J.J. Nuño-Ballesteros

Joint work with Ton Marar (ICMC-USP)

Universitat de València, SPAIN

Bill Bruce 4 × 15 and Terry Wall 5 × 15

In memory of V. Zakalyukin

June 18–22, 2012

Liverpool
1 Introduction

2 δ_1-minimal surfaces

3 Frontals

4 Local Euler obstruction
Let us consider the plane curve \((Y, 0)\) with the \(E_6\) singularity parameterised as the image of the map germ \(\gamma(v) = (v^3, v^4)\). We want to deform it into a new curve \(\tilde{Y}\) which has only cusps \(A_2\) (i.e., simple cusps) and nodes \(A_1\) (i.e., transverse double points).
Introduction

Let us consider the plane curve \((Y, 0)\) with the \(E_6\) singularity parameterised as the image of the map germ \(\gamma(v) = (v^3, v^4)\). We want to deform it into a new curve \(\tilde{Y}\) which has only cusps \(A_2\) (i.e., simple cusps) and nodes \(A_1\) (i.e., transverse double points).

Consider the mini-versal deformation:

\[
\Gamma(v; a, b, c) = (v^3 + av, v^4 + bv^2 + cv).
\]

Up to coordinate changes, any nearby deformation of \(\gamma\) is obtained from \(\Gamma\) by choosing appropriate coefficients \(a, b, c\).
Let us consider the plane curve \((Y, 0)\) with the \(E_6\) singularity parameterised as the image of the map germ \(\gamma(v) = (v^3, v^4)\). We want to deform it into a new curve \(\tilde{Y}\) which has only cusps \(A_2\) (i.e., simple cusps) and nodes \(A_1\) (i.e., transverse double points).

Consider the mini-versal deformation:

\[
\Gamma(v; a, b, c) = (v^3 + av, v^4 + bv^2 + cv).
\]

Up to coordinate changes, any nearby deformation of \(\gamma\) is obtained from \(\Gamma\) by choosing appropriate coefficients \(a, b, c\).

We find three different types of generic deformations, according to the numbers of cusps or nodes:
The first deformation has 3 nodes and corresponds to the case that:
\[
\left(16a^3 - 48a^2b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]
In fact, the non-vanishing of the 3 factors above prevents the appearance of either: a cusp, a self-tangency or a triple point, respectively.
The first deformation has 3 nodes and corresponds to the case that:

\[
\left(16a^3 - 48a^2 b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2 b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]

In fact, the non-vanishing of the 3 factors above prevents the appearance of either: a cusp, a self-tangency or a triple point, respectively.

The 3 factors can be computed easily by means of resultants:

\[
\text{In[1]:= } p = y^3 + ay; q = y^4 + by^2 + cy; pu = p /. y \rightarrow u; qu = q /. y \rightarrow u;
\]

\[
ecl = \text{Factor}[(p-\text{pu})/(y-u)]; \text{ec2} = \text{Factor}[(q-\text{qu})/(y-u)];
\]

\[
\text{lambda = Resultant[ecl, ec2, u]; Factor[Resultant[lambda, D[lambda, y, y], y]]}
\]

\[
\text{Out[1]= } (a-b)^6 \left(16a^3 - 48a^2 b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2 b + 24ab^2 - 4b^3 + 27c^2\right)^2
\]
The first deformation has 3 nodes and corresponds to the case that:

\[
\left(16a^3 - 48a^2b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]

In fact, the non-vanishing of the 3 factors above prevents the appearance of either: a cusp, a self-tangency or a triple point, respectively.

The 3 factors can be computed easily by means of resultants:

\[
\text{In[1]:= } \text{p = y^3 + ay; q = y^4 + by^2 + cy; pu = p /. y -> u; qu = q /. y -> u;}
\]
\[
\text{ecl = Factor[(p-pu) / (y-u)]; ec2 = Factor[(q-qu) / (y-u)];}
\]
\[
\text{lambda = Resultant[ecl, ec2, u]; Factor[Resultant[lambda, D[lambda, y], y]]}
\]
\[
\text{Out[1]= } (a-b)^6 \left(16a^3 - 48a^2b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right)^2
\]

The second deformation has 2 nodes and 1 cusp and occurs when:

\[
16a^3 - 48a^2b + 36ab^2 + 27c^2 = 0, \quad (c, 2a - 3b) \neq (0, 0),
\]
\[
\left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]
The first deformation has 3 nodes and corresponds to the case that:
\[
\left(16a^3 - 48a^2b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]
In fact, the non-vanishing of the 3 factors above prevents the appearance of either: a cusp, a self-tangency or a triple point, respectively.

The 3 factors can be computed easily by means of resultants:

\[
\text{In[1]:= } p = y^3 + ay; \quad q = y^4 + by^2 + cy; \quad pu = p/.y \to u; \quad qu = q/.y \to u;
\quad e1 = \text{Factor}\left[(p-pu)/(y-u)\right]; \quad e2 = \text{Factor}\left[(q-qu)/(y-u)\right];
\quad lambda = \text{Resultant}[e1, e2, u]; \quad \text{Factor}[\text{Resultant}[lambda, D[lambda, y], y]]
\]

\[
\text{Out[1]= } (a-b)^6 \left(16a^3 - 48a^2b + 36ab^2 + 27c^2\right) \left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right)^2
\]

The second deformation has 2 nodes and 1 cusp and occurs when:
\[
16a^3 - 48a^2b + 36ab^2 + 27c^2 = 0, \quad (c, 2a-3b) \neq (0,0),
\]
\[
\left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]

Finally, the third deformation has 1 node and 2 cusps and is given by:
\[
(c, 2a-3b) = (0,0),
\]
\[
\left(32a^3 - 48a^2b + 24ab^2 - 4b^3 + 27c^2\right) (a-b) \neq 0.
\]
We can embed each deformation in a 1-parameter unfolding:
We can embed each deformation in a 1-parameter unfolding:

- \(f(u, v) = (u, v^3 + uv, v^4 + \beta uv^2) \), \(\beta \neq \frac{2}{3}, 1, 2 \),
We can embed each deformation in a 1-parameter unfolding:

- \(f(u, v) = (u, v^3 + uv, v^4 + \beta uv^2), \beta \neq \frac{2}{3}, 1, 2, \)
- \(f(u, v) = (u, v^3 - 3u^2v, v^4 - 2.5u^2v + u^3v), \)
We can embed each deformation in a 1-parameter unfolding:

- \(f(u, v) = (u, v^3 + uv, v^4 + \beta uv^2), \) \(\beta \neq \frac{2}{3}, 1, 2, \)
- \(f(u, v) = (u, v^3 - 3u^2v, v^4 - 2.5u^2v + u^3v), \)
- \(f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2). \)
We can embed each deformation in a 1-parameter unfolding:

- \(f(u, v) = (u, v^3 + uv, v^4 + \beta uv^2) \), \(\beta \neq \frac{2}{3}, 1, 2 \),
- \(f(u, v) = (u, v^3 - 3u^2v, v^4 - 2.5u^2v + u^3v) \),
- \(f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2) \).

The image of \(f \) is an irreducible surface \((X, 0)\) with 1-dimensional singular set \(\Sigma \).
We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:
We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:

- $\kappa + \nu = 3 = \delta(Y, 0)$, the delta invariant of curve. This is equal also to the multiplicity of the singular set $m_0(\Sigma, 0) = 3$.

We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:

- $\kappa + \nu = 3 = \delta(Y, 0)$, the delta invariant of curve. This is equal also to the multiplicity of the singular set $m_0(\Sigma, 0) = 3$.
- $0 \leq \kappa \leq 2$, the upper bound is $m_0(Y, 0) - 1 = 2$.

\[\]
We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:

- $\kappa + \nu = 3 = \delta(Y, 0)$, the delta invariant of curve. This is equal also to the multiplicity of the singular set $m_0(\Sigma, 0) = 3$.
- $0 \leq \kappa \leq 2$, the upper bound is $m_0(Y, 0) - 1 = 2$.
- $\kappa = 0$ iff the deformation is stable with respect to the \mathcal{A}-equivalence.
We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:

- $\kappa + \nu = 3 = \delta(Y, 0)$, the delta invariant of curve. This is equal also to the multiplicity of the singular set $m_0(\Sigma, 0) = 3$.
- $0 \leq \kappa \leq 2$, the upper bound is $m_0(Y, 0) - 1 = 2$.
- $\kappa = 0$ iff the deformation is stable with respect to the \mathcal{A}-equivalence.
- $\kappa = 2$ iff the deformation is a stable front and it is part of a front type unfolding of the curve.
We denote by κ and ν the number of cusps and nodes respectively of the deformation. We have:

- $\kappa + \nu = 3 = \delta(Y, 0)$, the delta invariant of curve. This is equal also to the multiplicity of the singular set $m_0(\Sigma, 0) = 3$.
- $0 \leq \kappa \leq 2$, the upper bound is $m_0(Y, 0) - 1 = 2$.
- $\kappa = 0$ iff the deformation is stable with respect to the A-equivalence.
- $\kappa = 2$ iff the deformation is a stable front and it is part of a front type unfolding of the curve.

GOAL: Characterize those surfaces $(X, 0)$ which are the total space of an unfolding of a plane curve $(Y, 0)$ with only cusps and nodes and generalize the above formulas.
\(\delta_1 \)-minimal surfaces

Let \((X,0)\) be an irreducible surface in \((\mathbb{C}^3,0)\) with 1-dimensional singular set \(\Sigma\). Given a generic plane \(0 \in H \subset \mathbb{C}^3\), we denote by \(Y = X \cap H\) the transverse slice of \(X\). The delta invariant of \(Y\) does not depend on \(H\) and we denote it by \(\delta_1(X,0) = \delta(Y,0)\), the \textit{transverse delta invariant} of \((X,0)\).
Let \((X,0)\) be an irreducible surface in \((\mathbb{C}^3,0)\) with 1-dimensional singular set \(\Sigma\). Given a generic plane \(0 \in H \subset \mathbb{C}^3\), we denote by \(Y = X \cap H\) the transverse slice of \(X\). The delta invariant of \(Y\) does not depend on \(H\) and we denote it by \(\delta_1(X,0) = \delta(Y,0)\), the transverse delta invariant of \((X,0)\).

Theorem

We have \(\delta_1(X,0) \geq m_0(\Sigma,0)\), with equality iff \((X,0)\) admits a corank 1 parameterisation \(f : (\mathbb{C}^2,0) \rightarrow (\mathbb{C}^3,0)\) such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:
- $(X, 0)$ is δ_1-minimal.
Introduction

δ₁-minimal surfaces

Frontals

Local Euler obstruction

Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:

- $(X, 0)$ is δ_1-minimal.
- $(X, 0)$ admits a corank 1 parameterisation $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:

- $(X, 0)$ is δ_1-minimal.
- $(X, 0)$ admits a corank 1 parameterisation $f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
- $(X, 0)$ is the total space of an unfolding of a plane curve with only cusps and nodes.

\[\begin{align*}
\kappa &= \text{the number of cusps of } Y_t, \text{ for } t \neq 0. \\
\nu &= \text{the number of nodes of } Y_t, \text{ for } t \neq 0.
\end{align*}\]

Obviously, we have $\kappa + \nu = \delta_1(X, 0)$.

J.J. Nuño-Ballesteros

Unfolding plane curves with cusps and nodes
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:

- $(X, 0)$ is δ_1-minimal.
- $(X, 0)$ admits a corank 1 parameterisation $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
- $(X, 0)$ is the total space of an unfolding of a plane curve with only cusps and nodes.

Definition

Given a δ_1-minimal surface $(X, 0)$, we denote:
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:

- $(X, 0)$ is δ_1-minimal.
- $(X, 0)$ admits a corank 1 parameterisation $f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
- $(X, 0)$ is the total space of an unfolding of a plane curve with only cusps and nodes.

Definition

Given a δ_1-minimal surface $(X, 0)$, we denote:

- $\kappa = \text{the number of cusps of } Y_t, \text{ for } t \neq 0$.
Definition

If $\delta_1(X, 0) = m_0(\Sigma, 0)$, then we say that $(X, 0)$ is δ_1-minimal.

They are equivalent:

- $(X, 0)$ is δ_1-minimal.
- $(X, 0)$ admits a corank 1 parameterisation $f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
- $(X, 0)$ is the total space of an unfolding of a plane curve with only cusps and nodes.

Definition

Given a δ_1-minimal surface $(X, 0)$, we denote:

- $\kappa = $ the number of cusps of Y_t, for $t \neq 0$.
- $\nu = $ the number of nodes of Y_t, for $t \neq 0$.Obviously, we have $\kappa + \nu = \delta_1(X, 0)$.

J.J. Nuño-Ballesteros

Unfolding plane curves with cusps and nodes
Introduction

\(\delta_1 \)-minimal surfaces

Frontals

Local Euler obstruction

Definition

If \(\delta_1(X, 0) = m_0(\Sigma, 0) \), then we say that \((X, 0)\) is \(\delta_1 \)-minimal.

They are equivalent:

- \((X, 0)\) is \(\delta_1 \)-minimal.
- \((X, 0)\) admits a corank 1 parameterisation \(f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0) \) such that the only singularities outside the origin are semicubic cuspidal edges and transverse double points.
- \((X, 0)\) is the total space of an unfolding of a plane curve with only cusps and nodes.

Definition

Given a \(\delta_1 \)-minimal surface \((X, 0)\), we denote:

- \(\kappa \) = the number of cusps of \(Y_t \), for \(t \neq 0 \).
- \(\nu \) = the number of nodes of \(Y_t \), for \(t \neq 0 \).

Obviously, we have \(\kappa + \nu = \delta_1(X, 0) \).
If \((X, 0)\) is \(\delta_1\)-minimal and \(f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)\) is the corank 1 parameterisation, after linear change of coordinates in \(\mathbb{C}^3\) and reparametrisation, we can assume

\[
f(u, v) = (u, p(u, v), q(u, v)),
\]

for some functions \(p, q \in m_2\). Then, the generic plane \(H\) is given by \(x = 0\) and \(\gamma_t(v) = (p(t, v), q(t, v))\) is the parameterisation of the deformation \(Y_t\).
If \((X, 0)\) is \(\delta_1\)-minimal and \(f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)\) is the corank 1 parameterisation, after linear change of coordinates in \(\mathbb{C}^3\) and reparametrisation, we can assume

\[f(u, v) = (u, p(u, v), q(u, v)), \]

for some functions \(p, q \in m_2\). Then, the generic plane \(H\) is given by \(x = 0\) and \(\gamma_t(v) = (p(t, v), q(t, v))\) is the parameterisation of the deformation \(Y_t\).

Proposition

We have \(0 \leq \kappa \leq m_0(X, 0) - 1\). Moreover, they are equivalent:
If \((X, 0)\) is \(\delta_1\)-minimal and \(f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)\) is the corank 1 parameterisation, after linear change of coordinates in \(\mathbb{C}^3\) and reparametrisation, we can assume

\[
f(u, v) = (u, p(u, v), q(u, v)),
\]

for some functions \(p, q \in m_2\). Then, the generic plane \(H\) is given by \(x = 0\) and \(\gamma_t(v) = (p(t, v), q(t, v))\) is the parameterisation of the deformation \(Y_t\).

Proposition

We have \(0 \leq \kappa \leq m_0(X, 0) - 1\). Moreover, they are equivalent:

- \(\kappa = 0\).
If \((X, 0)\) is \(\delta_1\)-minimal and \(f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)\) is the corank 1 parameterisation, after linear change of coordinates in \(\mathbb{C}^3\) and reparametrisation, we can assume

\[f(u, v) = (u, p(u, v), q(u, v)),\]

for some functions \(p, q \in \mathfrak{m}_2\). Then, the generic plane \(H\) is given by \(x = 0\) and \(\gamma_t(v) = (p(t, v), q(t, v))\) is the parameterisation of the deformation \(Y_t\).

Proposition

We have \(0 \leq \kappa \leq m_0(X, 0) - 1\). Moreover, they are equivalent:

- \(\kappa = 0\).
- \(f : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)\) is finitely determined with respect to the \(\mathcal{A}\)-equivalence.
If \((X, 0)\) is \(\delta_1\)-minimal and \(f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)\) is the corank 1 parameterisation, after linear change of coordinates in \(\mathbb{C}^3\) and reparametrisation, we can assume

\[
f(u, v) = (u, p(u, v), q(u, v)),
\]

for some functions \(p, q \in m_2\). Then, the generic plane \(H\) is given by \(x = 0\) and \(\gamma_t(v) = (p(t, v), q(t, v))\) is the parameterisation of the deformation \(Y_t\).

Proposition

We have \(0 \leq \kappa \leq m_0(X, 0) - 1\). Moreover, they are equivalent:

- \(\kappa = 0\).
- \(f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}^3, 0)\) is finitely determined with respect to the \(\mathcal{A}\)-equivalence.
- For each \(t \neq 0\), \(\gamma_t\) is stable with respect to the \(\mathcal{A}\)-equivalence.
Consider the projectivized cotangent bundle $PT^*\mathbb{C}^{n+1}$ with the canonical contact structure and denote the projection by $\pi : PT^*\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$.
Consider the projectivized cotangent bundle $PT^*\mathbb{C}^{n+1}$ with the canonical contact structure and denote the projection by $\pi : PT^*\mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$.

By definition, a hypersurface singularity $(X, 0)$ in $(\mathbb{C}^{n+1}, 0)$ is called a front if it is the image of a composition of π with a Legendrian embedding L:

$$(\mathbb{C}^n, 0) \xrightarrow{L} (PT^*\mathbb{C}^{n+1}, ([\nu_0]; 0)) \xrightarrow{\pi} (\mathbb{C}^{n+1}, 0).$$

If we do not assume that L is an embedding, but we just suppose it is Legendrian, then $(X, 0)$ is said to be a frontal (in Zakalyukin’s terminology). By abuse of language, we also use the word frontal for the map germ $f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^{n+1}, 0)$.
Consider the projectivized cotangent bundle $PT^*\mathbb{C}^{n+1}$ with the canonical contact structure and denote the projection by $\pi : PT^*\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$.

By definition, a hypersurface singularity $(X, 0)$ in $(\mathbb{C}^{n+1}, 0)$ is called a *front* if it is the image of a composition of π with a Legendrian embedding \mathcal{L}:

$$(\mathbb{C}^n, 0) \xrightarrow{\mathcal{L}} (PT^*\mathbb{C}^{n+1}, ([\nu_0]; 0)) \xrightarrow{\pi} (\mathbb{C}^{n+1}, 0).$$

This means that there is a holomorphic map germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$ and a holomorphic vector field $\nu : (\mathbb{C}^n, 0) \to \mathbb{C}^{n+1} \setminus \{0\}$ such that

$$\det(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, \nu) = 0.$$
Consider the projectivized cotangent bundle $PT^*\mathbb{C}^{n+1}$ with the canonical contact structure and denote the projection by $\pi : PT^*\mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$.

By definition, a hypersurface singularity $(X, 0)$ in $(\mathbb{C}^{n+1}, 0)$ is called a front if it is the image of a composition of π with a Legendrian embedding L:

$$(\mathbb{C}^n, 0) \xrightarrow{\mathcal{L}} (PT^*\mathbb{C}^{n+1}, ([\nu]; 0)) \xrightarrow{\pi} (\mathbb{C}^{n+1}, 0).$$

This means that there is a holomorphic map germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$ and a holomorphic vector field $\nu : (\mathbb{C}^n, 0) \to \mathbb{C}^{n+1} \setminus \{0\}$ such that

$$\det(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}, \nu) = 0.$$

If we do not assume that \mathcal{L} is an embedding, but we just suppose it is Legendrian, then $(X, 0)$ is said to be a frontal (in Zakalyukin’s terminology). By abuse of language, we also use the word frontal for the map germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$.
Proposition

Let \((X, 0)\) be a hypersurface in \((\mathbb{C}^{n+1}, 0)\) parameterised by a corank 1 map germ \(f(u, v) = (u, p(u, v), q(u, v))\). Then \((X, 0)\) is a frontal iff either \(p_v|q_v\) or \(q_v|p_v\).
Proposition

Let \((X, 0)\) be a hypersurface in \((\mathbb{C}^{n+1}, 0)\) parameterised by a corank 1 map germ \(f(u, v) = (u, p(u, v), q(u, v))\). Then \((X, 0)\) is a frontal iff either \(p_v|q_v\) or \(q_v|p_v\).

Example

Any irreducible plane curve \((Y, 0)\) is a frontal.

The swallowtail \(f(u, v) = (u, v^3 + uv, v^4 + 2^3uv^2)\) is a frontal.

The cross-cap \(f(u, v) = (u, v^2, uv)\) is not a frontal.
Proposition

Let \((X, 0)\) be a hypersurface in \((\mathbb{C}^{n+1}, 0)\) parameterised by a corank 1 map germ \(f(u, v) = (u, p(u, v), q(u, v))\). Then \((X, 0)\) is a frontal iff either \(p_v|q_v\) or \(q_v|p_v\).

Example

- Any irreducible plane curve \((Y, 0)\) is a frontal.
Proposition

Let $(X, 0)$ be a hypersurface in $(\mathbb{C}^{n+1}, 0)$ parameterised by a corank 1 map germ $f(u, v) = (u, p(u, v), q(u, v))$. Then $(X, 0)$ is a frontal iff either $p_v|q_v$ or $q_v|p_v$.

Example

- Any irreducible plane curve $(Y, 0)$ is a frontal.
- The swallowtail $f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2)$ is a frontal.
Proposition

Let \((X, 0)\) be a hypersurface in \((\mathbb{C}^{n+1}, 0)\) parameterised by a corank 1 map germ \(f(u, v) = (u, p(u, v), q(u, v))\). Then \((X, 0)\) is a frontal iff either \(p_v|q_v\) or \(q_v|p_v\).

Example

- Any irreducible plane curve \((Y, 0)\) is a frontal.
- The swallowtail \(f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2)\) is a frontal.
- The cross-cap \(f(u, v) = (u, v^2, uv)\) is not a frontal.
Proposition

Let $(X, 0)$ be a hypersurface in $(\mathbb{C}^{n+1}, 0)$ parameterised by a corank 1 map germ $f(u, v) = (u, p(u, v), q(u, v))$. Then $(X, 0)$ is a frontal iff either $p_v|q_v$ or $q_v|p_v$.

Example

- Any irreducible plane curve $(Y, 0)$ is a frontal.
- The swallowtail $f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2)$ is a frontal.
- The cross-cap $f(u, v) = (u, v^2, uv)$ is not a frontal.

We recall that a map germ $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$ is said to be \mathcal{A}-stable if any unfolding is trivial. The same is true for multigerms.
Proposition

Let \((X, 0)\) be a hypersurface in \((\mathbb{C}^{n+1}, 0)\) parameterised by a corank 1 map germ \(f(u, v) = (u, p(u, v), q(u, v))\). Then \((X, 0)\) is a frontal iff either \(p_v | q_v\) or \(q_v | p_v\).

Example

- Any irreducible plane curve \((Y, 0)\) is a frontal.
- The swallowtail \(f(u, v) = (u, v^3 + uv, v^4 + \frac{2}{3}uv^2)\) is a frontal.
- The cross-cap \(f(u, v) = (u, v^2, uv)\) is not a frontal.

We recall that a map germ \(f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^p, 0)\) is said to be \(\mathcal{A}\)-stable if any unfolding is trivial. The same is true for multigerms.

By the Mather-Gaffney geometric criterion, a map germ \(f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^p, 0)\) with \(n < p\) is \(\mathcal{A}\)-finite if and only if there is a proper representative \(f : U \rightarrow V\) such that \(f^{-1}(0) = \{0\}\) and the multigerm at any point \(y \in V \setminus \{0\}\) is \(\mathcal{A}\)-stable.
By analogy with these definitions we have:

Definition

We say that a frontal $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$ is \mathcal{F}-stable if any frontal unfolding of f is trivial. The same definition is also valid for multigerms.
By analogy with these definitions we have:

Definition

We say that a frontal $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$ is \mathcal{F}-stable if any frontal unfolding of f is trivial. The same definition is also valid for multigerms.

Definition

We say that a frontal $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0)$ is \mathcal{F}-finite if there is a proper representative $f : U \to V$ such that $f^{-1}(0) = \{0\}$ and the multigerm at any point $y \in V \setminus \{0\}$ is \mathcal{F}-stable.
By analogy with these definitions we have:

Definition

We say that a frontal \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0) \) is \(\mathcal{F} \)-**stable** if any frontal unfolding of \(f \) is trivial. The same definition is also valid for multigerms.

Definition

We say that a frontal \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0) \) is \(\mathcal{F} \)-**finite** if there is a proper representative \(f : U \to V \) such that \(f^{-1}(0) = \{0\} \) and the multigerm at any point \(y \in V \setminus \{0\} \) is \(\mathcal{F} \)-stable.

The \(\mathcal{F} \)-stable singularities of a frontal curve \((Y, 0)\) are cusps and nodes. It is \(\mathcal{F} \)-finite iff it has isolated singularity.
By analogy with these definitions we have:

Definition

We say that a frontal \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0) \) is \(\mathcal{F} \)-**stable** if any frontal unfolding of \(f \) is trivial. The same definition is also valid for multigerms.

Definition

We say that a frontal \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n+1}, 0) \) is \(\mathcal{F} \)-**finite** if there is a proper representative \(f : U \to V \) such that \(f^{-1}(0) = \{0\} \) and the multigerm at any point \(y \in V \setminus \{0\} \) is \(\mathcal{F} \)-stable.

The \(\mathcal{F} \)-stable singularities of a frontal curve \((Y, 0) \) are cusps and nodes. It is \(\mathcal{F} \)-finite iff it has isolated singularity.

The \(\mathcal{F} \)-stable singularities of a frontal surface \((X, 0) \) are either generic fronts (described by [Arnold, Uspehi Mat. Nauk '75] and [Zakalyukin, Funct. Anal. Appl. '76]) or the folded umbrella ([Ishikawa, Asian J. Math. '05]).
As a consequence, a frontal surface \((X, 0)\) is \(\mathcal{F}\)-finite iff it the only singularities outside the origin are transverse double points or semicubic cuspidal edges.
As a consequence, a frontal surface \((X, 0)\) is \(F\)-finite iff it the only singularities outside the origin are transverse double points or semicubic cuspidal edges. Recall that if \((X, 0)\) is \(\delta_1\)-minimal then \(0 \leq \kappa \leq m_0(X, 0) - 1\), where \(\kappa\) is the number of cusps.
As a consequence, a frontal surface \((X, 0)\) is \(F\)-finite iff it the only singularities outside the origin are transverse double points or semicubic cuspidal edges.

Recall that if \((X, 0)\) is \(\delta_1\)-minimal then \(0 \leq \kappa \leq m_0(X, 0) - 1\), where \(\kappa\) is the number of cusps.

Proposition

They are equivalent:

\[(X, 0)\] is \(\delta_1\)-minimal with \(\kappa = m_0(X, 0) - 1\).
\[(X, 0)\] is a corank 1 \(F\)-finite frontal surface.
\[(X, 0)\] is the total space of a \(F\)-stabilization of a frontal curve.
As a consequence, a frontal surface \((X, 0)\) is \(\mathcal{F}\)-finite iff it the only singularities outside the origin are transverse double points or semicubic cuspidal edges.

Recall that if \((X, 0)\) is \(\delta_1\)-minimal then \(0 \leq \kappa \leq m_0(X, 0) - 1\), where \(\kappa\) is the number of cusps.

Proposition

They are equivalent:

1. \((X, 0)\) is \(\delta_1\)-minimal with \(\kappa = m_0(X, 0) - 1\).*
As a consequence, a frontal surface \((X, 0)\) is \(F\)-finite iff the only singularities outside the origin are transverse double points or semicubic cuspidal edges.

Recall that if \((X, 0)\) is \(\delta_1\)-minimal then \(0 \leq \kappa \leq m_0(X, 0) - 1\), where \(\kappa\) is the number of cusps.

Proposition

They are equivalent:

- \((X, 0)\) is \(\delta_1\)-minimal with \(\kappa = m_0(X, 0) - 1\).
- \((X, 0)\) is a corank 1 \(F\)-finite frontal surface.*
As a consequence, a frontal surface \((X, 0)\) is \(\mathcal{F}\)-finite iff it the only singularities outside the origin are transverse double points or semicubic cuspidal edges.

Recall that if \((X, 0)\) is \(\delta_1\)-minimal then \(0 \leq \kappa \leq m_0(X, 0) - 1\), where \(\kappa\) is the number of cusps.

Proposition

They are equivalent:

- \((X, 0)\) is \(\delta_1\)-minimal with \(\kappa = m_0(X, 0) - 1\).
- \((X, 0)\) is a corank 1 \(\mathcal{F}\)-finite frontal surface.
- \((X, 0)\) is the total space of a \(\mathcal{F}\)-stabilization of a frontal curve.
Local Euler obstruction

The local Euler obstruction was first introduced by [MacPherson, Ann Math. '74] in the construction of characteristic classes of singular algebraic varieties. Here we prefer to use the approach of [Lê-Teissier, Ann. Math. '81] in terms of polar multiplicities:

\[
\text{Eu}(V, 0) = \sum_{i=0}^{d-1} (-1)^i m_i(V, 0),
\]

where \((V, 0) \) is a \(d \)-dimensional complex analytic set germ and \(m_i(V, 0) \) denotes the \(i \)th-polar multiplicity. In particular, for a surface \((X, 0) \),

\[
\text{Eu}(X, 0) = m_0(X, 0) - m_1(X, 0).
\]
The local Euler obstruction was first introduced by [MacPherson, Ann Math. '74] in the construction of characteristic classes of singular algebraic varieties. Here we prefer to use the approach of [Lê-Teissier, Ann. Math. '81] in terms of polar multiplicities:

$$\text{Eu}(V, 0) = \sum_{i=0}^{d-1} (-1)^i m_i(V, 0),$$

where \((V, 0)\) is a \(d\)-dimensional complex analytic set germ and \(m_i(V, 0)\) denotes the \(i\)th-polar multiplicity. In particular, for a surface \((X, 0)\),

$$\text{Eu}(X, 0) = m_0(X, 0) - m_1(X, 0).$$

Moreover, if \((X, 0)\) has 1-dimensional singular set \(\Sigma\), then we can use a formula due to [Brasselet-Lê-Seade, Topology '00]:

$$\text{Eu}(X, 0) = \chi(Y_t) - m + \sum_{i=1}^{m} \text{Eu}(X, x_i),$$

for \(t \neq 0\), where \(Y_t = X \cap H_t\), \(Y_t \cap \Sigma = \{x_1, \ldots, x_m\}\).
Theorem

Let \((X, 0)\) be a \(\delta_1\)-minimal surface with \(\kappa = \# \) of cusps. Then,

\[
\text{Eu}(X, 0) = 1 + \kappa.
\]

In particular, \(1 \leq \text{Eu}(X, 0) \leq m_0(X, 0)\).

J.J. Nuño-Ballesteros

Unfolding plane curves with cusps and nodes
Theorem

Let \((X, 0)\) be a \(\delta_1\)-minimal surface with \(\kappa = \#\) of cusps. Then,

\[
\text{Eu}(X, 0) = 1 + \kappa.
\]

In particular, \(1 \leq \text{Eu}(X, 0) \leq m_0(X, 0)\).

Corollary

Let \((X, 0) \subset (\mathbb{C}^3, 0)\) be an irreducible surface with 1-dimensional singular locus. Then,
Theorem

Let \((X, 0)\) be a \(\delta_1\)-minimal surface with \(\kappa = \# \) of cusps. Then,

\[
\text{Eu}(X, 0) = 1 + \kappa.
\]

In particular, \(1 \leq \text{Eu}(X, 0) \leq m_0(X, 0)\).

Corollary

Let \((X, 0) \subset (\mathbb{C}^3, 0)\) be an irreducible surface with 1-dimensional singular locus. Then,

\((X, 0) \) is the image of a corank 1 \(\mathcal{A}\)-finite map germ iff it is \(\delta_1\)-minimal and \(\text{Eu}(X, 0) = 1\).
Theorem

Let \((X, 0)\) be a \(\delta_1\)-minimal surface with \(\kappa = \#\) of cusps. Then,

\[
\text{Eu}(X, 0) = 1 + \kappa.
\]

In particular, \(1 \leq \text{Eu}(X, 0) \leq m_0(X, 0)\).

Corollary

Let \((X, 0) \subset (\mathbb{C}^3, 0)\) be an irreducible surface with 1-dimensional singular locus. Then,

1. \((X, 0)\) is the image of a corank 1 \(\mathcal{A}\)-finite map germ iff it is \(\delta_1\)-minimal and \(\text{Eu}(X, 0) = 1\).
2. \((X, 0)\) is the image of a corank 1 \(\mathcal{F}\)-finite frontal iff it is \(\delta_1\)-minimal and \(\text{Eu}(X, 0) = m_0(X, 0)\).
Theorem

Let \((X, 0)\) be a \(\delta_1\)-minimal surface with \(\kappa = \#\) of cusps. Then,

\[\text{Eu}(X, 0) = 1 + \kappa. \]

In particular, \(1 \leq \text{Eu}(X, 0) \leq m_0(X, 0).\)

Corollary

Let \((X, 0) \subset (\mathbb{C}^3, 0)\) be an irreducible surface with 1-dimensional singular locus. Then,

1. \((X, 0)\) is the image of a corank 1 \(\mathcal{A}\)-finite map germ iff it is \(\delta_1\)-minimal and \(\text{Eu}(X, 0) = 1.\)

2. \((X, 0)\) is the image of a corank 1 \(\mathcal{F}\)-finite frontal iff it is \(\delta_1\)-minimal and \(\text{Eu}(X, 0) = m_0(X, 0).\)

It was showed in [Jorge-Pérez & Saia, Int. J. Math. '06] that if \((X, 0)\) is the image of a corank 1 \(\mathcal{A}\)-finite map germ, then \(\text{Eu}(X, 0) = 1.\)
For a curve \((Y, 0) \subset (\mathbb{C}^N, 0)\), we introduced in [Nuño & Tomazella, BLMS '08]:

\[
m_1(Y, 0) := \mu(\ell|_{(Y, 0)}),
\]

where \(\ell : \mathbb{C}^N \to \mathbb{C}\) is a generic linear form and \(\mu(\ell|_{(Y, 0)})\) is the Milnor number in the sense of [Mond & van Straten, JLMS '01]. Then, we showed:

\[
m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1,
\]

where \(\mu(Y, 0)\) is the Milnor number [Buchweitz & Greuel, Invent. Math. '80].
For a curve \((Y, 0) \subset (\mathbb{C}^N, 0)\), we introduced in [Nuño & Tomazella, BLMS '08]:

\[
m_1(Y, 0) := \mu(\ell|_{(Y, 0)}),
\]

where \(\ell : \mathbb{C}^N \to \mathbb{C}\) is a generic linear form and \(\mu(\ell|_{(Y, 0)})\) is the Milnor number in the sense of [Mond & van Straten, JLMS '01]. Then, we showed:

\[
m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1,
\]

where \(\mu(Y, 0)\) is the Milnor number [Buchweitz & Greuel, Invent. Math. '80].

Proposition

Let \((X, 0)\) be the total space of an unfolding of a curve \((Y, 0)\). Then for \(t \neq 0\),

\[
m_1(X, 0) = m_1(Y, 0) - \sum_{x \in S(Y_t)} m_1(Y_t, x).
\]
For a curve $(Y, 0) \subset (\mathbb{C}^N, 0)$, we introduced in [Nuño & Tomazella, BLMS '08]:

$$m_1(Y, 0) := \mu(\ell|_{(Y, 0)}),$$

where $\ell : \mathbb{C}^N \to \mathbb{C}$ is a generic linear form and $\mu(\ell|_{(Y, 0)})$ is the Milnor number in the sense of [Mond & van Straten, JLMS '01]. Then, we showed:

$$m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1,$$

where $\mu(Y, 0)$ is the Milnor number [Buchweitz & Greuel, Invent. Math. '80].

Proposition

Let $(X, 0)$ be the total space of an unfolding of a curve $(Y, 0)$. Then for $t \neq 0$,

$$m_1(X, 0) = m_1(Y, 0) - \sum_{x \in S(Y_t)} m_1(Y_t, x).$$

Corollary

They are equivalent:
For a curve \((Y, 0) \subset (\mathbb{C}^N, 0)\), we introduced in [Nuño & Tomazella, BLMS '08]:

\[m_1(Y, 0) := \mu(\ell|_{(Y, 0)}), \]

where \(\ell : \mathbb{C}^N \to \mathbb{C}\) is a generic linear form and \(\mu(\ell|_{(Y, 0)})\) is the Milnor number in the sense of [Mond & van Straten, JLMS '01]. Then, we showed:

\[m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1, \]

where \(\mu(Y, 0)\) is the Milnor number [Buchweitz & Greuel, Invent. Math. '80].

Proposition

Let \((X, 0)\) be the total space of an unfolding of a curve \((Y, 0)\). Then for \(t \neq 0\),

\[m_1(X, 0) = m_1(Y, 0) - \sum_{x \in S(Y_t)} m_1(Y_t, x). \]

Corollary

They are equivalent:

- \(m_1(X, 0) = 0\).
For a curve \((Y, 0) \subset (\mathbb{C}^N, 0)\), we introduced in [Nuño & Tomazella, BLMS ’08]:

\[m_1(Y, 0) := \mu(\ell|_{(Y, 0)}), \]

where \(\ell : \mathbb{C}^N \to \mathbb{C}\) is a generic linear form and \(\mu(\ell|_{(Y, 0)})\) is the Milnor number in the sense of [Mond & van Straten, JLMS ’01]. Then, we showed:

\[m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1, \]

where \(\mu(Y, 0)\) is the Milnor number [Buchweitz & Greuel, Invent. Math. ’80].

Proposition

Let \((X, 0)\) be the total space of an unfolding of a curve \((Y, 0)\). Then for \(t \neq 0\),

\[m_1(X, 0) = m_1(Y, 0) - \sum_{x \in S(Y_t)} m_1(Y_t, x). \]

Corollary

They are equivalent:

- \(m_1(X, 0) = 0\).
- The unfolding is \(m_1\)-constant.
For a curve \((Y, 0) \subset (\mathbb{C}^N, 0)\), we introduced in [Nuño & Tomazella, BLMS '08]:

\[m_1(Y, 0) := \mu(\ell|_{(Y, 0)}), \]

where \(\ell : \mathbb{C}^N \to \mathbb{C}\) is a generic linear form and \(\mu(\ell|_{(Y, 0)})\) is the Milnor number in the sense of [Mond & van Straten, JLMS '01]. Then, we showed:

\[m_1(Y, 0) = \mu(Y, 0) + m_0(Y, 0) - 1, \]

where \(\mu(Y, 0)\) is the Milnor number [Buchweitz & Greuel, Invent. Math. '80].

Proposition

Let \((X, 0)\) be the total space of an unfolding of a curve \((Y, 0)\). Then for \(t \neq 0\),

\[m_1(X, 0) = m_1(Y, 0) - \sum_{x \in S(Y_t)} m_1(Y_t, x). \]

Corollary

They are equivalent:

- \(m_1(X, 0) = 0.\)
- The unfolding is \(m_1\)-constant.
- \((X, 0)\) is a frontal (in the hypersurface case \(N = 2\)).