Inflections and vertices of germs of singular plane curves

Farid Tari

ICMC-USP, São Carlos, Brazil

VVG60, Liverpool, 28/3-2/4, 2016
The problem(s)

- An -versal deformation \((t^2, t^3 + ut)\) of the cusp curve.
- The group \(A\) does not preserve the geometry of curves.

How to study deformations of germs of plane curves taking into consideration singularities, inflections and vertices? (Question valid for singular varieties \(\mathbb{R}^n\). So far there is no general theory for this.)

How many inflections and vertices are concentrated at a singular point of a plane curve?
The problem(s)

A_e-versal deformation $(t^2, t^3 + ut)$ of the cusp curve.

How to study deformations of germs of plane curves taking into consideration singularities, inflections and vertices?

(Valid for singular varieties in \mathbb{R}^n. So far there is no general theory for this.)

How many inflections and vertices are concentrated at a singular point of a plane curve?
The problem(s)

\[A_e \text{-versal deformation } (t^2, t^3 + ut) \text{ of the cusp curve. The group } A \text{ does not preserve the geometry of curves.} \]
The problem(s)

\[A_e \text{-versal deformation } (t^2, t^3 + ut) \text{ of the cusp curve. The group } A \text{ does not preserve the geometry of curves.} \]

1. How to study deformations of germs of plane curves taking into consideration singularities, inflections and vertices?

Farid Tari
Inflections and vertices of germs of singular plane curves
The problem(s)

A_e-versal deformation $(t^2, t^3 + ut)$ of the cusp curve. The group A does not preserve the geometry of curves.

1. How to study deformations of germs of plane curves taking into consideration singularities, inflections and vertices? (Question valid for singular varieties em \mathbb{R}^n. So far there is no general theory for this.)
The problem(s)

\mathcal{A}_e-versal deformation ($t^2, t^3 + ut$) of the cusp curve. The group \mathcal{A} does not preserve the geometry of curves.

1. How to study deformations of germs of plane curves taking into consideration singularities, inflections and vertices? (Question valid for singular varieties em \mathbb{R}^n. So far there is no general theory for this.)

2. How many inflections and vertices are concentrated at a singular point of a plane curve?
Work on single germs

None of the approaches has built in them a way to study deformations of the curve as well as its flat (and round) geometry.

Observation: We are dealing with parametrised curves. There is some work on germs of curves given by equations in [Diatta and Giblin, 2007] and [Capitano and Diatta, 2009].
Work on single germs

- [F. S. Dias and J. J. Nuño Ballesteros 2008]
- [R. Oset Sinha and –, 2013]
- [C. T. C. Wall, 2013]
Work on single germs

- [F. S. Dias and J. J. Nuño Ballesteros 2008]
- [R. Oset Sinha and –, 2013]
- [C. T. C. Wall, 2013]

None of the approaches has built in them a way to study deformations of the curve as well as its flat (and round) geometry.

Observation: We are dealing with parametrised curves. There is some work on germs of curves given by equations in [Diatta and Giblin, 2007] and [Capitano and Diatta, 2009].
Work on single germs

- [F. S. Dias and J. J. Nuño Ballesteros 2008]
- [R. Oset Sinha and –, 2013]
- [C. T. C. Wall, 2013]

None of the approaches has built in them a way to study deformations of the curve as well as its flat (and round) geometry.

Observation: We are dealing with parametrised curves. There is some work on germs of curves given by equations in [Diatta and Giblin, 2007] and [Capitano and Diatta, 2009].
In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families γ_s and η_u of a plane curve singularity are FRS-fibre topologically equivalent if there exists a germ of a homeomorphism $k: (\mathbb{R}^m, (S_1, 0)) \to (\mathbb{R}^m, (S_2, 0))$, where S_1 and S_2 are stratifications of the parameter spaces, such that

(i) γ_s is diffeomorphic to $\eta_{k(s)}$ in each stratum of S_1;

(ii) γ_s and $\eta_{k(s)}$ have the same number of inflections and vertices in each stratum;

(iii) the relative position of the inflections, vertices, singularities and double points on γ_s and $\eta_{k(s)}$ is the same in each stratum.

Basically, FRS-equivalence means the instantaneous configurations of the curves γ_s and $\eta_{k(s)}$ (as well as their vertices, inflections and evolutes) are the same.
FRS-singularity theory

In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

- Two families γ_s and η_u of a plane curve singularity are FRS-fibre topologically equivalent if there exists a germ of a homeomorphism $k: (\mathbb{R}^m, (S^1, 0)) \rightarrow (\mathbb{R}^m, (S^2, 0))$, where S^1 and S^2 are stratifications of the parameter spaces, such that
 1. γ_s is diffeomorphic to $\eta_k(s)$ in each stratum of S^1;
 2. γ_s and $\eta_k(s)$ have the same number of inflections and vertices in each stratum;
 3. the relative position of the inflections, vertices, singularities and double points on γ_s and $\eta_k(s)$ is the same in each stratum.

Basically, FRS-equivalence means the instantaneous configurations of the curves γ_s and $\eta_k(s)$ (as well as their vertices, inflections and evolutes) are the same.
In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families γ_s and η_u of a plane curve singularity are FRS-fibre topologically equivalent if there exists a germ of a homeomorphism $k : (\mathbb{R}^m, (S_1, 0)) \to (\mathbb{R}^m, (S_2, 0))$, where S_1 and S_2 are stratifications of the parameter spaces, such that

(i) γ_s is diffeomorphic to $\eta_u(k(s))$ in each stratum of S_1;

(ii) γ_s and $\eta_u(k(s))$ have the same number of inflections and vertices in each stratum;

(iii) the relative position of the inflections, vertices, singularities and double points on γ_s and $\eta_u(k(s))$ is the same in each stratum.

Basically, FRS-equivalence means the instantaneous configurations of the curves γ_s and $\eta_u(k(s))$ (as well as their vertices, inflections and evolutes) are the same.
In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families γ_s and η_u of a plane curve singularity are *FRS*-fibre topologically equivalent if there exists a germ of a homeomorphism $k : (\mathbb{R}^m, (S_1, 0)) \to (\mathbb{R}^m, (S_2, 0))$, where S_1 and S_2 are stratifications of the parameter spaces, such that

(i) γ_s is diffeomorphic to $\eta_{k(s)}$ in each stratum of S_1;
In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families γ_s and η_u of a plane curve singularity are FRS-fibre topologically equivalent if there exists a germ of a homeomorphism $k : (\mathbb{R}^m, (S_1, 0)) \rightarrow (\mathbb{R}^m, (S_2, 0))$, where S_1 and S_2 are stratifications of the parameter spaces, such that

(i) γ_s is diffeomorphic to $\eta_{k(s)}$ in each stratum of S_1;
(ii) γ_s and $\eta_{k(s)}$ have the same number of inflections and vertices in each stratum.
FRS-singularity theory

In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families γ_s and η_u of a plane curve singularity are FRS-fibre topologically equivalent if there exists a germ of a homeomorphism $k : (\mathbb{R}^m, (S_1, 0)) \rightarrow (\mathbb{R}^m, (S_2, 0))$, where S_1 and S_2 are stratifications of the parameter spaces, such that

(i) γ_s is diffeomorphic to $\eta_{k(s)}$ in each stratum of S_1;
(ii) γ_s and $\eta_{k(s)}$ have the same number of inflections and vertices in each stratum;
(iii) the relative position of the inflections, vertices, singularities and double points on γ_s and $\eta_{k(s)}$ is the same in each stratum.
FRS-singularity theory

In [M. Salarinoghabi and -, Flat and round singularity theory, preprint 2015] we propose the following approach (similar to the one used to study bifurcations of vector fields and implicit differential equations).

Two families \(\gamma_s \) and \(\eta_u \) of a plane curve singularity are \textit{FRS}-fibre topologically equivalent if there exists a germ of a homeomorphism \(k : (\mathbb{R}^m, (S_1, 0)) \to (\mathbb{R}^m, (S_2, 0)) \), where \(S_1 \) and \(S_2 \) are stratifications of the parameter spaces, such that

(i) \(\gamma_s \) is diffeomorphic to \(\eta_{k(s)} \) in each stratum of \(S_1 \);

(ii) \(\gamma_s \) and \(\eta_{k(s)} \) have the same number of inflections and vertices in each stratum;

(iii) the relative position of the inflections, vertices, singularities and double points on \(\gamma_s \) and \(\eta_{k(s)} \) is the same in each stratum.

Basically, \textit{FRS-equivalence means the instantaneous configurations of the curves} \(\gamma_s \) and \(\eta_{k(s)} \) (as well as their vertices, inflections and evolutes) are the same.
In [M. Salarinoghabi and -], we considered FRS-families in the following cases:

- Smooth curves with vertices of finite order
- Smooth curves with inflections of finite order
- Curves with a cusp or a ramphoid cusp singularity

Farid Tari

Inflections and vertices of germs of singular plane curves
In [M. Salarinoghabi and -], we considered \textit{FRS} families in the following cases:

1. Smooth curves with vertices of finite order
2. Smooth curves with inflections of finite order
3. Curves with a cusp or a ramphoid cusp singularity
In [M. Salarinoghabi and -], we considered FRS-families in the following cases:

- Smooth curves with vertices of finite order

- Smooth curves with inflections of finite order

- Curves with a cusp or a ramphoid cusp singularity
In [M. Salarinoghabi and -], we considered FRS-families in the following cases:

- Smooth curves with vertices of finite order
- Smooth curves with inflections of finite order
In [M. Salarinoghabi and -], we considered FRS-families in the following cases:

- Smooth curves with vertices of finite order
- Smooth curves with inflections of finite order
- Curves with a cusp or a ramphoid cusp singularity
The smooth case: at a vertex of finite order

Away from inflections, we have the theory of Lagrangian singularities and caustics (generating family is the (big) family of distance squared functions).

R-versal deformations $\approx R$-versal deformation of $D_{a_0}(t_0)$.

Birth of an inward and an outward vertex at a second order vertex ($\kappa'(t_0) = \kappa''(t_0) = 0$, $\kappa'''(t_0) \neq 0$).

Farid Tari

Inflections and vertices of germs of singular plane curves
Away from inflections, we have the theory of Lagrangian singularities and caustics (generating family is the (big) family of distance squared functions).
Away from inflections, we have the theory of Lagrangian singularities and caustics (generating family is the (big) family of distance squared functions).

\[
R\text{-versal deformations} = \mathcal{R}^+_\text{-versal deformation of } D_{a_0(t_0)}.
\]
Away from inflections, we have the theory of Lagrangian singularities and caustics (generating family is the (big) family of distance squared functions).

\[R\text{-versal deformations} = \mathcal{R}^+\text{-versal deformation of } D_{a_0(t_0)}. \]

Birth of an inward and an outward vertex at a second order vertex \((\kappa'(t_0) = \kappa''(t_0) = 0, \kappa'''(t_0) \neq 0)\).
The smooth case: at an inflections of finite order

Farid Tari

Inflections and vertices of germs of singular plane curves
The smooth case: at an inflections of finite order

The evolute at a first order inflection ($\kappa(t_0) = 0, \kappa'(t_0) \neq 0$):
The smooth case: at an inflections of finite order

The evolute at a first order inflection $\kappa(t_0) = 0, \kappa'(t_0) \neq 0$:
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa(k-1)(t_0) = 0; \]

so here we have an accumulation of inflections and vertices.

• For the inflections, we use the height functions.

• For the vertices and the evolute, we consider the inverse of the stereographic projection \(\phi: \mathbb{R}^2 \to \mathbb{S}^2 \) to understand what happens at infinity.

The contact of \(\gamma(t) = (t, \beta(t)) \) with circles in \(\mathbb{R}^2 \) is the same as that \(\phi(\gamma) \) with circles in \(\mathbb{S}^2 \), and this is measured by the singularities of the members of the family \(D: \mathcal{J} \times \mathbb{S}^2 \to \mathbb{R} \), with

\[
D(t, v) = v_1 t + v_2 \beta(t) - v_3 1 + t^2 + \beta(t)^2,
\]

where \(\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{S}^2 \).

We have \(H(0, 1) \) has and \(A_k \)-singularity \(\iff D(0, 1, 0) \) has an \(A_k \)-singularity.
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \]
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \] so here we have an accumulation of inflections and a vertices.
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \text{ so here we have an accumulation of inflections and a vertex.} \]

• For the inflections, we use the height functions.

\[\text{Farid Tari} \quad \text{Inflections and vertices of germs of singular plane curves} \]
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \] so here we have an accumulation of inflections and a vertices.

- For the inflections, we use the height functions.
- For the vertices and the evolute,
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \] so here we have an accumulation of inflections and a vertices.

- For the inflections, we use the height functions.
- For the vertices and the evolute, we consider the inverse of the stereographic projection \(\phi : \mathbb{R}^2 \to S^2 \setminus \{(0,0,1)\} \) to understand what happens at infinity.
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \] so here we have an accumulation of inflections and a vertices.

- For the inflections, we use the height functions.
- For the vertices and the evolute, we consider the inverse of the stereographic projection \(\phi : \mathbb{R}^2 \to S^2 \setminus \{(0,0,1)\} \) to understand what happens at infinity.

The contact of \(\gamma(t) = (t, \beta(t)) \) with circles in \(\mathbb{R}^2 \) is the same as that \(\phi(\gamma) \) with circles in \(S^2 \),
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \text{ so here we have an accumulation of inflections and a vertices.} \]

- For the inflections, we use the height functions.
- For the vertices and the evolute, we consider the inverse of the stereographic projection \(\phi : \mathbb{R}^2 \rightarrow S^2 \setminus \{(0,0,1)\} \) to understand what happens at infinity.

The contact of \(\gamma(t) = (t, \beta(t)) \) with circles in \(\mathbb{R}^2 \) is the same as that \(\phi(\gamma) \) with circles in \(S^2 \), and this is measured by the singularities of the members of the family \(\mathcal{D} : J \times S^2 \rightarrow \mathbb{R} \), with

\[
\mathcal{D}(t, v) = \frac{v_1 t + v_2 \beta(t) - v_3}{1 + t^2 + \beta(t)^2}, \quad v = (v_1, v_1, v_3) \in S^2.
\]
At an inflections of finite order

\[\kappa(t_0) = \kappa'(t_0) = \ldots = \kappa^{(k-1)}(t_0) = 0: \text{ so here we have an accumulation of inflections and a vertices.} \]

- For the inflections, we use the height functions.
- For the vertices and the evolute, we consider the inverse of the stereographic projection \(\phi : \mathbb{R}^2 \to S^2 \setminus \{(0, 0, 1)\} \) to understand what happens at infinity.

The contact of \(\gamma(t) = (t, \beta(t)) \) with circles in \(\mathbb{R}^2 \) is the same as that \(\phi(\gamma) \) with circles in \(S^2 \), and this is measured by the singularities of the members of the family \(\mathcal{D} : J \times S^2 \to \mathbb{R} \), with

\[
\mathcal{D}(t, v) = \frac{v_1 t + v_2 \beta(t) - v_3}{1 + t^2 + \beta(t)^2}, \quad v = (v_1, v_1, v_3) \in S^2.
\]

We have

\(H_{(0,1)} \) has and \(A_k \)-singularity \(\iff \mathcal{D}_{(0,1,0)} \) has an \(A_k \)-singularity.
At an inflections of finite order

\[\gamma_s = (t, \beta_s(t)) \] be a family of curves with \(\gamma_0 = \gamma \).

We have a big family of height functions \(\tilde{H}(t, v, s) \) and a big family \(\tilde{D}(t, v, s) \).

Then, \(\tilde{H} \) is an \(\mathbb{R}^+ \)-versal \(\iff \) \(\tilde{D} \) is \(\mathbb{R}^+ \)-versal.

At an inflection of finite order:

\[\text{FR-versal deformations} = \mathbb{R}^+ \text{-versal deformation of } \mathcal{H}_n(t_0) \]
At an inflections of finite order

Let \(\gamma_s = (t, \beta_s(t)) \) be a family of curves with \(\gamma_0 = \gamma \).
At an inflections of finite order

Let $\gamma_s = (t, \beta_s(t))$ be a family of curves with $\gamma_0 = \gamma$. We have a big family of height functions $\tilde{H}(t, v, s)$ and a big family $\tilde{D}(t, v, s)$.

Farid Tari
Inflections and vertices of germs of singular plane curves
Let $\gamma_s = (t, \beta_s(t))$ be a family of curves with $\gamma_0 = \gamma$. We have a big family of height functions $\tilde{H}(t, v, s)$ and a big family $\tilde{D}(t, v, s)$. Then,
At an inflections of finite order

Let $\gamma_s = (t, \beta_s(t))$ be a family of curves with $\gamma_0 = \gamma$. We have a big family of height functions $\tilde{H}(t, v, s)$ and a big family $\tilde{D}(t, v, s)$. Then,

$$\tilde{H} \text{ is an } \mathcal{R}^+\text{-versal } \iff \tilde{D} \text{ is } \mathcal{R}^+\text{-versal.}$$
Let $\gamma_s = (t, \beta_s(t))$ be a family of curves with $\gamma_0 = \gamma$. We have a big family of height functions $\tilde{H}(t, v, s)$ and a big family $\tilde{D}(t, v, s)$. Then,

$$\tilde{H} \text{ is an } \mathcal{R}^+\text{-versal} \iff \tilde{D} \text{ is } \mathcal{R}^+\text{-versal.}$$

At an inflection of finite order:

FR-versal deformations = $\mathcal{R}^+\text{-versal deformation of } H_{n(t_0)}$.
FR-deformation of a second order inflection

Change from outward to inward vertex through infinity at a second order inflection.

model: \((t, t^4 + ut^2)\).

Farid Tari

Inflections and vertices of germs of singular plane curves
FR-deformation of a second order inflection

Change from outward to inward vertex through infinity at a second order inflection. **FR-model:** \((t, t^4 + ut^2)\).
Singular curves: the cusp case

A-model: (t^2, t^3)

Ah-model: (t^2, t^3)

$\gamma(t) = \gamma_0(t) = (\alpha(t), \beta(t))$, singular at $t = 0$.

For $t_0 \in J$, we take $\gamma(t_0)$ to be the origin and write

$\gamma(t) = (\alpha'(t_0)(t - t_0) + \frac{1}{2!}\alpha''(t_0)(t - t_0)^2 + ..., \beta'(t_0)(t - t_0) + \frac{1}{2!}\beta''(t_0)(t - t_0)^2 + ...)$

This gives the Taylor map (of order k)

$\phi_{\gamma}(t_0) = (\alpha'(t_0), \frac{1}{2!}\alpha''(t_0), ..., \beta'(t_0), \frac{1}{2!}\beta''(t_0), ...)$

Farid Tari

Inflections and vertices of germs of singular plane curves
Singular curves: the cusp case

\(A \)-model : \((t^2, t^3)\)
Singular curves: the cusp case

\[A\text{-model} : (t^2, t^3) \quad A_h\text{-model} : (t^2, t^3) \]
Singular curves: the cusp case

A-model : (t^2, t^3)
A_h-model : (t^2, t^3)

$\gamma(t) = \gamma_0(t) = (\alpha(t), \beta(t))$, singular at $t = 0$.

Farid Tari

Inflections and vertices of germs of singular plane curves
Singular curves: the cusp case

\(\mathcal{A}\)-model : \((t^2, t^3)\) \quad \mathcal{A}_h\)-model : \((t^2, t^3)\)

\(\gamma(t) = \gamma_0(t) = (\alpha(t), \beta(t)) \), singular at \(t = 0 \). For \(t_0 \in J \), we take \(\gamma(t_0) \) to be the origin and write

\[
\gamma(t) = (\alpha'(t_0)(t - t_0) + \frac{1}{2!} \alpha''(t_0)(t - t_0)^2 + \ldots, \\
\beta'(t_0)(t - t_0) + \frac{1}{2!} \beta''(t_0)(t - t_0)^2 + \ldots)
\]
Singular curves: the cusp case

\(A \)-model : \((t^2, t^3)\) \hspace{1cm} \(A_h \)-model : \((t^2, t^3)\)

\(\gamma(t) = \gamma_0(t) = (\alpha(t), \beta(t)) \), singular at \(t = 0 \). For \(t_0 \in J \), we take \(\gamma(t_0) \) to be the origin and write

\[
\gamma(t) = (\alpha'(t_0)(t - t_0) + \frac{1}{2!}\alpha''(t_0)(t - t_0)^2 + \ldots, \\
\beta'(t_0)(t - t_0) + \frac{1}{2!}\beta''(t_0)(t - t_0)^2 + \ldots)
\]

This gives the Taylor map (of order \(k \)) \(j^k \phi_{\gamma} : J \to J^k(1, 2) \), with

\[
j^k \phi_{\gamma}(t_0) = (\alpha'(t_0), \frac{1}{2!}\alpha''(t_0), \ldots; \beta'(t_0), \frac{1}{2!}\beta''(t_0), \ldots).
\]
The cusp case

Denote by \((a_1, a_2, \ldots; b_1, b_2, \ldots)\) the coordinates in \(J_{k(1,2)}\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J_{k(1,2)}\) at a cusp:

Cusps (C):
\[a_1 = b_1 = 0\]

Inflections (I):
\[a_1 b_2 - a_2 b_1 = 0\]

Vertices (V):
\[-2(a_1 b_2 - a_2 b_1)(a_1 a_2 + b_1 b_2) + (a_1^2 + b_1^2)(a_1 b_3 - a_3 b_1) = 0\]

We have \(C \subset I\), \(C \subset V\), \(V = V_1 \cup V_2\), \(V_1\) tangent to \(I\) along \(C\) and \(V_2\) transverse to \(C\).

(A product stratification and a 2-dimensional transverse slice is given by intersecting with the plane \((a_1, 0, \ldots, 0; b_1, 0, \ldots, 0)\).)
The cusp case

Denote by \((a_1, a_2, \ldots; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).
The cusp case

Denote by \((a_1, a_2, \ldots ; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:
The cusp case

Denote by \((a_1, a_2, \ldots; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)
The cusp case

Denote by \((a_1, a_2, \ldots ; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)). We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)

Inflections (I): \(a_1 b_2 - a_2 b_1 = 0\)
The cusp case

Denote by \((a_1, a_2, \ldots ; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)

Inflections (I): \(a_1 b_2 - a_2 b_1 = 0\)

Vertices (V):

\[-2(a_1 b_2 - a_2 b_1)(a_1 a_2 + b_1 b_2) + (a_1^2 + b_1^2)(a_1 b_3 - a_3 b_1) = 0.\]
The cusp case

Denote by \((a_1, a_2, \ldots; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)). We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)

Inflections (I): \(a_1 b_2 - a_2 b_1 = 0\)

Vertices (V):

\[-2(a_1 b_2 - a_2 b_1)(a_1 a_2 + b_1 b_2) + (a_1^2 + b_1^2)(a_1 b_3 - a_3 b_1) = 0.\]

We have \(C \subset I, \ C \subset V\)
Denote by \((a_1, a_2, \ldots; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)

Inflections (I): \(a_1 b_2 - a_2 b_1 = 0\)

Vertices (V):

\[-2(a_1 b_2 - a_2 b_1)(a_1 a_2 + b_1 b_2) + (a_1^2 + b_1^2)(a_1 b_3 - a_3 b_1) = 0.\]

We have \(C \subset I, C \subset V\)

\(V = V_1 \cup V_2, V_1\) tangent to \(I\) along \(C\) and \(V_2\) transverse to \(C\).
The cusp case

Denote by \((a_1, a_2, \ldots ; b_1, b_2, \ldots)\) the coordinates in \(J^k(1, 2)\) (identified with \(\mathbb{R}^k \times \mathbb{R}^k\)).

We have the following stratification \(S\) of \(J^k(1, 2)\) at a cusp:

Cusps (C): \(a_1 = b_1 = 0\)

Inflections (I): \(a_1 b_2 - a_2 b_1 = 0\)

Vertices (V):

\[-2(a_1 b_2 - a_2 b_1)(a_1 a_2 + b_1 b_2) + (a_1^2 + b_1^2)(a_1 b_3 - a_3 b_1) = 0.\]

We have \(C \subset I, \ C \subset V\)

\(V = V_1 \cup V_2, \ V_1\) tangent to \(I\) along \(C\) and \(V_2\) transverse to \(C\).

(A product stratification and a 2-dimensional transverse slice is given by intersecting with the plane \((a_1, 0, \ldots, 0; b_1, 0, \ldots, 0)\).)
The cusp case

Definition

We say that a 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$ a cusp curve, is FRS-generic if the family of Taylor maps $j_k \Phi : (\mathbb{R} \times \mathbb{R}, (0, 0)) \to J_k(1, 2)$, given by $j_k \Phi(t, s) = j_k \phi_{\gamma_s}(t)$, is transverse to the cusp stratum C, and hence to the stratification S.

Farid Tari

Inflections and vertices of germs of singular plane curves
The cusp case

Definition

We say that a 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$, is an \textit{FRS-generic} if the family of Taylor maps $j_k \Phi : (\mathbb{R} \times \mathbb{R}, (0,0)) \to J_k(1,2)$, given by $j_k \Phi(t,s) = j_k \phi_{\gamma_s}(t)$, is transverse to the cusp stratum (C), and hence to the stratification S.
The cusp case

Definition

We say that a 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$ a cusp curve, is FRS-generic if the family of Taylor maps $j^k\Phi : (\mathbb{R} \times \mathbb{R}, (0, 0)) \to J^k(1, 2)$, given by

$$j^k\Phi(t, s) = j^k \phi_{\gamma_s}(t),$$

is transverse to the cusp stratum (C), and hence to the stratification S.

Farid Tari
Inflections and vertices of germs of singular plane curves
The cusp case

A 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$, a cusp curve is \textit{FRS}-generic if and only if it is an \textit{Ae}-deformation of the cusp singularity of γ. Therefore, for the cusp singularity, \textit{FRS}-generic = \textit{Ae}-versal.
A 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$, a cusp curve is FRS-generic if and only if it is an A_e-deformation of the cusp singularity of γ.
The cusp case

A 1-parameter family of curves γ_s, with $\gamma_0 = \gamma$, a cusp curve is FRS-generic if and only if it is an A_e-deformation of the cusp singularity of γ.

Therefore, for the cusp singularity,

$$FRS\text{-generic} = A_e\text{-versal}.$$
The cusp case
The cusp case

The image of γ_s by the Taylor map and its position with respect to the stratification of $J^k(1, 2)$.
The cusp case: \textit{FRS}-bifurcations

Farid Tari

Inflections and vertices of germs of singular plane curves
The cusp case: \textit{FRS}-bifurcations

\textit{FRS}-bifurcations of the cusp. \textit{FRS}-model: \((t^2, t^3 + ut)\).
The evolute of a cusp

Farid Tari

Inflections and vertices of germs of singular plane curves
The evolute of a cusp

FRS-generic bifurcations of a cusp curve and of its evolute.

FRS-generic bifurcations of a cusp curve and of its evolute.

Inflections and vertices of germs of singular plane curves
The ramphoid cusp

We have to work a bit harder here (especially for the multi-local strata). We need to take into consideration the A_h-model of the ramphoid cusp:

\[(t_2, t_4 + t_5), (t_2, t_5 + t_6), (t_2, t_5)\].

We consider a ramphoid cusp A_h equivalent to $(t_2, t_4 + t_5)$ and obtain a stratification of the jet space. We found that a model of an FRS-versal deformation is $(t_2, t_4 + t_5 + t_6 + u t_3 + v t_4)$.

Farid Tari
Inflections and vertices of germs of singular plane curves
The ramphoid cusp

We have to work a bit harder here (especially for the multi-local strata).

Farid Tari Inflections and vertices of germs of singular plane curves
The ramphoid cusp

We have to work a bit harder here (especially for the multi-local strata).
We need to take into consideration the \mathcal{A}_h-model of the ramphoid cusp:

$$(t^2, t^4 + t^5), (t^2, t^5 + t^6), (t^2, t^5).$$
The ramphoid cusp

We have to work a bit harder here (especially for the multi-local strata).
We need to take into consideration the \mathcal{A}_h-model of the ramphoid cusp:

$$(t^2, t^4 + t^5), (t^2, t^5 + t^6), (t^2, t^5).$$

We consider a ramphoid cusp \mathcal{A}_h equivalent to $(t^2, t^4 + t^5)$ and obtain a stratification of the jet space.
The ramphoid cusp

We have to work a bit harder here (especially for the multi-local strata).
We need to take into consideration the A_h-model of the ramphoid cusp:

$$(t^2, t^4 + t^5), (t^2, t^5 + t^6), (t^2, t^5).$$

We consider a ramphoid cusp A_h equivalent to $(t^2, t^4 + t^5)$ and obtain a stratification of the jet space.
We found that a model of an FRS-versal deformation is

$$(t^2, t^4 + t^5 + t^6 + ut^3 + vt).$$
FRS-Bifurcations of the ramphoid cusp

Farid Tari

Inflections and vertices of germs of singular plane curves
FRS-Bifurcations of the ramphoid cusp
Bifurcations of the evolute
Bifurcations of the evolute

Farid Tari

Inflections and vertices of germs of singular plane curves
An application of *FRS*-deformations to profiles

The two generic types of geometric deformations of the beaks singularity of the profile (black) and of its evolute (red) [M. Hasegawa and M. Salarinoghabi, in preparation].

Farid Tari

Inflections and vertices of germs of singular plane curves
An application of *FRS*-deformations to profiles

The two generic types of geometric deformations of the beaks singularity of the profile (black) and of its evolute (red) [M. Hasegawa and M. Salarinoghabi, in preparation].
Counting inflections and vertices

\[\gamma(t) = (x(t), y(t)) = \left(t^m, \sum_{i=m+1}^{k} a_i t^i + O(t^{k+1}) \right). \]

Number of inflections at \(t = 0 \):
\[I = \text{ord} \left(x' y'' - x'' y' \right). \]

Number of vertices at \(t = 0 \):
\[V = \text{ord} \left((x'^2 + y'^2) (x''' y' - x'' y') + 3(x' x'' + y' y'') (x'' y' - x' y'') \right). \]

We have formulae for \(I \) and \(V \).
Counting inflections and vertices

[With Fabio Scalco Dias (UF Itajuba)]

Take \(\gamma(t) = (x(t), y(t)) = (t^m, \sum_{i=m+1}^{k} a_i t^i + O(t^{k+1})) \).

Number of inflections at \(t = 0 \):
\(I = \text{ord} (x'y'' - x''y') \).

Number of vertices at \(t = 0 \):
\(V = \text{ord} (\left(x'^2 + y'^2 \right) (x''y''' - x'y'') + 3(x'x'' + y'y'')(x'y'' - x''y')) \).

We have formulae for \(I \) and \(V \).
Counting inflections and vertices

[With Fabio Scalco Dias (UF Itajuba)]

Take $\gamma(t) = (x(t), y(t)) = (t^m, \sum_{i=m+1}^{k} a_i t^i + O(t^{k+1}))$.

Number of inflections at $t = 0$:

$$I = \text{ord}(x'y'' - x''y').$$
Counting inflections and vertices

[With Fabio Scalco Dias (UF Itajuba)]

Take \(\gamma(t) = (x(t), y(t)) = (t^m, \sum_{i=m+1}^k a_i t^i + O(t^{k+1})) \).

Number of inflections at \(t = 0 \):

\[
I = \text{ord}(x'y'' - x''y').
\]

Number of vertices at \(t = 0 \):

\[
V = \text{ord}((x'^2 + y'^2)(x'y''' - x'''y') + 3(x'x'' + y'y'')(x''y' - x'y''')).
\]
Counting inflections and vertices

[With Fabio Scalco Dias (UF Itajuba)]

Take $\gamma(t) = (x(t), y(t)) = (t^m, \sum_{i=m+1}^{k} a_i t^i + O(t^{k+1}))$.

Number of inflections at $t = 0$:

$$I = \text{ord}(x'y'' - x''y').$$

Number of vertices at $t = 0$:

$$V = \text{ord}((x'^2 + y'^2)(x'y''' - x'''y') + 3(x'x'' + y'y'')(x''y' - x'y''')).$$

We have formulae for I and V.

Farid Tari Inflections and vertices of germs of singular plane curves
Example: the cusp

We have $V = 3$ and $I = 2$. The evolute of the cusp is the union of $\ell = 2$ lines and a smooth curve, which we call the proper evolute of the cusp curve.

Observe that $I = \ell$.

Farid Tari

Inflections and vertices of germs of singular plane curves
Example: the cusp

We have $V = 3$ and $I = 2$. The evolute of the cusp is the union of $\ell = 2$ lines and a smooth curve, which we call the proper evolute of the cusp curve. Observe that $I = \ell$.

Farid Tari
Inflections and vertices of germs of singular plane curves
Example: the cusp

We have $V = 3$ and $I = 2$.

Farid Tari
Inflections and vertices of germs of singular plane curves
Example: the cusp

We have $V = 3$ and $I = 2$. The evolute of the cusp is the union of $\ell = 2$ lines and a smooth curve, which we call the *proper evolute* of the cusp curve.
Example: the cusp

We have $V = 3$ and $I = 2$.
The evolute of the cusp is the union of $\ell = 2$ lines and a smooth curve, which we call the \textit{proper evolute} of the cusp curve. Observe that $I = \ell$.
Counting vertices and inflections
Counting vertices and inflections

Farid Tari

Inflections and vertices of germs of singular plane curves
Counting vertices and inflections

Theorem

\[I = \ell \]

\(l \) lines

Proper evolute

\(\mu = \text{Milnor number } D_{c_0} \)

Farid Tari
Inflections and vertices of germs of singular plane curves
Counting vertices and inflections

Theorem

\[I = \ell \]
\[V = I + \mu - 2 \]
Realisations

Q: Is there a deformation γ_s of γ_0 such that γ_s has I inflections and V vertices?

- **Cusp (A_2):** $V = 3$, $I = 2$
- **Ramphoid cusp (A_4):** $V = 5$, $I = 3$
- **E_6-singularity:** $\gamma(t) = (t^3, t^4)$, $V = 7$ and $I = 4$.

The curve $\gamma_\alpha(t, s) = (t^3 - 0.018s, t^4 - 0.01s^2)$, for s near zero, has $V = 7$ vertices and $I = 4$ inflections.

In general ???
Q: Is there a deformation γ_s of γ_0 such that γ_s has I inflections and V vertices?

True for

- Cusp (A_2): $V = 3, I = 2$
Realisations

Q: Is there a deformation γ_s of γ_0 such that γ_s has I inflections and V vertices?

True for

- Cusp (A_2): $V = 3, I = 2$
- Ramphoid cusp (A_4) $V = 5, I = 3$
Realisations

Q: Is there a deformation γ_s of γ_0 such that γ_s has I inflections and V vertices?

True for

- Cusp (A_2): $V = 3, I = 2$
- Ramphoid cusp (A_4) $V = 5, I = 3$
- E_6-singularity: $\gamma(t) = (t^3, t^4)$, $V = 7$ and $I = 4$.

Farid Tari

Inflections and vertices of germs of singular plane curves
Realisations

Q: Is there a deformation γ_s of γ_0 such that γ_s has I inflections and V vertices?

True for

- Cusp (A_2): $V = 3, I = 2$
- Ramphoid cusp (A_4) $V = 5, I = 3$
- E_6-singularity: $\gamma(t) = (t^3, t^4)$, $V = 7$ and $I = 4$.

The curve $\gamma_\alpha = (t^3 - 0.018st, t^4 - 0.01st^2)$, for s near zero, has $V = 7$ vertices and $I = 4$ inflections.
Realisations

Q: Is there a deformation γ_s of γ_0 such that γ_s has l inflections and V vertices?

True for

- Cusp (A_2): $V = 3, l = 2$
- Ramphoid cusp (A_4): $V = 5, l = 3$
- E_6-singularity: $\gamma(t) = (t^3, t^4)$, $V = 7$ and $l = 4$.

The curve $\gamma_\alpha = (t^3 - 0.018st, t^4 - 0.01st^2)$, for s near zero, has $V = 7$ vertices and $l = 4$ inflections.

- In general ???
Thank you and Happy Birthday Victor!