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Abstract

We consider smoothly embedded hypersurfaces M C R"*! under the action
of the special affine group SL(n + 1,R) x R**!. We construct a differential
invariant, called affine normal curvature, which assigns to a point and a tangent
direction a number. We prove some of its nice properties which connect it with

affine principal directions, affine umbilics, and affine mean curvature.
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1 Introduction

In this paper we consider the equi-affine differential geometry of smoothly embedded
hypersurfaces in R**!, i.e. differential invariants of hypersurfaces embedded in R**!
under the action of the Lie group ASL(n+1,R) := SL(n+1,R) x R**! i.e. volume
preserving linear transformations composed with translations.

Given a smoothly embedded hypersurface M C R**! we formulate an interpreta-
tion of affine normal curvature using singularity theory. We find an explicit formula
for the affine normal curvature p : PTM — R U {oo}. We then prove that it has
many of the desirable properties of the Euclidean normal curvature.

In §2 we give a review of affine differential geometry from the point of view of
connexions and metrics. This follows the approach of Nomizu and Sasaki [8].

In §3 we give a motivation for the affine normal curvature. The motivation is to
find an affine analogue to the Euclidean normal curvature which posses many of the
same nice properties.

In §4 we establish a link between the affine differential geometry of plane curves
and the singularity types of families of functions defined over these curves. This link
is then generalised to hypersurfaces.

In §5 we list our main results. We recall the definition of the family of affine
distance functions defined over a hypersurface, and we generalise the findings of §4

to this case. We give a definition for affine normal curvature, and then derive an



expression for it. We then go on to prove some of its properties. In particular we
show that it has an extrema in a direction if, and only if, that direction is affine
principal. We show that it is constant on a linear subspace if, and only if, that
subspace is an eigenspace of the affine shape operator. We show that in the case
where our surface has a positive definite affine metric the integral of the affine normal

curvature is related to the affine mean curvature of the surface.

2 Affine Differential Geometry

Here we give a brief review of the affine differential geometry of hypersurfaces, see [8]
for further details.

Let M be a smoothly embedded hypersurface in R**! with a transverse vector
field €. Let X(M) denote the C°°(M,R)-module of smooth vector fields on M. Let
D denote the standard covariant derivative on R"*!. Given v,w € X(M) we can
decompose Dy w into the sum of a tangential component and a transverse component

parallel to &. This gives the equation of Gauss:
Dyw = Vyw + h(v,w)¢ (1)

where V is a torsion free connexion on M and h is symmetric bilinear form; both
of which are dependent on the choice of £&. Notice that the non-degeneracy of h is
independent of the choice of £ and depends only on the hypersurface (see [8]). We
shall always assume that A is non-degenerate.

We can decompose D¢ into a tangential component and a transverse component

parallel to &. This gives the equation of Weingarten:
Dy§ = —=Sv+7(v)§ (2)

where (—S) is a tensor of type (1,1) called the affine shape operator and 7 is a
one-form called the transverse connexion form.

Let © be a volume form on R**!, i.e. a non-degenerate skew-symmetric (n + 1)-
form. We can define a volume form on M, denoted by w, as follows: given v; € X(M)
for 1 <i<n we set

WV, .oy V) = Qv .o, v, §)
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The metric h also defines a volume element on M. Given v; € X(M) for 1 <i < n,

let H := (h;;) be the n X n matrix where h; ; := h(v;,v;). Then we define
v(vi, ..., vy) = | det(H)|Y? .

Theorem 2.1 (Nomizu and Sasaki [8]) There is, up to sign, a unique transverse

vector field &, for which the following two conditions are met:
1. Vyw =0 forall veX(M),
2. w(vy,...,vy) =v(vy,...,vy,) forall v; € X(M) .

This vector field is called the affine normal vector field and shall be denote by A. It
is also called the Blaschke normal field.

A short calculation shows that Vyw = 7(v)w. It follows that Vyw = 0 for all
v € X(M) if, and only if, 7(v) = 0 for all v. € X(M). Thus Dy A is tangent to
M for all v € X(M).

3 Motivation

In this paper we construct an affine analogue of Euclidean normal curvature. The
original motivation comes from surfaces in three-space. Let M C R*® be a smoothly
embedded surface. Let p € M and v € T, M. Denote by P the plane passing through
p spanned by v and the the Euclidean unit normal vector N. The intersection of
the plane P with the surface gives a plane curve contained in P. The Euclidean
plane curve curvature at p of this plane curve is defined to be the Euclidean normal
curvature of M at p in the direction v. We denote this by x,(v).

Here we list some of the nice properties of Euclidean normal curvature. It has an
extremum in a direction if, and only if, the direction is principal. The value of x, in
one of these directions is the corresponding principal curvature. Euclidean normal
curvature is constant if, and only if, p is an umbilic. Euclidean normal curvature is
zero in a direction if, and only if, D2N € T, M. If H,(M) denotes the mean curvature
of M at p then



A candidate for an affine analogue would be to consider the plane passing through
p which is spanned by A and v. This again gives a plane curve, and one might take
the affine normal curvature of M at p in the direction v to be the affine plane curve
curvature at p of this plane curve (see [7] for a study of affine plane curves and [5]
for affine curves in R"). We discover that this construction does not have any of the
desired analogous properties of Euclidean normal curvature, and so it would seem

that it is not the correct one.

4 Singularity Theory

The affine plane curve curvature of a smooth plane curve without inflexions can
be written in terms of the singularities of the family of affine distance functions.
Let I C R be an open interval and let v : T — R? be an embedding such (1)
is without inflexions. We assume that 7 is parametrised by affine arc-length (i.e.
[7,~"] = 1 for all s € I), see [5] and [7]. With such a parameter the affine plane

"1. The family of affine distance functions is

curve curvature is given by p = [y, v
given by A : R? x I — R where A(x, s) := [y, x — 7].

The basic method when applying singularity theory to the differential geometry
of plane curves is to look for certain x € R? for which A : {x} x I — R has certain
singularity types. Since A : {x} x I — R is a map from the line to the line we expect
A : {x} x I — R to have an Ay, singularity for some k € N, i.e. to be R-equivalent
to +s**1. The reader is referred to [1] and [2] for further details.

We can show that A(x,sq) = 0 if, and only if, x = y(so) + A" (s¢) for some
A € R In this case A : {x} x I — R is said to have an A, singularity at s = s.
Furthermore, assuming that 1(so) # 0 we can show that As(x, sg) = Ags(x, 80) =0
if, and only if, x = v + p(s9) """ (s0). In this case A : {x} x I — R is said to have
an As, singularity at s = so. The points x € R? for which A : {x} x I — R has an

-1,

A, for some s € I are also called affine focal points. Let p := v(sq) + p(s0) 7" (50)
then A(p, so) = 1/p(s0), and so u(so) = A(p, s0) "
In order to compute the affine plane curve curvature we simply look for affine

focal points, and then the reciprocal of the affine distance from the affine focal point



to the base curve point is the affine curvature.

For a detailed study of the use of singularity theory to investigate the Euclidean
differential geometry of curves see [2]. In the following section we generalise this
idea of taking planer sections and looking for focal points to smoothly embedded

hypersurfaces in R"*!.

5 Main Results

Given a hypersurface M C R"! we can define the family of affine distance functions,
as in [4], by A : R""! x M — R as follows: given an ambient point x € R*™! and a

surface point p € M we define the affine distance from x to p implicitly by

p—x=1z(x,p) + A(x,p)A(p) (3)

where z € T, M. Let P denote the plane passing through p which is spanned by the
affine normal A and some non-zero v € T, M. Let C denote the intersection M N P
which, close to p will be a regular curve. Consider the restriction of A : R**! x M —
R where x € P and p € C. This gives a family of functions A:PxC—R Locally

this is a two parameter family of functions from R to R, i.e. A:R2xR— R

Remark 5.1 The key point here is that the restriction A:PxC — R does not
coincide with the family of affine distance functions which arises from considering
the cross-sectional curve C as a plane curve in P and using the two-dimensional

distance functions.

Definition 5.2 The affine normal curvature of M at p in the direction v, denoted
by p,(Vv), is given by A(x,p)"! where x € P is such that A : {x} x C — R has a
degenerate singularity at p € C.

Let S be as in Equation (2) and h as in Equation (1) then we have
Proposition 5.3 Assuming that h(v,v) # 0 we have the following:

y(v) = —% . (1)



From this point on we shall assume that h(v,v) # 0. At points where h fails to
be positive or negative definite we simply say that p, is not defined in directions for
which h(v,v) = 0. Before we prove Proposition 5.3 it will be convenient to give some

definitions and formulate some lemmas.

Definition 5.4 The affine principal directions of M at p are the eigendirections
of the affine shape operator (—S),. The corresponding eigenvalues are called affine

principal curvatures.

Definition 5.5 (Cecil [4]) A point x € R*™! is called an affine focal point if it is
in the envelope of the family of affine normal lines to M, i.e. the unoriented lines
spanned by the affine normals. Thus a point x = p+ AA s an affine focal point of
M at p if, and only if, 1/X is an affine principal curvature of M at p.

Lemma 5.6 A member of the family of affine distance functions A : {x} x M — R
has a critical point at p € M if, and only if, p—x is parallel to A,. If A has a critical
point at p € M then it is degenerate if, and only if, x is an affine focal point.

Proof [Lemma 5.6] The family of affine distance functions are such that p — x =
z + AA where z € T,M. Differentiating by v € T, M we have

v=Vyz+h(v,z)A+vAA — ASv |

where vA denotes the directional derivative of the function A by the vector v.

Comparing tangential and transverse components we have

Vez = (AS+E)v, (5)
hv,z) = —VvA, (6)

where E denotes the identity operator. Since h is non-degenerate Equation (6) tells
us that A has a critical point if, and only if, z = 0. Next we consider the Hessian

(v,w) — w(vA). From Equation (6) we see that

w(vA) = —w(h(v,z)) .



Using standard properties of connexions we have
w(h(v,2z)) = (Vwh)(v,2) + h(VV,2z) + h(v,Vy2z) .
If A: {x} x M — R has a critical point then z = 0 and so the Hessian is given by
(v,w) — —h(v,Vyu2z) .

From Equation (5) we see that h(v,Vyz) = h(v,(AS + E)w). Since h is non-
degenerate it follows that the Hessian is degenerate if, and only if, det(AS + F) = 0.

It follows that x is an affine focal point. O

Proof [Proposition 5.3] Let 7 : I — M be a smooth embedding such that v(I) = C.
Let 4(0) = p and let v := 4(0). To find the A, points of the family A:PxC—R
we need to solve (vA)(0) = (v(vA))(0) = 0.

From Lemma 5.6 we see that x € P is such that (vA)(0) = (v(vA))(0) = 0 if,
and only if, p — x is parallel to A and h(v, (&S + E)v) = 0. The affine distance
of this focal point to the base point is given by 3, and so by definition the affine
normal curvature of M at p in the direction v is given by solving for 1/ A. This gives
At = —h(Sv,v)/h(v,v); as required. O

Remark 5.7 Since the affine normal curvature is a quotient of symmetric quadratic
forms we see, for non-zero A € R and v € T,,M, that u,(Av) = p1,(v) and so we may

consider p, as a function from the projectivised tangent space, i.e. pu, : PI,M —
RU {oc}.

Proposition 5.8 We have u,(v) = 0 if, and only if, D2A € T,M.
Proof From Equation (2) we have Dy A = —Sv. It follows from Equation (1) that
D2A = —(V4(Sv) + h(v,Sv)A) .

Hence DZA € T,M if, and only if, h(v, Sv) = 0, i.e. if, and only if, h(Sv,v) = 0.
0



Proposition 5.9 The function v — pu,(v) has an extrema if, and only if, v is
an affine principal direction of M at p. Furthermore, the value of ju,(v) in such a

direction is the corresponding affine principal curvature.

Proof We wish to show that (du)(v) = 0 if, and only if, v is an affine principal
direction. That is to say (wu)(v) = 0 for all w if, and only if, v is an affine principal

direction. Consider the derivative of Equation (4) by w, this gives
—h(V,V)2 : (W:U’)(V) = h(V,V) . (h’(SW: V) + h(SV,W)) - Qh’(SV: V) ' h(V,W) . (7)

The Ricci equation (see [8]) says that h(Sw,v) = h(w, Sv) for all v and w. Using
this, and the fact that h is symmetric, Equation (7) becomes

—h(v,v)? - (wp)(v) = 2h(v,v) - h(Sv,w) — 2h(Sv, V) - h(v,w) . (8)

Let us first assume that v is an affine principal direction, i.e. (—S)v = Av for some
A € R In this case the RHS of Equation (8) vanishes. Since h(v,v) # 0 it clearly
follows that (wpu)(v) = 0 for all w.

Next, let us assume that (wu)(v) = 0 for all w. Equation (8) becomes
h(v,v)-h(Sv,w) —h(Sv,v) - h(v,w)=0.
If E denotes the identity operator then we can rearrange this as follows:
h((h(v,v)-S —h(Sv,v) - E)v,w)=0.
Since h is non-degenerate this is true for all w if, and only if,
(h(v,v)-S—h(Sv,v)-E)v=0.

Finally, rearranging this, we see that

h(Sv,v)
Sy = eV, V)
i.e. v is an affine principal direction with affine principal curvature j,(v). d



Proposition 5.10 Let V' be an m-dimensional subspace of T,M. The function p,
15 constant, with value X\, on V' if, and only if, every v.€ V 1is an affine principal

direction with affine principal curvature .

Proof Consider p1,(v) = h((=S)v,v)/h(v,v). First assume that every v € V is
an affine principal direction with affine principal curvature A, i.e. (=S)v = Av for
all v.e V. It follows that p,(v) = A for all v.€ V| and so p, is constant, with
value A, on V. Next assume that the function p, is constant, with value A, on V/ i.e.
h((—=S)v,v) = Ah(v,v) for all v € V. It follows that h((S + AE)v,v) = 0 for all
v € V. Since h is non-degenerate we must have (S + AE)v = 0 for all v € V, i.e.

every v € V is an affine principal direction with affine principal curvature . 0]

Definition 5.11 A point p is called an affine umbilic if the affine shape operator is

a multiple of the identity, i.e. every direction is an affine principal direction.

Corollary 5.12 The affine normal curvature i, is a constant function if, and only

if, p is an affine umbilic.

Next we consider the integral of ji,. Since p, can be thought of as a function on

the projectivised tangent space we shall integrate around the unit sphere.
Lemma 5.13 We can parametrise the unit sphere S™ C R**! by X : R* — R+
where, assuming that 0,11 := 0, the 1-th component, for 1 <i<mn-+1, of X is

i—1
Xi(ela ey gn) = COS Hz HSiIl 03‘ .
7=1

Proof We prove this by induction. Consider S lying in the xy-plane of R*. We can
rotate about the z-axis to give S? lying in R?. In general consider S¥ C R¥*2, where
S* is contained in the coordinate hyperplane given by ;.o = 0. Let Ej, denote the

k x k identity matrix, and let
cos@ —sinf
R = .
sinff cosf
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Consider the rotation given by the application of the (k + 2) x (k + 2)-matrix

(15)

This gives S¥*! lying in R¥*2. Induction now proves the result. O

Lemma 5.14 Consider S® C R"*'. The integral of monomials of the form x;x; for

1 # j restricted to S™ is zero.

Proof Let dvy be the volume form on the k-sphere, and consider the integral

X2 dUk .
Sk

We take a change of coordinates: consider x; and x; as functions of {6;,...,0;}. Let
x; = X;(61,...,0;), where X; is as in Lemma 5.13. We must also consider a term

coming from the Jacobian of X. Let

‘a(fl, T, Tig 1y Thg)

8(91’ RS 0/@)
denote the determinant of the k£ x k£ Jacobian matrix of the mapping
(01,3 0k) = (T1, o Tim 1, Tigty - -+, Tpgn)

Furthermore, let 7 be given by

k

>

=1

2
O, i1, Tig1s -, Tpy)

a(917 Ty gk)

From standard results in calculus we see that

27 T ™
/SkiEiiEjd’Uk:/U /0 /0 XzXdegl/\/\dgk
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We can show, again by iteration, that
k—1
J=]]lIsin6; "
i=1

Next we look at X; and X; and from Lemma 5.13. Notice that by the symmetry
of the sphere we can permute any of the X;, i.e. if (Xy,..., Xy 1) parametrises the

k-sphere then so too does
(X17 s aX'i—la X]a Xi—l—la RS Xj—la Xia Xj—l—la ) Xk—l—l) .

Thus, we need only consider the simplest case, i.e. X; = cos#; and X; = cos 6, sin ¢;.
Furthermore, notice that 7 is unaffected by such a permutation of the components

of the parametrisation. We then consider
2w ™
/ / cos 0 cos By sin 6, | sin 0, |*~" | sin 0,2 df, A db; .
o Jo

A straightforward calculation shows this to be zero, and so the result follows.

Corollary 5.15 Assume that h is positive definite, then the integral of u,(v) over

S™1 s given by
n
Z 2
/ Siid; dvn,_1 ,
i—1 §n—1

where the affine shape operator (—S) at p is given by (—=S) := (si ;).

Proof Consider an orthonormal basis {vy,...,v,}, i.e. T,M = (vy,...,v,) and
h(vi,v;) = €;0; ; where £; = 1 and 0, ; is the Kronecker-. In this case h is positive
definite, and so ¢ = +1 for all 1 < ¢ < n. Let the affine shape operator be such
that (=S)v; = s1,vi + -+ + $,,Vp, for s;;, € R. Given z; € R consider v :=

vy + -+ 2, v,. A direct computation shows that

n
Ti(T180 +  + TnSin)
NP(V)ZZ LE%—I—-"—I—IQ )
i=1 n

12



Expanding this expression we find that:

1 zn: (sij + 844)7i;

/Lp(V)=§ i+ 4 a2

,j=1
Let us consider the integral of y,(v). We want to restrict v to S" !, this is done

by restricting the z; so that 2% + -+ 4+ 22 = 1. In this case we have

n

1
m(v) =3 D (sig+ sy .

ij=1

The result now follows from Lemma 5.14. ]

Consider a point where p is positive definite. We now show that the integral of
i, around all of the directions is related directly to the affine mean curvature of the

surface, i.e. the mean average of the affine principal curvatures.

Proposition 5.16 Assume that h is positive definite, then

/ pp(V) dvn—1 = A(s11 4 + Snn)
Snfl
for some constant .

Proof The integrals over the sphere are independent of the choice of parameterisa-
tion. Using the symmetry of the sphere and the same permutation of parametrisation

components as in Lemma 5.14 we see that the result must follow. 0]

Acknowledgments

The author would like to thank his supervisor Peter J. Giblin for his help during
the last few years. He thanks Jon Woolf for some helpful conversations about the
structural approach to the theory, and Maria del Carmen Romero-Fuster and the
“Departamento de Geometria i Topologia, Universitat de Valencia”, where some
of this paper was written. Finally the author thanks the E.P.S.R.C. for its PhD
studentship.

13



References

[1] V. I Arnold, S. M. Gussein-Zade & A. N. Varchenko, Singularities of differen-

2]

3]

[4]

tiable maps, Volume 1, Birkhduser, (1985).

J. W. Bruce & P. J. Giblin, Curves and singularities, Second edition, Cambridge
University press (1992).

Buchin Su, Affine differential geometry, Science Press, Beijing; Gorgon &
Breach, New York (1983).

T. E. Cecil, ‘Focal points and support functions in affine differential geometry’,
Geom. Dedicata 50 (1994), 291-300.

D. Davis, ‘Generic affine differential geometry of curves in R"’, Proc. Royal Soc.
Edinburgh 136A (2006), 1195 - 1205.

D. Davis, Affine differential geometry and singularity theory, PhD thesis, Liv-
erpool, (2008).

S. Izumiya & T. Sano, ‘Generic affine differential geometry of plane curves’,
Proc. Math. Soc. Edinburgh 128A (1998), 301 - 314.

K. Nomizu & T. Sasaki, Affine differential geometry, Cambridge university
press, (1994).

14



