) with δ as the objective func-
tion.

Unlike most graphs of this type in this one there are three colours rather than the two
that represent feasible and unfeasible regions. The colours are in fact basins, range of
values, for which the statement has different behaviour; it is blue if it is true for α; green
if it is true for γ; and black if it is unfeasible for both. The value δ is the largest value in
the green or blue regions, however we need not enumerate it as we wish to prove that the
whole valid plane is convergent.

To see why this unfeasible region arises we will look at the cobweb diagram of y =
Q2(x) for some representative x and λ in the region,

Figure 13: The Cobweb Diagram for a 2-cycle with unfeasible region of x0 marked in
yellow.
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Therefore to complete the analysis of the attracting 2-cycle we must just show that the
black basin maps to either of the other two regions after n iterations of the function, since
we know by the above general theorem that values in this region will converge.

The cobweb diagram is exactly what we expected it to be, first x0 maps to x1 which
is further away from either root but is in the feasible region. Indeed this graph is quite
familiar; it exhibits the same behaviour as the last set of the cobweb diagrams for attract-
ing stationary values and so we may use the same kind of analysis to demonstrate the
map.

First we must find the range of the unfeasible region. Looking at the diagram it seems
as though anything on the right of γ will have the map we are interested in therefore if
we can show that the largest possible value of γ is not in the unfeasible region, then we
take the region to be γmax < x < 1 and we prove that Q2(x) ∈ (0, γmax).

If we differentiate 11 to find the local maxima we find that the stationary points are
as follows,

x′α,γ(λ) =
λ+ 3−

√
λ2 − 2λ− 3

2λ2
√
λ2 − 2λ− 3

= 0

λ+ 3−
√
λ2 − 2λ− 3 = 0

λ = −3

2

This is very useful as we now know that there is no local maxima in the valid range of λ,
and so we must just check the bounds,

xα,γ(3) = γ =
2

3
≈ 0.6666666666...

xα,γ(1 +
√

6) = γ =

√
2
√

3 +
√

2 + 2

2 + 2
√

2
√

3
≈ 0.8499377795...

Clearly the upper bound for λ gives the largest γ, and this value is outside the unfeasible
region so we may set this is as out upper bound. What we must now show is that
Q2 : (γmax, 1) → (0, γmax]. To do this we will consider the stationary values of Q2(x)
which we saw earlier were s1 and s2 though we are only interested in the former as it is
the greatest. We want to maximise the stationary values and so we once more treat it
like and optimization problem,

s′1 =
1

2λ
√
λ2 − 2λ

There another stationary values of s1 and so we must just check the bounds of λ and see
which one is larger,

s1(3) =
1

2
+

1

6

√
6 ≈ 0.7886751347

s1(1 +
√

6) =
1 +
√

6 +
√

5

2 + 2
√

6
≈ 0.8241157600

The upper bound gave the largest value of s1, but this is on the left of γmax and so we
know the curve is strictly decreasing in the domain (γmax, 1). Further, since we know that
the line y = x is above the curve for the black basin, we know that it must map to smaller
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values. So that even if it maps to itself in the first iteration, it will after n iteration map
to at most gammamax which is in the feasible region.

Hence we have shown that for all x0 ∈ (0, 1) and λ ∈ (3, 1+
√

6) the function converges
to an attracting 2-cycle.

3.3 Quadratic Sequence 3-Cycles

We will now look at the interesting point on the bifurcation diagram where everything
settles and for a brief interval there is a 3-cycle. However, as the functions and number of
values have grown we will not carry out such a detailed study into this area, but rather
focus on computing the actual values at which it happens. Indeed once we have found
the onset the 3 cycle we will not go any further.

Let’s begin by eliminating the 1 cycles,

Q3(x)− x
Q(x)− x

= q3(x)

q3(x) = 0

λ6x6 + (−3λ6 − λ5)x5 + (3λ6 + 4λ5 + λ4)x4+

(−λ6 − 5λ5 − 3λ4 − λ3)x3 + (2λ5 + 3λ4 + 3λ3 + λ2)x2+

(−λ4 − 2λ3 − 2λ2 − λ)x+ λ2 + λ+ 1 = 0

This last sextic polynomial is very complicated and to try and solve it would be futile,
however as we are only interested in where it returns real values it is sufficient to take its
determinant. Before we do this let’s first consider a similar idea about quartic polynomials.

Every quartic polynomial is conjugate to a quartic polynomial of the form f(t) =
t4 + xt2 + yt + z and each quartic of this form can be represented by a point (x, y, z) in
parametric space. A polynomial will have a double root only if f(t) = f ′(t) = 0. The set
of points (x, y, z) which correspond to polynomials with a double root forms a boundary
in parametric space between the points representing the quartics with zero, two, and four
roots. We may now graph such a surface,

Figure 14: (Appendix F) Queue d’Aronde.
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This boundary surface is known as the swallowtail. If we chose a point; above the
surface we find that there are no roots to the polynomial; below and there are 2 roots; on
it there 2 single roots and 1 double root; on the cusp there is 1 triple root and 1 single root;
inside there are 4 roots; at self-intersection points there are 2 double roots; and where
the curve intersects itself completely is a quadruple root. Notice that at the origin in
parametric space the corresponding polynomial is f(t) = t4, and its root is the quadruple
root. This point is the only point corresponding to a polynomial with a quadruple root,
because it is the only point for which f(t) = f ′(t) = f ′′(t) = f ′′′(t) = 0 which is the
necessary condition. (For a more detailed study on this surface see [2]).

This graph gives us a very visual understanding of how the polynomials behave, at least
were we are interested in them, and we could theoretically do the same thing for sextic
polynomials as all sextic polynomials are conjugate to f(t) = t6 +xt4 + yt3 + zt4 +wt+ v.
(In fact to remove the xn−1 term of a polynomial with degree n we must simply use the
substitution x = t+ k where k is an appropriate constant constant.) However, we would
have to graph it in hyperspace as we have (x, y, z, w, v) to consider. Therefore, to continue
with the polynomial q3(x) = 0 let us just take the discriminant,

∆ =
(λ2 − 5λ+ 7)2(λ2 − 2λ− 7)3(1 + λ+ λ2)

λ30

We see in this factorised form of the discriminant that if we want ∆ ≥ 0, then we must
just consider middle term in the numerator as it is the only one which can make the ∆
negative. So the earliest point at which we get it to be non-negative is,

λ2 − 2λ− 7 = 0

λ = 1 + 2
√

2 ≈ 3.828427124

This is the onset of the 3-cycle and it does match the observation in our diagram from
the last section. (The root λ = 1 − 2

√
2 is negative and so has been ignored). To prove

that the sequence converges to the attracting 3-cycle is a longer, but not harder, analysis
than for the 2-cycle and indeed the 4-cycle which is left up to the reader. The reason
for this computation is the aesthetics involved: the point in the bifurcation diagram, the
number 1 + 2

√
2, the curious surface and the link of sequences to many other fields of

mathematics.

3.4 Conclusion

We have so far seen that though quadratic functions, especially the logistic map, may
seem to be very simple and well behaved are in fact very complicated. Indeed the entire
investigation has been much more sophisticated than for the exponential function and
required many more techniques and ideas to be completed. u We have seen that the
population of fish in a pond can be a very strange thing, it may stabilise and get a fixed
population or it may oscillate such that one month there are α fish and the other there
are γ number of fish. However though this analogy is a good tool to introduce the idea
of the logistic map, the function and the sequence in and of themselves are much more
interesting. Indeed the relationships we have seen with bifurcations, fold bifurcations, and
many other fields from this simple idea has been astounding. The idea of fish was in fact
just a front, the truth is that there is a great amount of wealth to be gained when looking
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at the negative values of λ as a similar bifurcation process happens when we move to the
left.

Indeed a much more complete analysis would answer the question ’why’ which we have
by no means addressed. To do this requires looking in the complex plane where a great
deal of structure can be seen, though the analysis is much more difficult.

There have been many things left up to the reader to complete, this is a unfortunate
consequence of timing constraints when writing the article. These tasks are by no means
trivial, though they can be very similar to the ideas presented. Indeed to get a much
better understanding of how the analysis of 2-cycles was completed it is advised to do one
for the 4-cycle individually as this gives an insight into some of the more subtle ideas in
section 3.2 and in general about the function.

There exists many more general theorems about convergent to 2p-cycles and such than
was presented here and so with the wealth of analysis left to do on the logistic maple we
may call this investigation a ’short introduction’ and hope it has interested the reader
sufficiently to pursue the ideas further.
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4 Newton-Raphson Method

The Newton-Raphson method is a classic and powerful way of solving equations of the
form f(x) = 0 where f is some differentiable function. The principle lies in approximating
the functions to a tangent and sliding x down the line until it reaches the x-axis where
the approximate root lies. From this approximate root we can then repeat the method
and the next value will be closer to the root than the former, an example of an iteration
looks like,

Figure 15: (Appendix G) The blue is the tangent, the red line is the new value.

The formula for the Newton-Raphson method of iteration is based on constructing the
tangent, such that we have the linear approximation of a function at (x0, f(x0)) is

y − f(x0) = f ′(x0)(x− x0)

Since we wish solve f(x) = 0 it is obvious that we now take y = 0 and receive the value
x = x1 by rearranging the above,

x1 = x0 −
f(x0)

f ′(x0)

Using this new value x1 we may now apply the method repeatedly such that we have the
recursive formula,

xn+1 = xn −
f(xn)

f ′(xn)

Naturally this formula is only valid when we are not a stationary points as this would make
the tangent parallel to the x-axis. From the above definition and geometric interpolation
of the formula it is not hard to see that we can have good and bad starting values, that
is to say the sequence might converge to a root or diverge. Furthermore, if there are
two roots and only the positive is wanted, then if the staring value is chosen badly the
sequence might converge to the negative one.

Suppose that xn → α as n→∞, we must not be fooled into thinking that in this case
f(α) = 0 and this is a problem as we have not solved the equation. To demonstrate the
deceitful kind of behaviour the sequence can have suppose that we have the function

f(x) =

{
1− 2x sin( 1

x
) for x 6= 0

1 for x = 0
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This function is continuous everywhere, but only differentiable when x 6= 0, so we may
use Newton-Raphson to approximate it. Take x0 = 1

2π
, so that f(x0) = 1, it is then not

hard to see that we get the sequence,

x0 =
1

2π

x1 =
1

4π
...

xn =
1

2n−1π

Thus it is definitely true that the sequence converges, that is to say we have as n → ∞
the sequence xn → 0, however we know that f(0) 6= 0 and so we have not reached the
root. It should be noted that this isn’t because there are no roots, as can be seen in the
graph below.

Figure 16: The function f(x) which can deceive Newton Raphson.

In fact it is not hard so show that Newton-Raphson method only works as a numeric way
of solving equations when certain conditions are met. Suppose that xn → α as n → ∞
and for all x we have |f ′(x)| < M where M is some finite number. Then using the linear
approximation which the Newton-Raphson method comes from,

(xn+1 − xn)f ′(xn) = f(xn)

since we know that xn → α we know that the left hand side disappears because the factor
(xn+1 − xn)→ 0. Thus we end up with the equation lim

n→∞
f(xn)→ 0. This means that α

is a root of the equation f(x) as we have shown that f(α) = 0.
The issue we had with the deceitful example is that the derivative is unbounded, in

fact it is not hard to show that f ′(xn) = 2n+2π →∞ as n→ infty, meaning the condign
of M was not satisfied. Naturally we must now ask when does the sequence actually
converge to a root. That is to say suppose for some α we have a function f(α) = 0, we
must deduce the conditions on x0, f and α such that xn → α as n → infty. The below
theorem answers this exact problem.
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Theorem 4.1. Newton Raphson Converges to Root
Suppose that a function f, f ′andf ′′ are all continuous for x near α where f(α) = 0 and
f ′(α) 6= 0. Then provided that x0 is sufficiently closet to α we get that α is the limit of
the sequence when using the Newton-Raphson method of iteration.

Proof. Let the function N(x) be the Newton-Raphson formula such that we have a se-
quence xn+1 = N(xn) with N(α) = α for some value,

N(x) = x− f(x)

f ′(x)
(13)

Since f, f ′andf ′′ are continuous and f ′(α) 6= 0 there exists a c such that |f ′(x)| ≥ c and
|f(x)f ′′(x)| ≤ 1

2
c2 for all x near α. Furthermore, we see that

N ′(x) =
f(x)f ′′(x)

f ′(x)2

⇔ |N ′(x)| ≤ 1

2

Applying the mean value theorem to N we see that

xn+1 − α = N(xn)−N(α)

= (xn − α)N ′(x)

where x is some number between α and xn. From this we can see that if x0 is close enough
to α we have,

|x1 − α| ≤
1

2
|x0 − α|

|x2 − α| ≤
1

4
|x0 − α|

...

|xn − α| ≤
1

2n
|x0 − α|

Therefore |xn−α| → 0 as n→∞, because 1
2n
→ 0, which means that xn → α. QED.

We may cone again see that the deceitful function does not satisfy the conditions of this
theorem because the first derivative is not defined at 0 and the second does not exist.

However, in truth the deceitful function is much more complicated than what we are
interested in, our focus throughout this investigation will largely be on polynomials.(This
is a real benefit as all polynomials are holomorphic) Further it may seem as though the
Newton-Raphson function is very different from the other sequences we have studied,
because it is based on another function, this is not the case. The Möbius function too
was based on other functions, two linear functions, and so we should keep in mind that
everything we have found out that is generally true about sequences we know is true here
and vice versa. In fact we can think of the Möbius function as a special case of the Newton
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Raphson sequence as we can solve the differing equation,

ax+ b

cx+ d
= x− f(x)

f ′(x)

f ′(x)

f(x)
=

cx+ d

cx2 + (a+ d)x+ b

ln(f(x)) = ln(cx2 + ax+ dx+ b)
√
−a2 − 2ad+ 4bc− d2 −

2 arctan

(
2cx+ a+ d√

−a2 − 2ad+ 4bc− d2

)
a+

2 arctan

(
(2cx+ a+ d)√

(− a2 − 2ad+ 4bc− d2)
d

)
√
−a2 − 2ad+ 4bc− d2

+k

In fact many iterative sequences can be defined as special cases of the Newton-Raphson
method provided we can solve the differential equation, however as we have just seen
above it is usually a terrible way of thinking about the problem.

All the sequences we have seen so far we have studied only in terms of real numbers with
the exception of a short discussion on Möbius transformation, all the while suggesting
that there is a lot to be gained from looking in the complex plane. The Newton-Raphson
iteration formula demands far too much to be complex to ignore it, therefore we will
no longer limit ourselves to real numbers but now look at the properties of the complex
Newton-Raphson sequence.

4.1 Complex Newton-Raphson

When sequences are brought into the complex plane some very peculiar things can happen,
we see a great deal of structure in how they converge, but we also see that the plane is
split up in a more complicated way than for real vales. In fact what we see is that there
are regions which converge to one value and others that converge to other values and these
regions can have very complicated structures. So to begin the investigation it is best to
look at a simple special case first,

f(z) = z2 + 1

This function is the most basic one we could have chosen, all the numbers used to define
it are real but its roots are complex and that is what we want. Applying the Newton-
Raphson formula we see that we get the equation,

N(z) = z − f(z)

f(z)

= z − z2 + 1

2z

=
z2 − 1

2z

zn+1 =
z2n − 1

2zn
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We wish to deduce which root of f(z) = 0, if any, the sequence zn approaches as we iterate
infinitely. We begin by redefining the transformation T (z) we saw in section 1.4 to suit
our new function,

T (z) =
z − i
z + i

We see now that we can use this map to ’control’ the Newton-Raphson by the following
result. For clarity we will take fn(x) to be the nth iteration of a function and fn(x) and
f(x)n to be the nth power of a function,

T (N(z)) = T 2(z)

T (N2(z)) = T 2(N(z)) = T (z)4

...

T (Nn(z)) = T (z)2
n

(14)

This is easy to show by induction. Something else we can see about T (z) is that |T (z)| = 1
if and only if z is equidistant from the two roots. This comes from the fact that modulus
really means distance of two complex numbers in the plane. Let us assume that z0 is not
equidistant from the roots therefore either |T (z)| < 1 or |T (z)| > 1.

Suppose that the former is true so that we have |T (z)| < 1, this means that |T (z)k| → 0
as k →∞ and so the right hand side of (14) disappears. Recalling that as k →∞ we have
n → ∞ we see that the left hand side disappears also, which means that that T (z) = 0.
This happens if and only if z = i which means that Nn(z) → i as n → ∞. Hence, the
Newton-Raphson iteration formula has converged to a root.

Suppose now that |T (z)| > 1, then we see that T (z)k →∞ as k →∞. This can only
be true if z → −i and so from 14 we see that this means that Nn(z) → −i as k → ∞
where n and k have the same relationship as before.

So we now know that whenever z is not equidistant to the roots it converges to one of
them. To see a visual representation of this we will colour the plane according to which
root it converges, blue for i and red for −i which is the image on the top of the next page.
This graph demonstrates the basins of attraction of the function which to say it shows
what ranges of values go where upon iteration. We can see three distinct sets of numbers
in the plane,

R1 = {z : Nk(z)→ i as k →∞}
R2 = {z : Nk(z)→ −i as k →∞}
L = {z : Nk(z) 6→ i or − i as k →∞}

We have already deduced the condition for the first two sets which is that the starting
value has to be closer to one root than the other. However, the set L has the property
that the starting value is equidistant from both roots and it has the curious property of
bisecting the plane. We can also deduce that if x0 ∈ L, then xn ∈ L for all n by looking
at T and its relationship to the Newton-Raphson map earlier. In fact what we can see in
this special case is that the set L is the set of real numbers, which means that should you
chose a real number as a starting value it will never converge to either root. Furthermore,
it is quite clear that whenever the roots are complex conjugates the set L is the real
numbers.
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Figure 17: (Appendix H) The Basin of Attraction for f(z) = z2 + 1 = 0.

Now we can ask a much more interesting question, is the set L always a line for quadratic
functions? and what values, if any, does it always go through? To answer these questions
we must leave the specific case and ask what happens for the general quadratic function
f(z) = z2 + az + b when we iterate using the Newton-Raphson method. Note that by
factorising or otherwise it is trivial to prove that for the two roots α, β ∈ C we have that
a = −(α + β) and b = αβ. Hence we can rewrite the functions N and T in the following
general way,

N(z) =
z2 − b
2z + b

T (z) =
z − α
z − β

Suppose then that |T (z)| = 1, as this is an equivalent condition for L, which means that
|z − α| = |z − β| from which it obvious that we are on a straight line. There is no curve
with the property that it is equidistant from two fixed points at all times. Furthermore,
we know that the line must bisect the plane between α and β, because it is equidistant,
so we may deduce two values in runs through,

l1 =
α + β

2
= −a

2

l2 = −a
2

+ i
1

2

√
a2 − 4b

The first value comes from taking the average of the roots as this is equidistant from both,
the second comes from then rotating the line which connects one of the roots and l1 by π

2

radians to get another value on L because it is perpendicular to the connecting line. Now
we have two values which define the line and so we know what the set L is.

We must now observe that because the formula contains a fraction with variable denomi-
nator we may run into undefined values. Indeed when we chose z = −1

2
a or z = β we see
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that we either have N(z) or T (β) having a denominator of zero. We ran into a similar
issue with the Möbius transformation and the way we solved that is by saying we were in
the field of R ∪∞, what we really mean by this is that we live on the ’Riemann Sphere’
where infinity is a well-defined number.

There is one case we have not looked at yet which is what happens when we have repeated
roots of f(z) = 0 such that α = β. In this case it easy to see that there is no line L,
in fact in this case every single starting value will converge to the root. This is actually
very simple to prove, we just redefine the transforming function such that T (z) = z − α
and get the resulting identity T (Nn(z)) = 1

2n
T (z)→ 0 as n→∞⇒ Nn(z) showing that

it converges. We now know everything about applying the Newton-Raphson formula to

quadratic equations. We know that when there are two roots that are complex conjugates
no real starting values will ever let the method converge, we know that there is always
a line L which bisect the plane for convergence to the α and β and we know two values
which it goes through. Furthermore we know that for any quadratic function that has
only one repeated root the Newton-Raphson method will always converge to the root.

4.2 Conclusions on the Newton-Raphson method

We have already stated everything we have learnt about the complex quadratic cases.
However, there is much more work to be done on the sequence, for example asking what
happens when we move into cubic equations is already a very good questions. As it
happens the Newton-Raphson map for the simple cubic equation f(z) = z3− 1 = 0 (with

roots 1, e
2πi
3 , e−

2πi
3 ) is

N(z) =
2z3 + 1

3z2

This map cannot be reduced to anything simple using a transforming function and the
basins of attraction for it are extremely complicated. There are three regions correspond-
ing to each of the solutions and they all have the same boundary, which miscalled a Julia
set of N. It is extremely bizarre to think of three regions in a plane sharing one boundary.
Indeed the Julia set behaves like the line L where any value in it will never converge to
a root when we iterate the method, but the reason we have chosen not to do any anal-
ysis on the cubic or higher degree polynomials is that the set is a fractal. It has infinite
complexity and magnifying it arbitrarily gives no more structure. Therefore the analysis
would have been far more difficult than anything else we have seen.

We will not progress any further with this sequences, instead on the next page are
different fractal images demonstrating basins of attraction of various functions showing
how beautiful this sequence can be. (The code used to generate all of these images can
be found in appendix H).
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Julia Sets for various Polynomials under Newton-Raphson Iteration

Figure 18: (A) f(z) = z3 − 1 (B) f(z) = z3 − 3z + 5 (C) f(z) = 3z3 − 2iz + 4i

Figure 19: (A) f(z) = z4 + 1 (B) f(z) = z4 + z3 + 4z + 9 (C) f(z) = z4 + 6iz + 5

Figure 20: (A) f(z) = z5−1 (B) f(z) = z5+3z4+z3+2z+6 (C) f(z) = z5+iz4+3z2−z+i
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Note: The following codes have been presented as they look on screen,

this means a simplification of the syntax. For anyone willing to reproduce

the codes it must be noted that all procedures are written

on single lines or in command boxes.
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A Exponential Function Convergence when Chang-

ing the Parameter

#Maple 16

restart

with(plots): with(plottools): with(ColorTools):

f:=(l,x) -> l^x:

P := Array([seq(1 .. 150*10)]):

sets := Array([seq(1 .. 150)]):

makeSets := proc(l::float)

local i, L, x;

L := [seq(1 .. 10)];

x := 0.0;

for i to 8 do

x := f(l, f(l, x))

end do;

for i to 10 do

x := f(l, x);

L[i] := point([l, x])

end do;

return L end proc

for l from 0.1e-1 by 0.1e-1 to 1.5 do

sets[floor(100*l)] := makeSets(l)

end do

c := 1:

for s in sets do

for i in s do

P[c] := i;

c := c+1

end do

end do;

display(seq(P[i], i = 1 .. 150*10), view = [0 .. 1.5, 0 .. 3])
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B Exponential Sequence Cobweb Diagram

#Maple 16

restart

f := (l, x) -> l^x;

S := [seq(1 .. 41)];

L := plot(y, y, color = black);

Cobweb := proc (l::integer)

local i, L, x, Mh, Mv, r;

r := (1/20)*l;

x := 8;

L := [seq(1 .. 100)];

Mh := [seq(1 .. 98)];

Mv := [seq(1 .. 98)];

for i to 50 do

L[i] := x;

x := f(r, x)

end do;

for i from 2 to nops(L)-1 do

x := f(r, x);

Mh[i-1] := line([L[i-1], L[i]], [L[i], L[i]], color = "blue");

Mv[i-1] := line([L[i], L[i]], [L[i], L[i+1]], color = "red")

end do;

return [seq(Mh[i], i = 1 .. nops(Mh)), seq(Mv[i], i = 1 .. nops(Mv))]

end proc;

j := 1;

for i to 30 do

S[j] := Cobweb(i);

j := j+1

end do;

Web := proc (t::float)

local s, p;

s := S[floor(t)];

p := PLOT(seq(s[i], i = 1 .. nops(s)))

end proc;

C:=animate(Web, [r], r=1..3 0):

F := animate(plot, [f(r, y), y = 0 .. 10], r = 0 .. 1.5);

display([C, F, L], view = [0 .. 10, 0 .. 10]);
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C Bifurcation Diagram

#Maple 16

restart

with(plots); with(plottools);

f := (l, x) -> l*x*(1-x);

P := Array([seq(1 .. 401*50)]); sets := Array([seq(1 .. 401)]);

makeSets := proc (l::float)

local i, L, x;

L := [seq(1 .. 50)];

x := .5;

for i to 1000 do

x := f(l, x)

end do;

for i to 50 do

x := f(l, x);

L[i] := point([l, x])

end do;

return L

end proc;

for l from 0. by 0.01 to 4 do

sets[floor(100*l+1)] := makeSets(l)

end do;

c := 1;

for s in sets do for i in s do

P[c] := i;

c := c+1

end do;

end do;

display(seq(P[i], i = floor(50*(2.8*100)) .. 401*50), view = [2.8 .. 4, 0 .. 1]);
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D Quadratic Cobweb Diagram

#Maple 16

restart

with(plots); with(plottools);

x := 0.01; l := 2.9;

f := (x) -> l*x*(1-x);

L := [x, seq(1 .. 30)];

Mh := [seq(1 .. 29)];

Mv := [seq(1 .. 29)];

for i to 31 do

L[i] := x;

x := f(x)

end do;

for i from 2 to nops(L)-1 do

Mh[i-1] := line([L[i-1], L[i]], [L[i], L[i]], color = "blue");

Mv[i-1] := line([L[i], L[i]], [L[i], L[i+1]], color = "red");

end do;

display(seq(Mh[i], i = 1 .. nops(Mh)),

seq(Mv[i], i = 1 .. nops(Mv)),

plot(y, y, color = black), plot(f(y),

y, color = green), view = [0 .. 1, 0 .. 1]);
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E Basin of Quadratic 2-Cycle

#Maple 16

restart

with(plots); with(Optimization);

q2 := (x, l) -> l^2*x*(1-x)*(l*x^2-l*x+1);

r1 := (l) -> ((1/2)*l+1/2+(1/2)*sqrt(l^2-2*l-3))/l;

r2 := (l) -> ((1/2)*l+1/2-(1/2)*sqrt(l^2-2*l-3))/l;

obj := proc (x, l) -> abs(x-r1(l));

monster1 := (x, l) -> (q2(x, l)-r1(l))/(x-r1(l));

monster2 := (x, l) -> (q2(x, l)-r2(l))/(x-r2(l));

cnsts1 := [monster1(x, l) < 1, monster1(x, l) > -1];

cnsts2 := [monster2(x, l) < 1, monster2(x, l) > -1];

p1 := inequal([cnsts1, cnsts2], x = 0 .. 1, l = 3 .. 1+6^.5,

optionsexcluded = (color = black),

optionsfeasible = [[color = green], [color = blue]]);

p2 := contourplot(obj(x, l), x = 0 .. 1, l = 3 .. 1+6^(1/2));

display(p1, p3);
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F Swallowtail Diagram

restart

with(plots); with(plottools);

y := (t, x) -> -4*t^3-2*x*t;

z := (t, x) -> -t^4-x*t^2-(-4*t^3-2*x*t)*t;

plot3d([x, y(t, x), z(t, x)],

t = -10 .. 10, x = -10 .. 10,

view = [-10 .. 10, -10 .. 10, -10 .. 10],

grid = [200, 200]);
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G Newton-Raphson Cobweb Diagram

#Maple 16

restart

with(plots); with(plottools);

a := 1/20; b := -2;

f := (x) -> x^2+a*x+b;

N := (x) -> x-(x^2+a*x+b)/(2*x+a);

newtonPoints := proc (x)

local i, L, z;

L := [seq(1 .. 11)]; z := x;

for i to 10 do

L[i] := z; z := N(z)

end do;

return L

end proc;

makeLines := proc (L::list)

local i, Mv, Mt, x1, x2, M;

Mt := [seq(1 .. nops(L)-1)]; Mv := [seq(1 .. nops(L)-1)];

M := [seq(1 .. nops(Mv)+nops(Mt))];

x1 := 0; x2 := 0;

for i from 2 to nops(L)-1 do

x1 := L[i-1]; x2 := L[i];

Mt[i-1] := line([x1, f(x1)], [x2, 0], color = blue);

Mv[i-1] := line([x2, 0], [x2, f(x2)], color = red)

end do;

for i to nops(L)-1 do

M[2*i] := Mt[i]; M[2*i-1] := Mv[i]

end do;

return M

end proc;

P := newtonPoints(6);

L := makeLines(P);

Con := proc (t::float)

local p;

p := PLOT(L[floor(2*t)], L[floor(2*t-1)])

end proc;

C := animate(Con, [r], r = 1 .. (1/2)*nops(L), frames = (1/2)*nops(L));

F := plot(f(x), x, color = black);

display([F, C], view = [-1 .. 20, -1 .. 20]);
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H Newton-Raphson Basin of Attraction

#Maple 16

restart

with(plots); with(plottools); with(ColorTools);

f := (x) -> x^4-2*x-I;

r := 101;

R := [solve(f(z), z)];

N := (x) -> x-f(x)/(D(f))(x);

P := seq(point([Re(R[i]), Im(R[i])]), i = 1 .. nops(R));

for i from 0 to r do

for j from 0 to r do

zx := -2+4*i/r;

zy := -2+4*j/r;

z := zx+I*zy;

for k from 0 to 20 do

z := evalf(N(z))

end do;

t := 1;

for k to nops(R) do

if ‘and‘(abs(z-evalf(R[k])) < 0.01, t = 1) then

p[i, j] := pointplot([zx, zy], color = Color("HSV", [k/nops(R), 1, 1]));

t := 0

end if;

end do;

if t = 1 then

p[i, j] := pointplot([zx, zy], color = grey)

end if;

end do;

end do;

display([seq(seq(p[i, j], i = 1 .. r), j = 1 .. r), P], view = [-2 .. 2, -2 .. 2]);
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I Newton Raphson Route to Route

"This is a script which was not included in the investigation, but is still

of some interest. It shows how consecutive iterations of the Newton-Raphson

formula in the complex plane gets closer to the root, effectively showing

the path the sequence shows. When running it pay express attention to the

fact that it curves slightly and that usually 5 iterations is sufficient

to be close enough to a root not to be able to see any real difference by eye.

This last point comes from the fact that the method has a quadratic

rate of convergence."

#Maple 16

restart

with(plots); with(plottools); with(ColorTools);

f := (z) -> z^3-I*z;

R := [solve(f(x), x)];

for i to nops(R) do

R[i] := point([Re(R[i]), Im(R[i])])

end do;

N := (z) -> z-f(z)/(D(f))(z);

newtonPoints := proc (z)

local i, L, x;

x := z;

L := [seq(1 .. 11)];

for i to nops(L) do

L[i] := x;

x := N(x)

end do;

return L

end proc:

joinPoints := proc (L::list)

local i, M, z1, z2;

M := [seq(1 .. nops(L)-1)];

z1 := 0;

z2 := 0;

for i from 2 to nops(L) do

z1 := L[i-1];

z2 := L[i];

M[i-1] := line([Re(z1), Im(z1)], [Re(z2), Im(z2)],

color = ColorTools:-Color([.7/(i-1)^.5, .6/(i-1)^.5, .8/(i-1)^.5]))

end do;

return M;
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end proc:

P := newtonPoints(3+3*I):

L := joinPoints(P):

Connect := proc (t::float)

local p;

p := PLOT(seq(L[floor(i)], i = 1 .. floor(t)))

end proc:

Walk := animate(Connect, [r], r = 1 .. nops(L), frames = nops(L)):

r := PLOT(op(R)):

display([Walk, r], view = [-5 .. 5, -5 .. 5]):
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