On the global singularity theory of Legendre mappings

V. D. Sedykh

A simple example of a wave front is an equidistant of a smooth closed hypersurface in \mathbb{R}^n.

A generic wave front in the plane can have only cusps (singularities of type A_2) and transversal intersections of two smooth branches (singularities of type A_1^2; nonsingular points of a front are called singularities of type A_1).
A generic wave front in three-dimensional space can have singularities of types A_2 (cusp-
didal edges), A_1^2 (transversal intersections of two smooth branches), A_3 (swallowtails), A_2A_1
(transversal intersections of cuspidal edges and smooth branches), and A_3^2 (transversal inter-
sections of three smooth branches).
1 Legendre mappings

Let E be a smooth $(2n - 1)$-dimensional manifold. A contact element on E is a pair of the form (π, x), where $x \in E$ and $\pi \subset T_x E$ is a tangent hyperplane at the point x.

Consider a smooth field of contact elements on E. Locally such a field is given by a smooth 1-form ω as the field of its zeros. A field of contact elements is called a contact structure if $\omega \wedge (d\omega)^{n-1} \neq 0$. Integral $(n - 1)$-dimensional manifolds of a contact structure are called Legendre manifolds.

We fix a contact structure on E. A smooth fiber bundle $\rho : E \to V$ over a smooth n-dimensional manifold V is called a Legendre bundle if all its fibers are Legendre submanifolds.

Let ρ be a Legendre bundle and L be a smooth Legendre submanifold in E. Then the mapping $f = \rho \circ i : L \xrightarrow{i} E \xrightarrow{\rho} V$, where $i : L \hookrightarrow E$ is the identical embedding, is called Legendre mapping. The range $F = f(L)$ of the Legendre mapping f is called wave front.

We consider only proper Legendre mappings.

Example. Let us consider the space $\mathbb{R}^{2n-1} = \{(y, t, x, p, q)\}$, where

$$t = (t_1, \ldots, t_k), \quad x = (x_1, \ldots, x_k), \quad p = (p_{k+1}, \ldots, p_{n-1}), \quad q = (q_{k+1}, \ldots, q_{n-1}).$$

The form $dy + tdx + pdq$ defines a contact structure on \mathbb{R}^{2n-1}. The mapping

$$\rho : \mathbb{R}^{2n-1} \to \mathbb{R}^n, \quad \rho : (y, t, x, p, q) \mapsto (y, x, q)$$

is a Legendre bundle over $\mathbb{R}^n = \{(y, x, q)\}$.

Let $S = S(t, q)$ be a family of smooth functions of t smoothly depending on q. Then the system of equations

$$y = -S(t, q) + t \frac{\partial S(t, q)}{\partial t}, \quad x = -\frac{\partial S(t, q)}{\partial t}, \quad p = \frac{\partial S(t, q)}{\partial q}$$

defines a smooth Legendre submanifold $\mathbb{R}^{n-1} = \{(t, q)\} \xrightarrow{i} \mathbb{R}^{2n-1}$. The mapping

$$\mathbb{R}^{n-1} \to \mathbb{R}^n, \quad (t, q) \mapsto \left(-S(t, q) + t \frac{\partial S(t, q)}{\partial t}, -\frac{\partial S(t, q)}{\partial t}, q\right)$$

is a Legendre mapping $f : \mathbb{R}^{n-1} \xrightarrow{i} \mathbb{R}^{2n-1} \xrightarrow{\rho} \mathbb{R}^n$.

3
2 Legendre singularities

Legendre mappings

\[f_1 : L_1 \overset{i_1}{\rightarrow} E_1 \overset{\rho_1}{\rightarrow} V_1, \quad f_2 : L_2 \overset{i_2}{\rightarrow} E_2 \overset{\rho_2}{\rightarrow} V_2 \]

are called equivalent if there exist diffeomorphisms \(\Phi : E_1 \rightarrow E_2, \varphi : V_1 \rightarrow V_2 \), and \(\varepsilon : L_1 \rightarrow L_2 \) such that \(\Phi \) transforms the contact structure on \(E_1 \) to the contact structure on \(E_2 \) and the diagram

\[
\begin{array}{c}
L_1 \overset{i_1}{\rightarrow} E_1 \overset{\rho_1}{\rightarrow} V_1 \\
\downarrow \varepsilon \quad \downarrow \Phi \\
L_2 \overset{i_2}{\rightarrow} E_2 \overset{\rho_2}{\rightarrow} V_2
\end{array}
\]

is commutative.

The equivalence class of a Legendre mapping germ is called singularity.

We equip the space \(W \) of all embeddings \(i : L \rightarrow E \) with Whitney’s fine \(C^\infty \)-topology. A Legendre mapping

\[f = \rho \circ i : L \overset{i}{\rightarrow} E \overset{\rho}{\rightarrow} V \]

is called stable if every Legendre mapping close to \(f \) is equivalent to \(f \).

Arnold’s Theorem. Stable mappings are dense in the space of Legendre mappings to a smooth manifold of the dimension \(n \leq 6 \). Their singularities are equivalent to singularities of the mapping

\[\mathbb{R}^{n-1} \rightarrow \mathbb{R}^n, \ (t, q) \mapsto \left(-S(t, q) + t \frac{\partial S(t, q)}{\partial t}, -\frac{\partial S(t, q)}{\partial t}, q \right) . \]

at the origin, where \(S = S(t, q) \) is a function of one of the following types (\(\mu \) is integer):

- \(A_\mu : S = t_1^{\mu+1} + q_{\mu-1}t_1^{\mu-1} + \ldots + q_{2}t_1^2, \ 1 \leq \mu \leq n; \)
- \(D^\pm_\mu : S = t_1^2t_2^2 + t_2^{\mu-1} + q_{\mu-1}t_2^{\mu-2} + \ldots + q_{3}t_2^2, \ 4 \leq \mu \leq n; \)
- \(E_6 : S = t_1^3 + t_2^3 + q_3t_1t_2^2 + q_4t_1t_2 + q_3t_2^2, \ (\mu = 6 \leq n). \)

The number \(\mu \) is called the codimension of the singularity. If \(\mu \) is odd, then singularities of types \(D^+_\mu \) and \(D^-_\mu \) are equivalent (they are denoted by \(D_\mu \)).

Singularities of types \(A_\mu, D^\pm_\mu, E_6 \) are stable for Legendre mappings to a smooth manifold of any dimension \(n \).
3 Multisingularities of Legendre mappings

Let \mathbb{S} be the free Abelian multiplicative semigroup whose generators are the symbols

$$A_\mu (\mu = 1, 2, \ldots), \quad D_{2+2k}^-, D_{2+2k}^+, D_{3+2k} (k = 1, 2, \ldots), \quad E_6.$$

The identity element of this semigroup is denoted by 1.

We consider an arbitrary non-identity element $A = X_1 \ldots X_p \in \mathbb{S}$, where $X_j, j = 1, \ldots, p$, is any generator of \mathbb{S}.

Definition. A Legendre mapping $f : L \to V$ has a multisingularity of type A at a point $y \in V$ if:

1) $f^{-1}(y)$ consists of p distinct points;

2) there exists an order x_1, \ldots, x_p of points from $f^{-1}(y)$ such that f has at these points singularities of types X_1, \ldots, X_p, respectively.

We say also that the mapping f has a multisingularity of type 1 at each point of the complement to the front $\mathcal{F} = f(L)$ in V. The front \mathcal{F} has a singularity of type $A \in \mathbb{S}$ at a point $y \in V$ if f has a multisingularity of type A at y.

The sum of the codimensions of singularities of types X_1, \ldots, X_p is called the codimension of a multisingularity of type A and is denoted $\text{codim} A$. Multisingularities of generic Legendre mappings to a space of the dimension $n \leq 6$ are multisingularities of types $A \in \mathbb{S}$ such that $\text{codim} A \leq n$.

4 The adjacency indices of Legendre multisingularities

Let us consider a stable Legendre mapping $f : L \rightarrow V$. The set A_f of points $y \in V$ such that f has a multisingularity of type A at y is a smooth submanifold in V. Its codimension is equal to codim A.

Let f has a multisingularity of type $B \in S$ at $y \in V$, where codim $B = c$. We take a neighborhood U of the origin 0 in \mathbb{R}^c and consider a smooth embedding $h : U \rightarrow V$ such that $h(0) = y$ and the submanifold $h(U) \subset V$ is transversal to the manifold B_f at y.

Let $D_\varepsilon \subset \mathbb{R}^c$ be the open c-dimensional ball of radius $\varepsilon > 0$ centered at 0. Then there exists a positive $\varepsilon_0 = \varepsilon_0(f, y, h)$ such that for any $A \in S$ and $\varepsilon < \varepsilon_0$ all connected components of the intersection $h(S_\varepsilon) \cap A_f$ are contractible and the number of these components depends only on A and B. This number is denoted by $J_A(B)$ and, in the case $A \neq B$, is called the adjacency index of multisingularities of type B to multisingularities of type A.

Example.

$$J_{A_1}(A_2) = J_{A_3}(A_3) = 2, \quad J_{A_1}(A_3) = 4, \quad J_{A_2^1}(A_3) = 1.$$
5 The adjacency indices of multisingularities of Legendre mappings to spaces of low dimension

Proposition. For any $A, B, C \in S$,
\[J_A(B \cdot C) = \sum_{(X, Y) \in S \times S : X \cdot Y = A} J_X(B)J_Y(C). \]

Theorem. Let $A = A_{\mu_1}^{k_1} \ldots A_{\mu_p}^{k_p} \in S$, where μ_1, \ldots, μ_p are positive integers different in pairs. Then for any positive integer μ
\[J_A(A_{\mu}) = \sum_{0 \leq k_0 \leq N, k_0 \equiv N \pmod{2}} \frac{(k_0 + k_1 + \ldots + k_p)!}{k_0! \cdot k_1! \cdot \ldots \cdot k_p!}, \quad \text{where} \quad N = \mu + 1 - \sum_{i=1}^{p} \mu_i (\mu_i + 1). \]

Corollary. The nonzero adjacency indices $J_A(A_{\mu})$, $4 \leq \mu \leq 6$, are given in the following tables:

<table>
<thead>
<tr>
<th>A</th>
<th>$J_A(A_4)$</th>
<th>$J_A(A_5)$</th>
<th>$J_A(A_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>A_1</td>
<td>A_2</td>
</tr>
<tr>
<td>$J_A(A_4)$</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Theorem. The nonzero adjacency indices $J_A(D^\mu)$, $\mu \leq 6$, are given in the following tables:

<table>
<thead>
<tr>
<th>$J_A(D^+_4)$</th>
<th>1</th>
<th>A_1</th>
<th>A_2</th>
<th>A_2^2</th>
<th>A_3;</th>
<th>A</th>
<th>1</th>
<th>A_1</th>
<th>A_2</th>
<th>A_2^2</th>
<th>A_3</th>
<th>A_3^2</th>
<th>A_1^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2;</td>
<td>A</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>2;</td>
<td></td>
</tr>
<tr>
<td>$J_A(D^-_5)$</td>
<td>6</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1;</td>
<td></td>
</tr>
</tbody>
</table>

| $J_A(D^+_5)$ | 6 | 16 | 10 | 14 | 10 | 4 | 3 | 1 | 2 | 6 | 2 | 2 | $A_2A_2^2$ |
| $J_A(D^-_5)$ | 2 | 2 | 2 | A_3A_2; |

| $J_A(D^+_6)$ | 11 | 34 | 20 | 40 | 20 | 26 | 18 | 1 | 3 | 6 | 18 | 4 | 4 | A_4^1 |
| $J_A(D^-_6)$ | 2 | 2 | 4 | 2 | 2 | $A_3A_2^2$ |

Theorem. The nonzero adjacency indices $J_A(E_6)$ are given in the following tables:

$J_A(E_6)$	1	A_1	A_2	A_2^2	A_3	A_2A_1	A_3^2	D_4^+	D_4^-	D_4	A_4	A_3A_1	A_3^2	$A_2A_1^2$
A	5	15	11	17	10	16	6	1	1	6	6	2	5	
$J_A(E_6)$	5	15	11	17	10	16	6	1	1	6	6	2	5	

| $J_A(E_6)$ | 1 | 2 | 2 | A_2A_1; | $J_A(E_6)$ | 2 | 2 | 1; |
6 The coexistence of Legendre multisyngularities

Theorem. Let \(f \) be a stable Legendre mapping to a smooth manifold of the dimension \(n \leq 6 \). Assume that the front of this mapping is compact. Then:

1) For any \(\mathcal{A} \in \mathbb{S} \setminus \{1\} \) such that codim \(\mathcal{A} < n \) and codim \(\mathcal{A} \equiv n - 1 \mod 2 \), the Euler characteristic \(\chi(\mathcal{A}_f) \) of the manifold \(\mathcal{A}_f \) is calculated by the formula

\[
\chi(\mathcal{A}_f) = \sum \limits_{\mathcal{B}} K_\mathcal{A}(\mathcal{B}) \chi(\mathcal{B}_f),
\]

where the summation is taken over all \(\mathcal{B} \in \mathbb{S} \) such that codim \(\mathcal{B} \in [\text{codim} \mathcal{A} + 1, n] \), codim \(\mathcal{B} \equiv n \mod 2 \); the coefficients \(K_\mathcal{A}(\mathcal{B}) \) are rational numbers depending only on \(\mathcal{A} \) and \(\mathcal{B} \).

2) If \(n \) is odd, then (1) implies the following relations:

\[
\begin{align*}
\chi(A_2) &= \chi(A_3) + \chi(A_2 A_1) - \frac{5}{3} \chi(D_5) - \chi(D_4^+ A_1) - 3 \chi(D_4^- A_1) - 2 \chi(A_5) - 2 \chi(A_4 A_1) - \frac{3}{2} \chi(A_3 A_2) - 2 \chi(A_3 A_2^2) - 2 \chi(A_2 A_2^2) - 2 \chi(A_2 A_2^2), \\
\chi(A_1^2) &= \frac{1}{2} \chi(A_3) + \chi(A_2 A_1) + 3 \chi(A_1^2) - \frac{7}{2} \chi(D_5) - \frac{5}{2} \chi(D_4^+ A_1) - \frac{19}{2} \chi(D_4^- A_1) - 2 \chi(A_5) - 2 \chi(A_4 A_1) - \frac{3}{2} \chi(A_3 A_2) - 2 \chi(A_3 A_2^2) - 7 \chi(A_2 A_2^2) - 9 \chi(A_2 A_2^2) - 20 \chi(A_1^2), \\
\chi(D_4^+) &= \frac{1}{2} \chi(D_5) + \chi(D_4^+ A_1), \\
\chi(D_4^-) &= \frac{1}{2} \chi(D_5) + \chi(D_4^- A_1), \\
\chi(A_4) &= \chi(D_5) + \chi(A_5) + \chi(A_4 A_1), \\
\chi(A_3 A_1) &= \chi(D_5) + \chi(D_4^+ A_1) + 3 \chi(D_4^- A_1) + \chi(A_5) + \chi(A_4 A_1) + \chi(A_3 A_2) + 2 \chi(A_3 A_1^2), \\
\chi(A_3 A_2) &= \frac{1}{2} \chi(A_5) + \chi(A_3 A_2) + \chi(A_3 A_2^2), \\
\chi(A_2 A_2^2) &= \frac{1}{2} \chi(D_5) + \chi(A_4 A_1) + \frac{1}{2} \chi(A_3 A_2) + \chi(A_3 A_1^3) + 2 \chi(A_2 A_1) + 3 \chi(A_2 A_1^2), \\
\chi(A_1^4) &= \chi(D_4^- A_1) + \frac{1}{2} \chi(A_3 A_1^2) + \chi(A_2 A_2^3) + 5 \chi(A_1^5).
\end{align*}
\]
3) If \(n \) is even, then (1) implies the following relations:

\[
\begin{align*}
\chi(A_1) &= \chi(A_2) + 2\chi(A_1^2) - 5\chi(D_0^-) - 2\chi(A_1) - \frac{5}{2}\chi(A_3A_1) - 2\chi(A_2^2) - 4\chi(A_2A_1^2) - 8\chi(A_4) + 13\chi(E_6) + 7\chi(D_6^-) + 27\chi(D_0^+); \\
&\quad + 2\chi(A_3^3) + 5\chi(D_1^+A_1^2) + 51\chi(D_4^-A_1^2) + 9\chi(A_6) + 14\chi(A_5A_1) + \frac{5}{2}\chi(A_4A_2) + 21\chi(A_1^2A_1^2) + 10\chi(A_3^2) + \frac{31}{2}\chi(A_2A_2A_1) + 31\chi(A_2A_2^2) + 12\chi(A_2^3) + 24\chi(A_2^2A_1^2) + 48\chi(A_2A_1^3) + 96\chi(A_1^4); \\
\chi(A_2A_1) &= \chi(A_1) + \chi(A_3A_1) + 2\chi(A_2^2) + 2\chi(A_2A_2^2) - 5\chi(E_6) - 3\chi(D_0^+) - 7\chi(D_6^-); \\
&\quad - \frac{1}{4}\chi(D_5A_1) - \chi(D_1^+A_2) - 8\chi(D_4^-A_2) - 2\chi(D_1^+A_1^2) - 6\chi(D_4^-A_1^2) - 4\chi(A_6) - 5\chi(A_5A_1) - 5\chi(A_4A_2) - 6\chi(A_3A_2^2) - 4\chi(A_3^2) - \frac{11}{2}\chi(A_3A_2A_1) - 6\chi(A_3A_1^2) - 6\chi(A_2^3) - 8\chi(A_2A_1^2) - 8\chi(A_2A_1^2); \\
\chi(A_1^2) &= \chi(D_5^+) + \frac{1}{2}\chi(A_3A_1) + \chi(A_2A_1^2) + 4\chi(A_1^4) - \frac{5}{2}\chi(E_6) - \chi(D_0^+) - 5\chi(D_6^-); \\
&\quad - 5\chi(A_5A_1) - \frac{1}{2}\chi(D_4^-A_2) - \frac{11}{2}\chi(D_4^-A_1^2) - 16\chi(D_4^-A_1^2) - 8\chi(A_6) - \frac{5}{2}\chi(A_4A_2) - 5\chi(A_4A_1^2) - 2\chi(A_3^2) - \frac{5}{2}\chi(A_3A_2A_1) - \frac{11}{2}\chi(A_3A_1^2) - 2\chi(A_2^3) - 6\chi(A_2A_1^2) - 16\chi(A_2A_1) - 40\chi(A_1^4); \\
\chi(D_5) &= \chi(E_6) + \chi(D_0^-) + \chi(D_6^-) + \chi(D_5A_1), \\
\chi(D_0^-A_1) &= \chi(D_0^-) + \frac{1}{2}\chi(D_5A_1) + \chi(D_1^+A_2) + 2\chi(D_1^+A_1^2), \\
\chi(D_4^-A_1) &= \chi(D_4^-) + \frac{1}{2}\chi(D_5A_1) + \chi(D_1^+A_2) + 2\chi(D_1^+A_1^2), \\
\chi(A_6) &= \chi(E_6) + 2\chi(D_0^-) + \chi(A_6) + \chi(A_5A_1), \\
\chi(A_4A_1) &= \chi(E_6) + \chi(D_5A_1) + \chi(A_6) + \chi(A_5A_1) + \chi(A_4A_2) + 2\chi(A_4A_1^2), \\
\chi(A_3A_2) &= \chi(D_5^+) + \chi(D_0^-) + \chi(D_1^+A_2) + 3\chi(D_1^+A_2) \\
&\quad + \chi(A_6) + \chi(A_4A_2) + 2\chi(A_3^2) + \chi(A_3A_2A_1), \\
\chi(A_3A_1^2) &= \chi(D_6^-) + \chi(D_5A_1) + \chi(D_1^+A_1^2) + 3\chi(D_1^+A_1^2) \\
&\quad + \chi(A_5A_1) + \chi(A_4A_1^2) + \chi(A_3A_2A_1) + 3\chi(A_3A_1), \\
\chi(A_2A_1^2) &= \frac{1}{2}\chi(E_6) + \frac{1}{2}\chi(A_5A_1) + \chi(A_4A_2) + \chi(A_3A_2A_1) + 3\chi(A_3^2) + 2\chi(A_2A_1^2), \\
\chi(A_2A_1^2) &= \frac{1}{2}\chi(D_5A_1) + \chi(D_4^-A_2) \\
&\quad + \chi(A_4A_1^2) + \frac{1}{2}\chi(A_3A_2A_1) + \chi(A_3A_1^2) + 2\chi(A_2A_1^2) + 4\chi(A_2A_1^2), \\
\chi(A_1^2) &= \chi(D_1^+A_1^2) + \frac{1}{2}\chi(A_3A_1^2) + \chi(A_2A_1^2) + 6\chi(A_1^4). \\
\end{align*}
\]
Corollary. The numbers of isolated singularities of types D_5, A_5, A_3A_2, and $A_3A_1^2$ on any compact generic front in a 5-dimensional space are even. The numbers of isolated singularities of types D_5A_1, $A_3A_2A_1$, and $A_3A_1^3$ on any compact generic front in a 6-dimensional space are even; the numbers of singularities of types E_6 and A_5A_1 have the same parity.