Rigidity of bi-Lipschitz equivalence of weighted homogeneous function-germs in the plane

Maria Aparecida Soares Ruas
ICMC-USP

Bruce 60 & Wall 75
Liverpool 2012
June 19, 2012
Aim is to discuss the classification of (real or complex) analytic functions in a neighborhood of an isolated singular point, that we can assume to be 0.

Notation:

\[f : \mathbb{K}^n, 0 \to \mathbb{K}, 0, \mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C}, \]

with isolated singularity at 0.
Aim is to discuss the classification of (real or complex) analytic functions in a neighborhood of an isolated singular point, that we can assume to be 0.

Notation:

\[f : \mathbb{K}^n, 0 \rightarrow \mathbb{K}, 0, \quad \mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C}, \]

with isolated singularity at 0.
The classical equivalence relation is the *analytic equivalence*, and many results are known in this case.

In this lecture we discuss the *bi-Lipschitz classification* of function germs. Not many results are known in this case.

The aim is to discuss the following result:

Theorem: (A.Fernandes, —, 2012, [2])

If two weighted homogeneous (but not homogeneous) function-germs \((\mathbb{C}^2, 0) \to (\mathbb{C}, 0)\) are strongly bi-Lipschitz equivalent then they are analytically equivalent.
The classical equivalence relation is the *analytic equivalence*, and many results are known in this case.

In this lecture we discuss the *bi-Lipschitz classification* of function germs. Not many results are known in this case.

The aim is to discuss the following result:

Theorem: (A. Fernandes, —, 2012, [2])

If two weighted homogeneous (but not homogeneous) function-germs \((\mathbb{C}^2, 0) \to (\mathbb{C}, 0)\) are strongly bi-Lipschitz equivalent then they are analytically equivalent.
The classical equivalence relation is the *analytic equivalence*, and many results are known in this case.

In this lecture we discuss the *bi-Lipschitz classification* of function germs. Not many results are known in this case.

The aim is to discuss the following result:

Theorem: (A.Fernandes, ⎯, 2012, [2])

If two weighted homogeneous (but not homogeneous) function-germs \((\mathbb{C}^2, 0) \to (\mathbb{C}, 0)\) are strongly bi-Lipschitz equivalent then they are analytically equivalent.
Summary

• Analytic equivalence
• Bi-Lipschitz equivalence
• Henry and Parusinski’s example
• The main result and idea of the proof
• Open problems
Analytic equivalence

\[f \sim g \quad \text{if} \quad \exists \text{ a germ of analytic diffeomorphism } h : (\mathbb{K}^n, 0) \to (\mathbb{K}^n, 0) \]

such that \(g = f \circ h \).

\[\mathcal{R} = \{ h : (\mathbb{K}^n, 0) \to (\mathbb{K}^n, 0), \text{ germs of analytic diffeomorphisms} \} \]

is the group of right equivalences.
If \(f \) and \(g \) are analytically equivalent then \(h(\{g = c\}) = \{f = c\} \).

Figure: Analytic Equivalence
The classification of function germs with respect to analytic equivalence has moduli. The classical example is due to H. Whitney.

(H. Whitney, 1965)

\[f_t(x, y) = xy(x - y)(x - ty), \quad 0 < |t| < 1. \]

For each \(t \), \(X_t = f_t^{-1}(0) \) is the set of 4 lines through the origin in \(\mathbb{K}^2 \).

The classical invariant is the cross ratio

\[j = \frac{CA}{CB} / \frac{DA}{DB} \]
\[j = \frac{AB}{AC} / \frac{AC}{AD} \]
Thom Levine Theorem ([3])

Let U be a domain in \mathbb{K}, W a neighborhood of 0 in \mathbb{K}^n and $F : W \times U \to \mathbb{K}$, such that $F(0, t) = 0$, F analytic. Let $f_t(x) = F(x, t)$, $\forall t \in U$, $\forall x \in W$.

The following conditions are equivalent

(i) There exists a family of analytic diffeomorphisms $H : W \times U \to W$, $h_t(0) = 0$, $\forall t$ $h_0(x) = x$, such that

$$f_t \circ h_t = f_0$$

(ii) There exists a family of analytic vector fields $v : W \times U \to \mathbb{K}^n$, $v(0, t) = 0$ $\forall t \in U$, such that

$$\frac{\partial f_t}{\partial t}(x) = df_t(x)(v(x, t)), \forall t \in U, \forall x \in W$$
Thom Levine Theorem ([3])

Let U be a domain in \mathbb{K}, W a neighborhood of 0 in \mathbb{K}^n and $F : W \times U \rightarrow \mathbb{K}$, such that $F(0, t) = 0$, F analytic. Let $f_t(x) = F(x, t)$, $\forall t \in U$, $\forall x \in W$.

The following conditions are equivalent

(i) There exists a family of analytic diffeomorphisms $H : W \times U \rightarrow W$, $h_t(0) = 0, \forall t$ $h_0(x) = x$, such that

$$f_t \circ h_t = f_0$$

(ii) There exists a family of analytic vector fields $v : W \times U \rightarrow \mathbb{K}^n$, $v(0, t) = 0$ $\forall t \in U$, such that

$$\frac{\partial f_t}{\partial t}(x) = df_t(x)(v(x, t)), \forall t \in U, \forall x \in W$$
Thom Levine Theorem ([3])

Let U be a domain in \mathbb{K}, W a neighborhood of 0 in \mathbb{K}^n and $F : W \times U \rightarrow \mathbb{K}$, such that $F(0, t) = 0$, F analytic. Let $f_t(x) = F(x, t)$, $\forall t \in U$, $\forall x \in W$.

The following conditions are equivalent

(i) There exists a family of analytic diffeomorphisms $H : W \times U \rightarrow W$, $h_t(0) = 0$, $\forall t$, $h_0(x) = x$, such that

$$f_t \circ h_t = f_0$$

(ii) There exists a family of analytic vector fields $v : W \times U \rightarrow \mathbb{K}^n$, $v(0, t) = 0$ $\forall t \in U$, such that

$$\frac{\partial f_t}{\partial t}(x) = df_t(x)(v(x, t)), \forall t \in U, \forall x \in W$$
Write

\[v(x, t) = \sum_1^n v_i(x, t) \frac{\partial}{\partial x_i}, \quad v_i(0, t) = 0, \quad V(x, t) = \frac{\partial}{\partial t} - v(x, t) \]

then

\[(ii) \iff V(x, t) \text{ is tangent to the levels of } F \]
The conditions corresponding to (i) and (ii) for bi-Lipschitz equivalence are not equivalent. Clearly

\[(ii) \implies (i)\]

But, it is only known that the derivative of a bi-Lipschitz homeomorphism is bounded and exists almost everywhere.
Definition

The family $F : W \times U \to \mathbb{C}$, $F(0, t) = 0$, $f_t(x) = F(x, t)$ is strongly bi-Lipschitz trivial when there exists a continuous family of Lipschitz vector fields $v_t : W \to \mathbb{C}^n$, $v(0, t) = 0$ such that

$$\frac{\partial f_t}{\partial t}(x) = df_t(x)(v(x, t)), \quad \forall t \in U, \forall x \in W$$

Remark

If f_t is strongly bi-Lipschitz trivial, then for all $t \neq t' \in U$,

$$f_t \sim_{bi-Lipschitz} f_{t'}$$
Definition

The family $F : W \times U \to \mathbb{C}$, $F(0, t) = 0$, $f_t(x) = F(x, t)$ is strongly bi-Lipschitz trivial when there exists a continuous family of Lipschitz vector fields $v_t : W \to \mathbb{C}^n$, $v(0, t) = 0$ such that

$$\frac{\partial f_t}{\partial t}(x) = df_t(x)(v(x, t)), \ \forall t \in U, \ \forall x \in W$$

Remark

If f_t is strongly bi-Lipschitz trivial, then for all $t \neq t' \in U$,

$$f_t \sim_{bi-Lipschitz} f_{t'}$$

\[f_t(x, y) = x^3 + y^6 - 3t^2xy^4 ; 0 < |t| < \frac{1}{2} \]

Parusinski and Henry proved that given \(t \neq s \), there is no \(\phi: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) germ of bi-Lipschitz homeomorphism such that \(f_t = f_s \circ \phi \), i.e. \(f_t \) is not bi-Lipschitz equivalent to \(f_s \).

This shows in particular that the bi-Lipschitz classification of function germs has modality.

Remark

The bi-Lipschitz classification of analytic sets has no modality (Mostowskii, 1985).

Risler and Trotman asked in 1997:

\[f^{-1}(0) \sim_{bi-Lipschitz} g^{-1}(0) \implies f \sim_{bi-Lipschitz} g ? \]

\[f_t(x, y) = x^3 + y^6 - 3t^2xy^4 ; \ 0 < |t| < \frac{1}{2} \]

Parusinski and Henry proved that given \(t \neq s \), there is no \(\phi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) germ of bi-Lipschitz homeomorphism such that \(f_t = f_s \circ \phi \), i.e. \(f_t \) is not bi-Lipschitz equivalent to \(f_s \).

This shows in particular that the bi-Lipschitz classification of function germs has modality.

Remark

The bi-Lipschitz classification of analytic sets has no modality (Mostowski, 1985).

Risler and Trotman asked in 1997:

\[f^{-1}(0) \sim_{bi-Lipschitz} g^{-1}(0) \implies f \sim_{bi-Lipschitz} g ? \]

\[f_t(x, y) = x^3 + y^6 - 3t^2xy^4 ; \quad 0 < |t| < \frac{1}{2} \]

Parusinski and Henry proved that given \(t \neq s \), there is no \(\phi : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^2, 0) \) germ of bi-Lipschitz homeomorphism such that \(f_t = f_s \circ \phi \), i.e. \(f_t \) is not bi-Lipschitz equivalent to \(f_s \).

This shows in particular that the bi-Lipschitz classification of function germs has modality.

Remark

The bi-Lipschitz classification of analytic sets has no modality (Mostowsk, 1985).

Risler and Trotman asked in 1997:

\[f^{-1}(0) \sim_{bi-Lipschitz} g^{-1}(0) \implies f \sim_{bi-Lipschitz} g \]

\[f_t(x, y) = x^3 + y^6 - 3t^2 xy^4 ; \quad 0 < |t| < \frac{1}{2} \]

Parusinski and Henry proved that given \(t \neq s \), there is no \(\phi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0) \) germ of bi-Lipschitz homeomorphism such that \(f_t = f_s \circ \phi \), i.e. \(f_t \) is not bi-Lipschitz equivalent to \(f_s \).

This shows in particular that the bi-Lipschitz classification of function germs has modality.

Remark

The bi-Lipschitz classification of analytic sets has no modality (Mostowsi, 1985).

*Risler and Trotman asked in 1997 :
\(f^{-1}(0) \sim_{bi-Lipschitz} g^{-1}(0) \implies f \sim_{bi-Lipschitz} g ? \)
The strategy used by them was to introduce a new invariant based on the observation that the bi-Lipschitz homeomorphism does not move much certains regions around the relative polar curves $\frac{\partial F}{\partial x} = 0$.

For a single germ f the invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the branches of its generic polar curve.
The strategy used by them was to introduce a new invariant based on the observation that the bi-Lipschitz homeomorphism does not move much certain regions around the relative polar curves $\frac{\partial F}{\partial x} = 0$.

For a single germ f the invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the branches of its generic polar curve.
In general, a bi-Lipschitz homeomorphism is not obtained by integration of a Lipschitz vector field. The motivation of Parusinski-Henry invariant comes from the following result.

Theorem, Henry-Parusinski

There is no bi-Lipschitz vector field

\[V(x, y, t) = \frac{\partial}{\partial t} + v_1(x, y, t) \frac{\partial}{\partial x} + v_2(x, y, t) \frac{\partial}{\partial y}, \quad v_1(0, 0, t) = v_2(0, 0, t) = 0, \]

defined in a neighborhood of \((0, 0, t_0)\) and tangent to the levels of

\[f(x, y, t) = x^3 - 3t^2xy^4 + y^6. \]
Proof:

Let us suppose V does exist. Then $\frac{\partial F}{\partial v} = 0$, that is,

$$\frac{\partial F}{\partial v} = \frac{\partial F}{\partial t} + v_1(x, y, t) \frac{\partial F}{\partial x} + v_2(x, y, t) \frac{\partial F}{\partial y} = 0$$

Now, let $\Gamma(x, y, t)$ be the family of polar curves of F:

$$\Gamma(x, y, t) = \{(x, y, t) \mid \frac{\partial F}{\partial x} = 3(x^2 - t^2 y^4) = 0\}$$

Γ consists of 2 branches, $x = \pm ty^2$.
Evaluating $v_2(x, y, t)$ along the two branches of the polar, we get

$$v_2(\pm ty^2, y, t) = \frac{\pm t^2 y}{1 \mp 2t^3}$$

Comparing v_2 on the two branches of the polar curve Γ, we get

$$(I) : \quad v_2(ty^2, y, t) - v_2(-ty^2, y, t) = \frac{t^2 y}{1 - 2t^3} - \frac{-t^2 y}{1 + 2t^3} \sim y$$

On the other hand, since v_2 is bi-Lipschitz, then

$$(II) : \quad |v_2(ty^2, y, t) - v_2(-ty^2, y, t)| \leq C|ty^2|$$

(II) contradicts (I)
Evaluating $v_2(x, y, t)$ along the two branches of the polar, we get

$$v_2(\pm ty^2, y, t) = \frac{\pm t^2y}{1 \mp 2t^3}$$

Comparing v_2 on the two branches of the polar curve Γ, we get

$$(I): v_2(ty^2, y, t) - v_2(-ty^2, y, t) = \frac{t^2y}{1 - 2t^3} - \frac{-t^2y}{1 + 2t^3} \sim y$$

On the other hand, since v_2 is bi-Lipschitz, then

$$(II): \ |v_2(ty^2, y, t) - v_2(-ty^2, y, t)| \leq C|ty^2|$$

(II) contradicts (I).
Evaluating $v_2(x, y, t)$ along the two branches of the polar, we get

$$v_2(\pm ty^2, y, t) = \frac{\pm t^2y}{1 \mp 2t^3}$$

Comparing v_2 on the two branches of the polar curve Γ, we get

$$(I) : v_2(ty^2, y, t) - v_2(-ty^2, y, t) = \frac{t^2y}{1 - 2t^3} - \frac{-t^2y}{1 + 2t^3} \sim y$$

On the other hand, since v_2 is bi-Lipschitz, then

$$(II) : |v_2(ty^2, y, t) - v_2(-ty^2, y, t)| \leq C|ty^2|$$

(II) contradicts (I)
Definition

Let \(w = (w_1, \ldots, w_n) \) be a \(n \)-tuple of positive integers. We say that a polynomial function \(f(x_1, \ldots, x_n) \) is \(w \)-homogeneous of degree \(d \) if

\[
f(s^{w_1} x_1, \ldots, s^{w_n} x_n) = s^d f(x_1, \ldots, x_n),
\]

for every \(s \in \mathbb{C}^* \).

We denote by \(H^d_w(n, 1) \) the space of \(w \)-homogeneous polynomials in \(n \)-variables of degree \(d \).
Let $f(x, y, t)$ be a polynomial function such that for every $t \in U$, the function $f_t(x, y) = F(x, y, t)$ is w-homogeneous ($w_1 > w_2$) with isolated singularity in $(0, 0) \in \mathbb{C}^2$. If $\{f_t : t \in U\}$ as a family of function germs in $(0, 0) \in \mathbb{C}^2$, is strongly bi-Lipschitz trivial, then f_{t_1} is analytically equivalent to f_{t_2} $\forall t_1, t_2 \in U$.
Proof.

From the hypothesis, there exists a Lipschitz vector field

\[V(x, y, t) = \frac{\partial}{\partial t} + v_1(x, y, t) \frac{\partial}{\partial x} + v_2(x, y, t) \frac{\partial}{\partial y}, \quad v_i(0, 0, t) = 0, \quad i = 1, 2. \]

This vector field is tangent to the level sets of \(F \), that is,

\[\frac{\partial F}{\partial V} = \frac{\partial F}{\partial t} + v_1(x, y, t) \frac{\partial F}{\partial x} + v_2(x, y, t) \frac{\partial F}{\partial y} = 0 \]

Let

\[\Gamma_t = \{(x, y, t) : \frac{\partial F}{\partial x} = 0\} \]

be the family of polar curves of the family \(F \).
Proof.

From the hypothesis, there exists a Lipschitz vector field

\[
V(x, y, t) = \frac{\partial}{\partial t} + v_1(x, y, t) \frac{\partial}{\partial x} + v_2(x, y, t) \frac{\partial}{\partial y}, \quad v_i(0, 0, t) = 0, \quad i = 1, 2.
\]

This vector field is tangent to the level sets of \(F \), that is,

\[
\frac{\partial F}{\partial V} = \frac{\partial F}{\partial t} + v_1(x, y, t) \frac{\partial F}{\partial x} + v_2(x, y, t) \frac{\partial F}{\partial y} = 0
\]

Let

\[
\Gamma_t = \{(x, y, t) : \frac{\partial F}{\partial x} = 0\}
\]

be the family of polar curves of the family \(F \).
The polar is a family of algebraic curves and may have multiple components. The proof of the theorem in this general case is the most difficult part of the theorem.

We assume Γ_t is reduced and $y = 0$ is not a factor of $\frac{\partial F}{\partial x} = 0$.

In this case, let $a_1(t), \ldots, a_k(t)$ be the roots of

$$\frac{\partial F}{\partial x}(x, 1, t) = 0,$$

(as the degree of $\frac{\partial F}{\partial x}(x, 1, t) = 0$ does not depend on t, the functions $a_i(t)$ are continuous.)
The polar is a family of algebraic curves and may have multiple components. The proof of the theorem in this general case is the most difficult part of the theorem.

We assume Γ_t is reduced and $y = 0$ is not a factor of $\frac{\partial F}{\partial x} = 0$.

In this case, let $a_1(t), \ldots, a_k(t)$ be the roots of

$$\frac{\partial F}{\partial x}(x, 1, t) = 0,$$

(as the degree of $\frac{\partial F}{\partial x}(x, 1, t) = 0$ does not depend on t, the functions $a_i(t)$ are continuous.)
The polar is a family of algebraic curves and may have multiple components. The proof of the theorem in this general case is the most difficult part of the theorem.

We assume Γ_t is reduced and $y = 0$ is not a factor of $\frac{\partial F}{\partial x} = 0$.

In this case, let $a_1(t), \ldots, a_k(t)$ be the roots of

$$\frac{\partial F}{\partial x}(x, 1, t) = 0,$$

(as the degree of $\frac{\partial F}{\partial x}(x, 1, t) = 0$ does not depend on t, the functions $a_i(t)$ are continuous.)
Since $w_1 > w_2$, the parametrization of the branch γ_i of Γ is

$$\gamma_i(s) = (a_i(t)s^{w_1}, s^{w_2}, t), \quad i = 1, \ldots, k.$$
We define the functions $k_1(t), \ldots, k_r(t)$ as

$$k_i(t) = \frac{\partial F}{\partial t} (a_i(t), 1, t) \frac{\partial F}{\partial y} (a_i(t), 1, t)$$

and prove the following proposition:

Proposition

With the above notation $k_i(t) = k_j(t)$, $\forall i, j = 1, \ldots, r$
Proof of the proposition

Notice that on the polar set, we have

\[v_2(x, y, t) = -\frac{\partial F}{\partial t}(x, y, t) - \frac{\partial F}{\partial y}(x, y, t) \]

Comparing \(v_2 \) on two branches of the polar we get

\[\left| \frac{\partial F}{\partial t}(a_i(t)s^{w_1}, s^{w_2}, t) - \frac{\partial F}{\partial t}(a_j(t)s^{w_1}, s^{w_2}, t) \right| = |k_i(t) - k_j(t)||s|^{w_2} \]
On the other hand, since $v_2(x, y, t)$ is Lipschitz, then

$$|v_2(a_i(t)s^{w_1}, s^{w_2}, t) - v_2(a_j(t)s^{w_1}, s^{w_2}, t)| \leq C|s|^{w_1}$$

But $w_1 > w_2$, then we must have $k_i(t) = k_j(t) = k(t)$, and this proves the proposition.
Proof of the theorem (when the family of polar curves is reduced)

Now, for fixed \(t \), the function

\[
\frac{\partial F}{\partial t}(x, y, t) - k(t)y \frac{\partial F}{\partial y}(x, y, t)
\]

is analytic and identically zero on each branch of the polar.

If \(\frac{\partial F}{\partial x} \) is a reduced family of plane curves (without repeated branches) then there exists \(b(x, y, t) \), analytic function such that

\[
\frac{\partial F}{\partial t}(x, y, t) = k(t)y \frac{\partial F}{\partial y} + b(x, y, t) \frac{\partial F}{\partial x}.
\]

We now use the weighted homogeneity of \(F \) to get that the family is analytically trivial.
Proof of the theorem (when the family of polar curves is reduced)

Now, for fixed t, the function

$$\frac{\partial F}{\partial t}(x, y, t) - k(t)y \frac{\partial F}{\partial y}(x, y, t)$$

is analytic and identically zero on each branch of the polar.

If $\frac{\partial F}{\partial x}$ is a reduced family of plane curves (without repeated branches) then there exists $b(x, y, t)$, analytic function such that

$$\frac{\partial F}{\partial t}(x, y, t) = k(t)y \frac{\partial F}{\partial y} + b(x, y, t) \frac{\partial F}{\partial x}.$$

We now use the weighted homogeneity of F to get that the family is analytically trivial.
Problems

We first recall the following result and example:

Theorem

A. Fernandes,—, 2004, [1]: Let $f : \mathbb{K}^n, 0 \to \mathbb{K}, 0$ be the germ of a weighted homogeneous polynomial function of type $(w_1, \ldots, w_n : d)$, $w_n \leq \ldots \leq w_1$ with isolated singularity. Let $f_t(x) = f(x) + t\theta(x, t)$, $t \in [0, 1]$, be a deformation of f. If $\text{fil}(\theta) \geq d + w_1 - w_n$, then f_t is strongly bi-Lipschitz trivial.

Example

The family

$$f_t(x, y) = x^3 - 3t^2xy^{3n-2} + y^{3n}$$

is not strongly bi-Lipschitz trivial. Moreover, Parusinski and Henry’s invariant does not distinguish the elements of the family f_t.
Problems

(1) Prove that the rigidity theorem also holds for deformations

\[f_t(x, y) = f(x, y) + t\theta(x, y), \text{ with } d < \text{fil}(\theta) < d + w_1 - w_n. \]

(2) Investigate the bi-Lipschitz invariance of higher order terms of the asymptotic expansion of \(f \) over the branches of the polar curves.
Problems

(1) Prove that the rigidity theorem also holds for deformations
\[f_t(x, y) = f(x, y) + t\theta(x, y), \]
with \(d < \text{fil}(\theta) < d + w_1 - w_n \).

(2) Investigate the bi-Lipschitz invariance of higher order terms of the
asymptotic expansion of \(f \) over the branches of the polar curves.

