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Chapter 2

Classical relativistic point

particles

In this chapter we revise classical relativistic point particles and set out our

conventions and notation. Readers familiar with this material can skip through

the chapter and use it as a reference when needed.

2.1 Minkowski Space

According to Einstein’s theory of special relativity, space and time are com-

bined into spacetime, which is modelled by Minkowski space M.1 The elements

P,Q, . . . ∈M are events, which combine a moment of time with a position. We

leave the dimensionD of spacetime unspecified. D-dimensional Minkowski space

M = MD is the D-dimensional affine space associated with the D-dimensional

vector space RD. The difference between an affine space (or point space) and a

vector space is that an affine space has no distinguished origin. In contrast in

the vector space RD we have the distinguished zero vector ~0 ∈ RD, which is the

neutral element of vector addition. Vectors x ∈ RD do not naturally correspond

to points P ∈MD, but to displacements relating a point P to another point Q

x =
−−→
PQ .

1 For brevity’s sake we will use ‘Minkowksi space’ instead of ‘Minkowski spacetime.’

5
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But we can use the vector space RD to introduce linear coordinates on the

point space MD by chosing a point O ∈ MD and declaring it the origin of our

coordinate system. Then points are in one-to-one correspondence with position

vectors:

xP =
−−→
OP ,

and displacements correspond to differences of position vectors:

−−→
PQ =

−−→
OQ−

−−→
OP .

While position vectors depend on a choice of origin, displacements are indepen-

dent of this choice. This reflects that Minkowski space has translation symmetry.

Having fixed an origin O, we can refer to points in Minkowski space in terms

of their position vectors. The components xµ, µ = 0, 1, . . . , D = 1 of vectors

x ∈ RD provide linear coordinates on M. The coordinate x0 is related to the

time t, measured by an ‘inertial’, that is force-free, or freely falling observer, by

x0 = ct. We set the speed of light c to unity, c = 1, so that x0 = t. The remain-

ing coordinates xi, i = 1, . . . , D = 1 can be combined into a (D− 1)-component

vector ~x = (xi). The components xi parametrize space, as seen by the inertial

observer.

In special relativity, the vector space RD is endowed with the indefinite

scalar product

x · y = ηµνx
µyν ,

with Gram matrix

η = (ηµν) =

(
−1 0

0 1D−1

)
. (2.1)

Inertial observes are required to use linear coordinates which are orthonormal

with respect to this scalar product, that is, inertial frames are η-orthonormal

frames.

Observe that we have chosen the ‘mostly plus’ convention, while part of the

literature uses the ‘mostly minus’ convention, where the Gram matrix is multi-

plied by −1. We are using the index notation common in the physics literature,

including Einstein’s summation convention. It is understood that we have iden-

tified the vector space V = RD with its dual V ∗ using the Minkowski metric.

Thus a vector x has contravariant coordinates xµ and covariant coordinates xµ

which are related by ‘raising and lowering indices’ xµ = ηµνx
ν , and xµ = ηµνxµ.
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For reference, we also list the corresponding line element.

ds2 = ηµνdx
µdxν = −dt2 + d~x2 . (2.2) Mink_Line_Element

One can, and in many applications does, make use of other, curvilinear coordi-

nate systems, such as spherical or cylindrical coordinates. But η-orthonormal

coordinates are distinguished by the above standard form of the metric. The

most general class of transformations which preserve this form are the Poincaré

transformations

xµ → Λµνx
ν + aµ ,

where Λ = (Λµν) is an invertible D ×D matrix satisfying

ΛT ηΛ = η ,

and where a = (aµ) ∈ RD. The matrices Λ describe Lorentz transforma-

tions, which are the most general linear transformations preserving the met-

ric. They contain rotations together with ‘Lorentz boosts’, which relate iner-

tial frames travelling a constant velocity relative to each other. The Lorentz

transformations form a six-dimensional Lie group, called the Lorentz group

O(1, D−1). Elements Λ ∈ O(1, D−1) have determinant det Λ = ±1, and satisfy

|Lambda0
0| ≥ 1. The matrices with det Λ = 1 form a subgroup SO(1, D − 1).

This subgroup still has two connected component, since Λ0
0 ≥ 1 or Λ0

0 ≤ −1.

The component containing the unit matrix 1 ∈ O(1, D − 1) is connected and

denoted SO0(1, D − 1). This is the Lie group obtained by exponentiating the

corresponding Lie algebra so(1, D − 1).

The Lorentz group and translation group combine into the Poincaré group,

or inhomogeneous Lorentz group, IO(1, D − 1), which is a ten-dimensional Lie

group. Note that since Lorentz transformations and translations do not com-

mute, the Poincaré group is not a direct product. The composition law

(Λ, a) ◦ (Λ′, a′) = (ΛΛ′, a+ Λa′)

shows that the Lorentz group operates on the translation group. More precisely,

the translation group RD happens to be a vector space, on which O(1, D − 1)

acts by its fundamental representation. The Poincaré group is the semi-direct

product of the Lorentz and translation group,

IO(1, D − 1) = O(1, D − 1) nRD .
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Since the Minkowski metric (
Mink_Line_Element
2.2 is defined by an indefinite scalar product, the

distance-squared between events can be positive, zero or negative. This carries

information about the causal structure of spacetime. Vectors are classified as

time-like, light-like (or null), or space-like according to their norm-squared:

x time-like ⇔ x · x < 0 ,

x light-like ⇔ x · x = 0 ,

x space-like ⇔ x · x > 0 .

Then, if x =
−−→
PQ is the displacement between between two events, then these

events are called time-like, light-like or space-like relative to each other, depend-

ing on x. The zero-component of x carries the information whether P is later

than Q (x0 > 0), or simultanous with Q (x0 = 0) or earlier than Q (x0 < 0),

relative to a given Lorentz frame. If we fix the orientation of space and the

direction of space, Lorentz frames are related by proper orthochronous Poincaré

transformations, (Λ, a) ∈ SO0(1, D − 1) n RD. Under these transformations

the temporal order of events is invariant, if and only if the events are time-like

or light-like relative to each other. In contrast, the events that are relatively

space-like can be put in any relative order by applying these transformations.

This reflects that signals propagating with superluminal speed are not consis-

tent with ‘causality’, that is the ideat that the past can influence the future but

not the other way round: events which are time-like, light-like and space-like

relative to one another are connected by straight lines corresponding to signals

propagating with subluminal, luminal and superluminal speed, respectively.

2.2 Particles

The particle concept assumes that there are situations where matter can be

modelled (possibly only approximately) as a system of extensionless mathemat-

ical points. The motion of such a point particle, or particle for short, is described

by a parametrized curve, called the world-line. If we restrict ourselves to iner-

tial frames, it is natural to choose the coordinate time t as the curve parameter.

Then the worldline of the particle is a parametrized curve

C : I →M : t 7→ x(t) = (xµ(t)) = (t, ~x(t)) , (2.3)
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where I ⊂ R is the interval in time for which the particle is observed (I = R is

included as a limiting case).

The velocity of the particle relative to the given inertial frame is

~v =
d~x

dt
. (2.4)

Particles are equipped with an inertial mass m, which characterizes their resis-

tance against a change of velocity. It is a standard result of special relativity

that for particles with m > 0 the velocity is bound to be v =
√
~v · ~v < 1

(remember that we set c = 1). In special relativity it is consistent to admit

particles with m = 0, which then must have speed v = 1. Particles propagating

with v > 1 would have m2 < 0 and are excluded by the causality postulate.

Geometrically, massive and massless particles have time-like-like and light-like

world lines, respectively. Here we call a curve time-like, light-like or space-like,

if its tangent vector field is time-like, light-like or space-like, respectively.

Under Lorentz transformations, a description of particle motion in terms of

t and ~v is not covariant, as both quantites are not Lorentz tensors. For massive

particles one can use the proper time τ instead of the coordinate time t as a

natural curve parameter. The proper time is the time measured on a clock

attached to the particle. It is assumed that this clock has at any given moment

the same rate as a non-accelerated clock in the inertial frame where the particle

is momenarily at rest. Infinitesimally the relation between proper time and

coordinate time is

[−dt2 + d~x2]|C = −dτ2 ⇒ dτ = dt
√

1− ~v 2 ,

where as indicated the line element has been evaluated on the worldline C, and

we have chosen proper time and coordinate time to have the same direction. The

relation between finite intervals of proper time and coordinate time is found by

integration:

τ2 − τ1 =

∫ t2

t1

dt
√

1− ~v 2 . (2.5)

If we synchronize proper time and coordinate time at τ = t = 0, this implies

τ(t) =

∫ t

0

dt′
√

1− ~v 2 .

The proper time is by construction Lorentz invariant, as might also be checked

by explicit computation. Geometrically, it corresponds to the ‘length’ of the
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world line C, as we will discuss below. For massless particles, which move with

the speed of light, we cannot define a proper time, because there is no inertial

frame relative to which a massless particle can be momentarily at rest. We will

come back to massless particles later when we discuss the use of arbitrary curve

parameters.

A manifestly covariant formulation of relativistic mechanics is obtained by

starting with the Lorentz vector xµ and the Lorentz scalar τ . Further Lorentz

tensors arise by differentiation. The relativistic velocity is defined by

ẋµ =
dxµ

dτ
=

(
dt

dτ
,
d~x

dt

dt

dτ

)
=

1√
1− ~v 2

(1, ~v) . (2.6)

Note that relativistic velocity is normalised by construction:

ẋµẋµ = −1 . (2.7)

Geometrically, ẋ = (ẋµ) is the tangent vector to the world line C. Since its

norm-squared is negative, the worldline of a massive particle is time-like. This

corresponds to the particle propagating with a speed smaller than the speed

of light. Since the norm-squared of the tangent vector is constant along the

curve, the proper time is what is called an affine curve parameter. Such curve

parameters are unique up to affine transformations, τ 7→ aτ +b, a, b ∈ R, a 6= 0.

The proper time τ is further distinguished among affine curve parameters, since

the tangent vector is normalized specifically to minus unity.

By further differentiation we obtain the relativistic acceleration,

aµ = ẍµ .

One central postulate of mechanics is that force-free particles are unaccelerated

relative to inertial frames.

The relativistic momentum of a particle is

pµ = mẋµ = (p0, ~p) =

(
m√

1− ~v2
,

m~v√
1− ~v2

)
. (2.8)

The component p0 = E is the total energy of the particle. The norm-squared

of pµ is minus its mass squared

pµpµ = −m2 = −E2 + ~p2 . (2.9) mass-shell

Solving for E (choosing E to be postive), we find

E =
√
m2 + ~p2 = m+

1

2m
~p2 + · · ·
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where we expanded for small momenta ~p. In the rest frame, where ~p = ~0,

we have E = m(= mc2), which tells us that the mass m is the total energy

measured in the rest frame.

Force-free particles propagate with constant velocity, which means that their

worldlines are straight lines. The relativistic version of Newton’s ‘second axiom’

postulates that motion under a force is determined by the equation

dpµ

dτ
= fµ , (2.10) Newton2

where the Lorentz vector fµ is the relativistic force. For constant mass this

becomes

m
d2xµ

dτ2
= fµ .

Thus if we know to describe the force acting on a particle by specifying a force

vector field fµ, we need to solve a system of linear ordinary second order differ-

ential equations to determine the particle’s motion. Moreover, a force manifests

itself as acceleration, aµ 6= 0, which results in a curved worldline.

We remark that there are situations where the mass m is not constant, for

example for a rocket which accelerates by burning and emitting fuel. However,

in fundamental theories we will be modelling elementary particles with a fixed

mass.

2.3 A non-covariant action principle for rela-

tivistic particles

The equations of motion of all fundamental physical theories can be obtained

from variational principles. In this approach a theory is defined by specifying

its action functional, which is a functional on the configuration space. The

equations of motion are the Euler-Lagrange equations obtained by imposing

that the action is invariant under infinitesimal variations of the path between a

given initial and final configuration, which are kept fixed.

For a point particle the configuration space is parametrized by its position

~x and velocity ~v. The action functional takes the form

S[~x] =

∫
dtL(~x(t), ~v(t)), t) .

The function L is called the Lagrangian and can depend on the position and

velocity of the particle. In principle it can also also have an explicit dependence
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of time, as indicated, but this would correspond to situtations where an external,

time-dependent force acts on the particle. In fundamental theories, invariance of

the field equations under time-translations is a natural assumption, and forbids

an explicit time dependence of L.

The action for a free, massive, relativistic particle is proportional to the

proper time along the worldline, and given by minus the product of its mass

and the proper time:

S = −m
∫
dt
√

1− ~v 2 . (2.11) ActionI

The minus sign has been introduced so that L has the conventional form L =

T − V , where T is the part quadratic in time derivatives, that is, the kinetic

energy. The remaining part V is the potential energy. We work in units where

the speed of light and the reduced Planck constant have been set to unity,

c = 1, ~ = 1. In such ‘natural units’ the action S is dimensionless. To verify

that the action principle reproduces the equation of motion (
Newton2
2.10), we consider

the motion ~x(t) of a particle between the initial postion ~x1 = ~x(t1) and the final

position ~x2 = ~x(t2). Then we compute the first order variation of the action

under infinitesimal variations ~x→ ~x+ δ~x, which are arbitrary, except that they

vanish and at the end points of the path, δ~x(ti) = 0, i = 1, 2. To compare the

initial and deformed path we Taylor expand in δ~x(t):

S[~x(t) + δ~x(t)] = S[~x(t), ~v(t)] + δS[~x(t), ~v(t)] + · · ·

where the omitted terms are of quadratic and higher order in δ~x(t). The equa-

tions of motion are then found by imposing that the first variation δS vanishes.

Practical manipulations are most easily performed using the following ob-

servations

1. The variation δ acts ‘like a derivative.’ For example for a function f(~x),

δf = ∂ifδx
i ,

as is easily verified by Taylor expanding f(~x+ δ~x). Similarly, the ‘obvious

analogues’ of the sum, constant factor, product and quotient rule apply,

e.g. δ(fg) = δfg + fδg.

2. ~v = d~x
dt is not an independent quantity, and therefore not varied indepen-

dently. Consequently

δ~v = δ
d~x

dt
=

d

dt
δ~x .
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3. To find δS we need to collect all terms proportional to δ~x. Derivatives

acting on δ~x have to be removed through integration by parts, which

creates boundary terms.

Exercise: Verify that the variation of (
ActionI
2.11) takes the form

δS = −
∫ t2

t1

(
d

dt

mvi√
1− ~v 2

)
δxidt+

mvi√
1− ~v 2

δxi
∣∣∣∣t2
t1

. (2.12)

In the variation the end points of the worldline are kept fixed, and therefore

the second term, which is a boundary term resulting from integration by parts,

vanishes. Since the variation δ~x is otherwise arbitrary, vanishing of the first

term requires
d

dt

m~v√
1− ~v 2

=
d

dt
~p = ~0 . (2.13) Newton2.2

These are the Euler Langrange equations of our variational problem.

Exercise: Verify that (
Newton2.2
2.13) is equivalent to (

Newton2
2.10) with fµ = 0. Hint:

Rewrite pµ = mdxµ

dτ in terms of derivatives with respect to coordinate time t

using the chain rule, and remember that the component p0 is not independent,

but related to the ~p by the ‘mass shell condition’ (
mass-shell
2.9).

Remark: When performing the variation without specifying the Langrangian

L, one obtains the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂vi
= 0 . (2.14) EL

For L = −m
√

1− ~v 2 this is easily seen to give (
Newton2.2
2.13). In my opinion it is more

natural, convenient and insightful to obtain the equations of motion for a given

concrete theory by varying the corresponding action, as done above, instead of

plugging the Lagrangian into the Euler Lagrange equations. For instance, this

procedure reminds one that there are in principle boundary terms that one has

to worry about, as we will see when replacing particles by strings.

Remark: Variational derivatives. The condition that the action func-

tional is stationary under infinitesimal variations of the path xi(t) can be ex-

pressed as the vanishing of the ‘first variational derivative’:

δS

δxi(t)
= 0 .

In physics such variational derivatives are ususally treated formally, by regarding

S[x(t)] as a ‘function of infinitely many variables’, see textbooks on QFT,
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for example Becher/Böhm/Joos for an outline of the formal variational

calculus. In order that variational derivatives are mathematically well defined,

one must assume that the space of functions on which the functional is defined

is sufficiently well behaved, for example a Banach space (that is, a vector space

with a norm, which is complete with respect to the norm). In such cases one

can define derivatives on infinite dimensional spaces, for example the Fréchet

derivative. Reference: Zeidler or other In this book we will treat variational

derivatives formally.

Remark: Physical Units. Readers who are confused about statements

such as ‘the action is dimensionless when using natural units’ are referred to

Appendix
Units
A for a quick review of physical units and dimensional analysis.

2.4 Canonical momenta and Hamiltonian

We now turn to the Hamiltonian description of the relativistic particle. In the

Lagrangian formalism we use the configuration space variables (~x,~v) = (xi, vi).

In the Hamiltonian formalism, the velocity ~v is replaced by the canonical mo-

mentum

πi :=
∂L

∂vi
. (2.15)

For the Lagrangian L = −m
√

1− ~v 2, the canonical momentum agrees with the

kinetic momentum, ~π = ~p = (1− ~v 2)−1/2m~v. However, conceptually canoncial

and kinetic momentum are different quantities. A standard example where the

two quantities are not equal is a charged particle in a magnetic field.

The Hamiltonian H(~x, ~π) is obtained from the Lagrangian L(~x,~v) by a

Legrendre transformation:

H(~x, ~π) = ~π · ~v − L(~x,~v(~x, ~π)) . (2.16)

For L = −m
√

1− ~v2 the Hamiltonian is equal to the total energy:

H = ~π · ~v − L = ~p · ~v − L =
m√

1− ~v 2
= p0 = E . (2.17)

As we will see below, this is not true in general.

Describing relativistic particles using (
ActionI
2.11) has the following disadvantages.

• We can only describe massive particles, but photons, gluons and the hy-

pothetical gravitons underlying gravity are believed to be massless. How

can we describe massless particles?
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• The independent variables ~x,~v are not Lorentz vectors. Therefore our

formalism lacks manifest Lorentz covariance. How can we formulate an

action principle that is Lorentz covariant?

• We have picked a particular curve parameter to parametrize the world-

line, namely the inertial time with respect to a reference Lorentz frame.

While this is a distinguished choice, ‘physics’, that is observational data,

cannot depend on how we label points on the worldline. But how can we

formulate an action principle that is manifestly covariant with respect to

reparametrizations of the worldline?

We will answer these issues in reverse order.

2.5 Length, proper time and reparametrizations

A (parametrized) curve is a map from a parameter interval I ⊂ R into a space,

which we take to be Minkowski space M:

C : I 3 σ −→ xµ(σ) ∈M . (2.18)

In this setting σ is an arbitrary curve parameter. We will assume in the following

that this map is smooth, or that at least that the derivatives we compute exist

and are continuous. We can ‘reparametrize’ the curve by introducting a new

curve parameter σ̃ ∈ Ĩ which is related to σ by an invertible map

σ → σ̃(σ) , where
dσ̃

dσ
6= 0 . (2.19)

While this defines a different map (a different parametrized curve), we are in-

terested in the image of this map in M, and therefore regard C̃ : Ĩ → M as a

different description (parametrization) of the same curve. The quantity dσ̃/dσ

is the Jacobian of this reparametrization.

Often one imposes the stronger condition

dσ̃

dσ
> 0 , (2.20)

which means that the orientation (direction) of the curve is preserved.

The tangent vector field of a curve is obtained by differentiating with respect

to the curve parameter:

x′
µ

:=
dxµ

dσ
. (2.21)
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Recall that a curve C : I → M is called space-like, light-like or space-like if

its tangent vector field is space-like, light-like or space-like, respectively, for all

σ ∈ I. Note that this property is reparametrization invariant.

For a space-like curve I = [σ1, σ2]→M, the length is defined as

L =

∫ σ2

σ1

√
ηµν

dxµ

dσ

dxν

dσ
dσ . (2.22)

Exercise: Verify that the length of a space-like curve is reparametrization

invariant.

For a time-like curve we can define the analogous quantity

τ(σ1, σ2) =

∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ
. (2.23)

This quantity is the proper time of special relativity, and the associated tangent

vector field can be interpreted as the velocity field along the worldline of a

massive relativistic particle.

Let us verify this statement. We can use τ as a curve parameter by defining:

τ(σ) =

∫ σ

σ1

dσ′
√
−ηµν

dxµ

dσ′
dxν

dσ′
, (2.24)

where σ1 ≤ σ ≤ σ2. By differentiating this function we obtain the Jacobian

dτ

dσ
=

√
−ηµν

dxµ

dσ

dxν

dσ
. (2.25)

If we choose σ to be the time t measured in an inertial frame, wo obtain the

standard special-relativistic relation between the differentials of proper time and

of inertial time. Therefore we should find that the tangent vector field dxµ/dτ

is normalized, and has constant length-squared −1. To verify this we compare

the tangent vector fields of the two parametrizations:

dxµ

dτ
=
dxµ

dσ

dσ

dτ
=

dxµ

dσ√
−ηµν dx

µ

dσ
dxν

dσ

. (2.26)

This implies that

ηµν
dxµ

dτ

dxν

dτ
= −1 . (2.27)

Expressing the proper time integral using τ itself as curve parameter, we obtain

∫ σ2

σ1

dσ

√
−ηµν

dxµ

dσ

dxν

dσ
=

∫ τ2

τ1

dτ = τ2 − τ1 . (2.28)
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This completes verifying the statement.

We note the following characterization of the proper time τ as a distinguished

curve parameter: parametrizing a time-like curve by its proper time is equiv-

alent to normalizing the tangent vector field to length-squared −1. Similarly,

parametrizing a space-like curve by its length is equivalent to normalizing the

tangent vector field to length-squared +1. Note that for light-like curve there

is no quantity analogous to length or proper time. We will come back to this

when we introduce an action for massless particles.

2.6 A covariant action for massive relativistic

particles

Using the concepts of the previous section, we introduce the following action:

S[x, x′] = −m
∫
dσ

√
−ηµν

dxµ

dσ

dxν

dσ
. (2.29) ActionII

Up to the constant factor −m, the action is given by the ‘length’, more pre-

cisely by the proper time of the world line. The dimensionful factor m makes

the action dimensionless (with respect to natural units where c = 1, ~ = 1).

We now use an arbitrary curve parameter σ, and configuration space variables

(x, x′) = (xµ, x′µ) which transform covariantly under Lorentz transformations.

The action (
ActionII
2.29) is covariant in the following sense:

• The action is invariant under reparametrisations σ → σ̃(σ) of the world-

line.

• The action is manifestly invariant under Poincaré transformations,

xµ → Λµνx
ν + aµ , (2.30)

where

(Λµν) ∈ O(1, D − 1) and (aµ) ∈M (2.31)

are constant.

To verify that the new action (
ActionII
2.29) leads to the same field equations as (

ActionI
2.11),

we perform the variation xµ → xµ + δxµ and obtain:

δS

δxµ
= 0⇔ d

dσ

(
m x′

µ

√
−x′ · x′

)
= 0 . (2.32)
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To get the physical interpretation, we choose the curve parameter σ to be proper

time τ :
d

dτ

(
m
dxµ

dτ

)
= mẍµ = 0 , (2.33)

where ‘dot’ denotes the derivative with respect to proper time. This is indeed

(
Newton2
2.10) with fµ = 0.

The general solution of this equation, which describes the motion of a free

massive particle in Minkowski space is the straight world line

xµ(τ) = xµ(0) + ẋµ(0)τ . (2.34)

Remark: Reparametrizations vs Diffeomorphisms. In part of the lit-

erature reparametrization invariance is referred to as diffeomorphism invariance.

We use the term reparametrization, rather than diffemorphism, to emphasize

that we interpret the map σ 7→ σ̃ passively, that is as changing the label which

refers to a given point. In contrast, an active transformation would map a given

point to another point. When writing such a diffeomorphism in terms of local

coordinates, expressions agree, up to a (−)–sign This will be illustrated by

an examle in Part 2. Add crossreference here.. In physics it is a stan-

dard assumption that the passive and active interpretation of symmetries are

equivalent. Refer to Kiefer’s book for discussion in context of gravity.

Remark: Local vs global in mathematical and physical terminol-

ogy. In mathematics ‘local’ refers to statements which hold on open neighbour-

hoods around each point, whereas ‘global’ refers to statements holding for the

whole space under consideration. In contrast, physicists call symmetries ‘global’

or ‘rigid’ if the transformation parameters are independent of spacetime, and ‘lo-

cal’ if the transformation parameters are functions on spacetime. In the case of

the point particle action above, Poincaré transformations are global symmetries,

while reparametrizations are local. I will try to reduce the risk of confusion by

saying ‘rigid symmetry’ rather than ‘global symmetry’, but when a symmetry

is referred to as local, it is meant in the physicist’s sense. Also, it is common

for physicists to talk about statements which are true locally (in the mathe-

matician’s sense), but not necessarily true globally, using ‘global terminology’.

I will follow this linguistic convention and will often leave it to the careful reader

to clarify whether a statement formulated in ‘global terminology’ is actually a

global result in the strict sense.2

2An explicit example will be given later when we discuss the actions of the
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2.7 Particle Interactions

So far we have considered free particles. Interactions can be introduced by

adding terms which couple the particle to fields. The most important examples

are the following:

• If the force fµ has a potential, fµ = ∂µV (x), then the equation of motion

(
Newton2
2.10) follows from the action

S = −m
∫ √

−ẋ2dτ −
∫
V (x(τ))dτ . (2.35)

For simplicity, we took the curve parameter to be proper time. In the sec-

ond term, the potential V is evaluated along the worldline of the particle.

• If fµ is the Lorentz force acting on a particle with charge q, that is fµ =

Fµν ẋν , then the action is

S = −m
∫ √

−ẋ2dτ − q
∫
Aµdx

µ . (2.36)

In the second term, the (relativistic) vector potential Aµ is integrated

along the world line of the particle∫
Aµdx

µ =

∫
Aµ(x(τ))

dxµ

dτ
dτ . (2.37)

The resulting equation of motion is

d

dτ

(
m
dxµ

dτ

)
= qFµν ẋν , (2.38) LorentzforceCov

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. Equation (
LorentzforceCov
2.38) is

the manifestly covariant version of the Lorentz force

d~p

dt
= q

(
~E + ~v × ~B

)
. (2.39)

• The coupling to gravity can be obtained by replacing the Minkowski metric

ηµν by a general (pseudo-)Riemannian metric gµν(x):

S = −m
∫
dτ
√
−gµν(x)ẋµẋν . (2.40)

The resulting equation of motion is the geodesic equation

ẍµ + Γµνρẋ
ν ẋρ = 0 , (2.41)

(with affine curve parameter τ .)

conformal Lie Algebra and of the conformal group on the string worldsheet.
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Exercise: Verify that the variation of the above actions gives rise to the corre-

sponding field equations.

Remark: In all three examples the interaction is introduced by coupling

the particle to a background field.3 A different way to describe interactions

is to allow that the wordlines of particles split or join. In a quantum theory

both descriptions are in fact related, since particles and fields can be viewed as

different types of excitations of ‘quantum fields.’ Particles correspond to eigen-

states of the particle number operator, whereas fields correspond to coherent

states which are eigenstates of the particle creation operator. Add reference

to quantum mechanics book illustrating this with the harmonic os-

cillator. The description of quantum particles in terms of splitting and joining

worldlines is called the ‘worldline formalism,’ which we will not cover in this

book. Add references for worldline formalism. The worldsheet formula-

tion of string theory that we will be developing is the analogue of the wordline

formalism for particles.

2.8 Canonical momenta and Hamiltonian for the

covariant action

From the action (
ActionII
2.29)

S =

∫
Ldσ = −m

∫
dσ
√
− x′ 2 , (2.42)

we obtain the following canonical momentum vector:

πµ =
∂L

∂ x′ µ
= m

x′
µ√

− x′ 2
= mẋµ . (2.43)

A new feature compared to action (
ActionI
2.11) is that the components of the canonical

momentum are not independent, but subject to the constraint

πµπµ = −m2 . (2.44)

Since canonical and kinetic momenta agree,

πµ = pµ , (2.45)

3Background field means that the field is ‘given’, rather than to be found by solving

field equations. The full coupled theory of particles and fields would require to specify the

field equations for the field. In electrodynamics the Maxwell equations would be specified in

addition to the Lorentz force.



2.8. CANONICALMOMENTAANDHAMILTONIAN FOR THE COVARIANT ACTION21

and we can interprete the constraint as the mass shell condition p2 = −m2. The

Hamiltonian associated to (
ActionII
2.29) is

H = πµẋµ − L = 0 . (2.46)

Thus the Hamiltonian is not equal to the total energy, but rather vanishes. To

be precise, since H ∝ p2 +m2, the Hamiltonian does not vanish identically, but

only for field configurations which satisfy the mass shell condition. Thus H = 0

is a constraint which needs to be imposed on top of the dynamical field equa-

tions. This is sometimes denoted H ' 0, and one says that the Hamiltonian

is weakly zero. This type of ‘Hamiltonian constraint’ arises when mechanical

or field theoretical systems are formulated in a manifestly Lorentz covariant or

manifestly reparametrization invariant way. The study of ‘constrained dynam-

ics’ is a research subject in its own right. Add references for constrained

dynamics, including Dirac, Sundermeyer, Henneux/Teitelboim. We

will not need to develop this systematically, because all the constraints we will

encounter will be of ‘first class.’ This means that they are consistent with the

dynamical evolution, and can therefore be imposed as initial conditions. We

will demonstrate this explicitly for strings later Add cross reference.

Remark: Hamiltonian and time evolution. For those readers who

are familiar with the formulation of mechanics using Poisson bracketes, we add

that while the Hamiltonian is weakly zero, it still generates the infinitesimal time

evolution of physical quantities. Similarly, in the quantum version of the theory,

the infinitesimal time evolution of an operator O in the Heisenberg picture is still

given by its commutator with the Hamiltonian. Moreover ‘consistency with the

time evolution’ means to commute with the Hamiltonian. For the relativistic

particle this is clear because vanishing of the Hamiltonian is the only constraint.

By accepting that constraints are the prize to pay for a covariant formal-

ism, we can describe relativistic massive particles in a Lorentz covariant and

reparametrization invariant way. But we still need to find a way to include

massless particles.



22 CHAPTER 2. CLASSICAL RELATIVISTIC POINT PARTICLES

2.9 A covariant action for massless and massive

particles

To include massless particles, we use a trick which works by introducing an

auxiliary field e(σ) on the wordline. We require that e dσ is a reparamentrization

invariant line element on the world line:

e dσ = ẽ dσ̃ .

This implies that e transforms inversely to a coordinate differential:

ẽ(σ̃) = e(σ)
dσ

dσ̃
,

Note that since e defines a one-dimensional volume element, e does not have

zeros. We take e > 0 for definiteness, and this condition is preserved under

reparametrizations which preserve orientation.

Using the invariant line element, we write down the following action:

S[x, e] =
1

2

∫
edσ

(
1

e2

(
dxµ

dσ

)2

−K

)
, (2.47) ActionIII

where K is a real constant.

The action (
ActionIII
2.47) has the following symmetries

• S[x, e] is invariant under reparametrisations σ → σ̃.

• S[x, e] is invariant under Poincaré transformations xµ → Λµνx
ν + aµ.

The action depends on the fields x = (xµ) and e. Performing the variations

x → x + δx and → e + δe, respectively, we obtain the following equations of

motion.

d

dσ

(
x′
µ

e

)
= 0 , (2.48)

x′
2

+ e2K = 0 . (2.49)

Exercise: Derive the above equations of motion by variation of the action

(
ActionIII
2.47).

The equation of motion for e is algebraic, and tells us that for K > 0 the

solution is a time-like curve, while for K = 0 it is light-like and for K < 0 space-

like. To show that the time-like case brings us back to (
ActionII
2.29), we set K = m2
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and solve for the auxiliary field e:

e =

√
− x′ 2

m
, (2.50)

where we have used that e > 0. Substituting the solution for e into (
ActionIII
2.47) we

recover the action (
ActionII
2.29) for a massive particle of mass m.

The advantage of (
ActionIII
2.47) is that it includes the case of massless particles as

well. Let us consider K = m2 ≥ 0. Instead of solving for e we now fix it by ‘im-

posing a gauge’, which in this case means picking a particular parametrization.

• For m2 > 0, we impose the gauge

e =
1

m
. (2.51)

The equations of motion become4:

ẍµ = 0 , (2.52)

ẋ2 = −1 . (2.53)

The second equation tells us that this gauge is equivalent to choosing the

proper time τ as curve parameter.

• For m2 = 0, we impose the gauge

e = 1 . (2.54)

The equations of motion become:

ẍµ = 0 , (2.55)

ẋ2 = 0 . (2.56)

The second equation tells us that the worldline is light-like, as expected

for a massless particle. In this case there is no proper time, but choos-

ing e = 1 still corresponds to choosing a distinguished curve parameter.

Observe that the first, dynamical equation of motion only simplifies to

ẍµ = 0 if we choose e to be constant. Conversely, the equation ẍµ = 0, is

only invariant under affine reperamatrizations σ 7→ aσ + b, a 6= 0 of the

worldline. Imposing e = 1 (or any other constant value) corresponds to

4We use a ‘dot’ to denote the differentiation with respect to the curve parameter selected

by our gauge condition.
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choosing an affine curve parameter. Since for light-like curves the concept

of length or proper time does not exist, choosing an affine curve parameter

serves as a subsitute. We can in fact fix the normalization of the affine

parameter by imposing that pµ = ẋµ, where pµ is the momentum of the

massless particle. While a relativistic velocity cannot be defined for mass-

less particles, the relativistic momentum vector is defined, and related to

measurable quantities.

Remark: Readers who are familiar with field theory will observe that the

first term of action (
ActionIII
2.47) looks like the action for a one-dimensional free massless

scalar field. Readers familiar with general relativity will recognize that the one-

dimensional invariant volume element e dσ is analogous to the D-dimensional

invariant volume element
√
|g|dDx appearing in the Einstein-Hilbert action, and

in actions describing the coupling of matter to gravity. Since g = det(gµν) is the

determinant of the metric, by analogy we can interpret e as the square root of

the determinant of an intrinsic one-dimensional metric on the worldline. A one-

dimensional metric has only one component, and a moments thought shows that

this component is given by e2(σ). Therefore e−2 is the single component of the

inverse metric. Taking this into account the first term of (
ActionIII
2.47) is the action for

a one-dimensional free massless scalar field coupled to one-dimensional gravity.

The second term is analogous to a cosmological constant.

Exercise: Work out the case where m2 < 0. What is the geometrical

interpretation of the resulting equations?

Remark: The action (
ActionIII
2.47) is not only useful in physics, but also in ge-

ometry, because it allows to formulate a variational principle which treats null

(light-like) curves on the same footing as non-null (time-like and space-like)

curves. Actions of the type (
ActionIII
2.47) and their higher-dimensional generalizations

are known as ‘sigma models’ in physics. Geometrically (
ActionIII
2.47) is an ‘energy

functional’ (sometimes called Dirichlet energy functional) for maps between two

semi-Riemannian spaces,5 the worldline and Minkowski space. Maps which ex-

tremize the energy functional are called harmonic maps, and in the specific case

of a one-dimensional action functional, geodesic curves. And indeed, we have

seen above that the solutions for the Minkowski space are stratight lines in affine

5By semi-Riemannian we refer to a manifold equipped with a symmetric and non-

degenerate rank 2 tensor field. While we call such tensor fields a metric, we do not require it

to be positive, and admit metrics of indefinite signature, such as the Minkowski metric.
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parametrization, and therefore geodesics.
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Chapter 3

Classical relativistic strings

In this chaper we introduce classical relativistic strings as generalizations of clas-

sical relativistic particles. Our treatment mostly follows Chapter 2 of Green-

Schwarz+Witten, from which we have taken our conventions and notations.

3.1 The Nambu-Goto action

We now generalize relativistic particles to relativistic strings. The worldline of

a particle is replaced by the worldsheet Σ, which is a surface embedded into

Minkowksi space:

X : Σ 3 P −→ X(P ) ∈M . (3.1)

On spacetime we choose linear coordinates associated to a Lorentz frame, de-

noted X = (Xµ), where µ = 0, 1, . . . , D − 1. On the worldsheet we choose

local coordinates σ = (σ0, σ1) = (σα). Depending on the global structure of

the worldsheet, it might not be possible to cover Σ with a single coordinate

system. While we can work using local coordinates, we will have to verify that

our equations are covariant with respect to reparametrizations. For the time

being we do not consider interactions where strings can split or join, so that Σ

has the topology of a strip (open strings) or of a cylinder (closed strings). At

each point of Σ we can choose a time-like tangent vector (‘the direction towards

the future’) and a space-like tangent vector (‘the direction along the string’).

We adopt the convention that the coordinate σ0 is time-like (that is, the cor-

responding tangent vector ∂0 is a time-like vector), while the coordinate σ1 is

27
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space-like1:

Ẋ2 ≤ 0 , (X ′)2 > 0 . (3.2)

Here we use the following notation for tangent vectors:

Ẋ = (∂0X
µ) =

(
∂Xµ

∂σ0

)
,

X ′ = (∂1X
µ) =

(
∂Xµ

∂σ1

)
. (3.3)

We also make conventional choices for the range of the worldsheet coordinates.

The space-like coordinate takes values

σ1 ∈ [0, π] ,

where as the time-like coordinate takes values

σ0 ∈ [σ0
(1), σ

0
(2)] ⊂ R .

The limiting case σ0 ∈ R is allowed and describes the asymptotic time evolution

of a string from the infinite past to the infinite future.2

The Nambu-Goto action is the direct generalization of (
ActionII
2.29), and thus pro-

portional to the area of the worldsheet Σ, measured with the metric on Σ induced

by the Minkowski metric:

SNG[X] = −TA(Σ) = −T
∫

Σ

d2A . (3.4)

The constant T must have the dimension (length)−2 or energy/length, in units

where ~ = 1, c = 1. It is therefore called the string tension. This quantity

generalizes the mass of a point particle and is the only dimensionful parameter

entering into the definition of the theory.3

From differential geometry we know that the Minkowski metric ηµν induces

a metric gαβ on Σ by ‘pull back’:

gαβ = ∂αX
µ∂βX

νηµν . (3.5)

1Exceptionally, Ẋ might become light-like at special points. In particular, we will see that

the endpoints of an open string have to move with the speed of light.
2While σ0 is ‘worldsheet time’, and in general different from Minkowksi time X0 = t, we

can use it as time-like coordinate on spacetime.
3Note that T is a constant, while the energy and length of a string at a given time depends

on its state and motion. We will come back to this point later. Add cross reference



3.1. THE NAMBU-GOTO ACTION 29

From this we can form the invariant area element

d2A = d2σ
√
|det(gαβ)| , (3.6)

with which we measure areas on Σ. Note that det(gαβ) < 0 since Σ has one

time-like and one space-like direction, which is why we have to take the absolut

value. Combining the above formulae, the Nambu Goto action is

S = −T
∫
d2σ
√
|det (∂αXµ∂βXνηµν)| . (3.7) NG1

The area, and, hence, the Nambu Goto action, is invariant under reparametriza-

tions of Σ,

σα → σ̃α(σ0, σ1) , where det

(
∂σ̃α

∂σβ

)
6= 0 . (3.8)

Exercise: Verify that the Nambu-Goto action is invariant under reparametriza-

tions.

The action is also invariant under Poincaré transformations of M,

Xµ → ΛµνX
ν + aµ .

This symmetry is manifest since the Lorentz indices are contracted in the correct

way to obtain a Lorentz scalar.

To perform calculations, it is useful to write out the action more explicitly:

SNG =

∫
d2σL = −T

∫
d2σ

√
(Ẋ ·X ′)2 − Ẋ2(X ′)2 . (3.9) NG

Here L is the Lagrangian density, or Langrangian for short.

The worldsheet momentum densities are defined as

Pαµ =
∂L

∂∂αXµ
.

Evaluating the components explicitly, we find:

Πµ := P 0
µ :=

∂L
∂Ẋµ

= −T (X ′)2Ẋµ − (Ẋ ·X ′)X ′µ√
(Ẋ ·X ′)2 − Ẋ2(X ′)2

,

P 1
µ :=

∂L
∂X ′µ

= T
Ẋ2X ′µ − (Ẋ ·X ′)Ẋµ√

(Ẋ ·X ′)2 − Ẋ2(X ′)2

. (3.10)

Note that P 0
µ = Πµ is the canonical momentum (density). While these expres-

sions look complicated, a more intuitive form is obtained if we assume that we
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can choose coordinates such that X ′ · Ẋ = 0, Ẋ2 = −1, (X ′)2 = 1, which we

can always do at least at a given point:4

(Pαµ ) = T (Ẋµ ,−X ′µ) = T (−∂0Xµ ,−∂1Xµ) . (3.11)

This can be viewed as generalizing the ‘momentum flow’ pµ = mẋµ along the

worldline of a relativistic particle.

The equations of motion are found by imposing that the action (
NG
3.9) is

invariant under variations X → X + δX, subject to the condition that the

initial and final positions of the string are kept fixed: δX(σ0 = σ0
(1)) = 0,

δX(σ0 = σ0
(2)) = 0. When carrying out the variation we can simplify our work

by using the expressions (
WS-momenta
3.10):

δS =

∫
d2σ

(
P 0
µδẊ

µ + P 1
µδX

′µ
)
.

We need to perform an integration by parts which creates two boundary terms:

δS =

∫ π

0

dσ1
[
P 0
µδX

µ
]σ0

(2)

σ0
(1)

+

∫ σ0
(2)

σ0
(1)

dσ0
[
P 1
µδX

µ
]σ1=π

σ1=0
−
∫
d2σ∂αP

α
µ δX

µ .

The first boundary vanishes because the variational principle imposes to keep

the initial and final position fixed. However the second boundary term does not

vanish automatically, and to have a consistent variational principle we have to

impose that

δS =

∫
dσ0

[
P 1
µδX

µ
]σ1=π

σ1=0

!
= 0 . (3.12)

These conditions are satisfied by imposing boundary conditions, for which we

have the following options:

1. Periodic boundary conditions:

X(σ1) = X(σ1 + π) . (3.13)

This corresponds to closed strings, where the worldsheet can only have

space-like boudaries corresponding to the initial and final configuration.

2. Neumann boundary conditions:

P 1
µ

∣∣
σ1=0,π

=
∂L
∂X ′µ

∣∣∣∣
σ1=0,π

= 0 . (3.14)

4See Zwiebach’s book for a detailed account of how to construct coordinates systems.Add

reference
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Since P 1
µ , evaluated at σ1 = 0, π is the component of the worldsheet mo-

mentum density normal to the boundary, Neumann boundary conditions

imply momentum conservation at the ends of the string. They describe

open strings whose ends can move freely. As we will see in a later exercise,

the ends of an open string always move with the speed of light.

3. Dirichlet boundary conditions. For space-like directions i = 1, . . . , D − 1

we can impose Dirichlet boundary conditions,

P 0
i

∣∣
σ1=0,π

=
∂L
∂Ẋi

∣∣∣∣
σ1=0,π

= 0 .

Since this implies that the tangential component of the worldsheet mo-

mentum vanishes at the boundary, it correponds to keeping the ends of

the string fixed in the i-th direction:

Xi(σ1 = 0) = x0 , Xi(σ1 = π) = x1 . (3.15)

In this case momentum is not conserved at the ends of the string, as

expected since the boundary conditions break translation invariance. To

restore momentum conservation one must couple open strings which have

Dirichlet boundary conditions to new types of dynamical objects, called

D-branes.5

Remark: D-branes. Since we can impose Neumann boundary conditions

along some directions and Dirichlet boundary conditions in others, there are

D-branes of various dimensions. If Neumann boundary conditions are imposed

in p space-like directions and as well in time, and Dirichlet boundary conditions

in the remaining D − p− 1 space-like directions, then the resulting D-branes is

referred to as a D−p−brane= Dirichlet p-brane. ‘Space-filling’ D-branes with

p = D − 1 correspond to imposing Neumann boundary conditions in all di-

rections, while D-0-branes are ‘D-particles’ and D-1-branes are D-strings, etc.

D-branes are interpreted as ‘collective excitations’ or ‘solitons’ of string theory.

Imposing Dirichlet condition in time makes sense if we Wick rotate to imaginary

time and consider strings in a Euclidean ‘spacetime.’ In this context D-branes

are interpreted a instantons, that is as configurations with stationary and finite

Euclidean action, which give rise to ‘non-perturbative’ contributions to physical

quantities. In Euclidean space we can in particular impose Dirichlet boundary

5Which raises the question whether string theory is a theory of strings, only.
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conditions in all directions and thus obtain D − (−1) branes which are called

D-instantons.

By imposing any of the above boundary conditions we can cancel the bound-

ary term in the variation of the action. The vanishing of the remaining, non-

boundary terms implies the following equations of motion:

∂αP
α
µ = 0 . (3.16)

While, given (
WS-momenta
3.10), this looks very complicated, it becomes the two-dimensional

wave equation upon choosing coordinates where Ẋ ·X ′ = 0, Ẋ2 = −1, X ′2 =

1. Instead of showing how such a coordinate system can be constructed Add

reference to Zwiebach’s book or Scherk’s review, we will derive this result

in a different way using the Polyakov action later Add cross reference.

One thing to note is that the canonical momenta are not independent. We

find two constraints:

ΠµX ′µ = 0 ,

Π2 + T 2(X ′)2 = 0 . (3.17)

The canonical Hamiltonian (density) is obtained from the Lagrangian by a Leg-

endre transformation:

Hcan = ẊΠ− L = 0 . (3.18)

As for the relativistic particle, the Hamiltonian is not equal to the energy (or

here energy density), and is weakly zero.

Problem: Verify that that the canonical momenta are subject to the two

constraints given above. Show that the Hamiltonian constraint follows from the

other two constraints.

3.2 The Polyakov action

3.2.1 Action, symmetries, equations of motion

The Polyakov action is related to the Nambu-Goto action in the same way as

the point particle action (
ActionIII
2.47) is related to (

ActionII
2.29). That is, we replace the area

by the corresponding energy functional, or, in physical terms, sigma model.
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This requires to introduce an intrinsic metric hαβ(σ) on the worldsheet Σ. The

Polyakov action is

SP[X,h] = −T
2

∫
d2σ
√
hhαβ∂αX

µ∂βX
νηµν , (3.19) PolAct

where h = −det(hαβ) = |det(hαβ)|, generalizes the auxiliary field e in (
ActionIII
2.47).

The intrinsic metric hαβ is a priori unrelated to induced metric gαβ , but we

require that hαβ has the same signature (−+), because we interprete Σ as the

worldsheet of a relativistic string. The embedding X : (Σ, hαβ) → (M, ηµµ) is

now a map between two semi-Riemannian manifolds.

The Polyakov action has the following local symmetries with respect to the

worldhsheet Σ:

1. Reparametrizations σ → σ̃(σ), which act by

X̃µ(σ̃) = Xµ(σ) ,

h̃αβ(σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
hγδ(σ) . (3.20)

2. Weyl transformations:

hαβ(σ)→ e2Λ(σ)hαβ(σ) . (3.21)

Remarks:

1. Note that Weyl transformations do not act on the coordinates and are

therefore different from reparametrizations. Mathematicians usually call

them conformal transformations, because they change the metric but pre-

serve the conformal structure of (Σ, hαβ).

2. The invariance of the action under Weyl transformation is special for

strings. One can write down Polyakov-type actions for particles, mem-

branes and higher-dimensional p-branes, but they are not Weyl invariant.

3. Combining Weyl with reparametrization invariance, one has three local

transformations which can be used to gauge-fix the metric hαβ completely.

Thus hαβ does not introduce new local degrees of freedom: it is an auxil-

iary field.
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Apart from these local symmetries we also have global symmetries, namely

the invariance of the Polyakov action under Poincaré transformations on space-

time. This symmetry is manifest, sinceXµ are coordinates adapted to an inertial

frame, and all Lorentz indices are properly contracted.

The equations of motion are obtained by imposing stationarity with respect

to the variations Xµ → Xµ + δXµ and hαβ → hαβ + δhαβ .

Exercise: Show that resulting equations of motion are:

1√
h
∂α

(√
hhαβ∂βX

µ
)

= 0 , (3.22)

∂αX
µ∂βXµ −

1

2
hαβh

γδ∂γX
µ∂δXµ = 0 . (3.23)

As for the Nambu-Goto action, we have to make sure that boundary terms

vanish, which gives us the choice between periodic, Neumann and Dirichlet

boundary conditions.

The X-equation (
X-Eq
3.22) is the two-dimensional wave equation on the semi-

Riemannian manifold (Σ, hαβ). This can be rewritten in various ways:

�Xµ = 0⇔ ∇α∇αXµ = 0⇔ ∇α∂αXµ = 0 , (3.24)

where ∇µ is the covariant derivative with respect to the worldsheet metric hαβ .

The h-equation (
h-Eq
3.23) is algebraic and can be used to eliminate hαβ in terms of

the induced metric gαβ = ∂αX
µ∂βX

νηµν . More precisely:

Exercise: Show that (
h-Eq
3.23) implies

det(gαβ) =
1

4
det(hαβ)(hγδgγδ)

2 . (3.25)

Use this to show that upon imposing (
h-Eq
3.23) the intrinsic and induced metric

are conformally equivalent, that is, they differ only by a Weyl transformation.

By substituting back into the Polyakov action you will obtain the Nambu-Goto

action.

3.2.2 Interpretation as a two-dimension field theory

The advantage of the Polyakov action is that it does not involve a square root

and takes the form of a standard two-dimensional field theory action for free

massless scalar fields. This allows us to take an alternative point of view and

to interpret Σ as a two-dimensional ‘spacetime’, populated by D scalar fields

X = (Xµ), which take values in the ‘target space’ MD. We can now use
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methods, results and intution from field theory. We will call this point of view

the ‘worldsheet perspective’ in contrast to the ‘spacetime perspective’ where

(
ActionIII
2.47) is interpreted in terms of a string in Minkowksi space.

When studying a field theory on a semi-Riemannian manifold, one defines

the energy momentum tensor of an action by its variation with respect to the

metric.6

The energy-momentum tensor of the Polyakov action is:

Tαβ := − 1

T

1√
h

δSP
δhαβ

=
1

2
∂αX

µ∂βXµ −
1

4
hαβh

γδ∂γX
µ∂δXµ . (3.26)

Expressing the h-equation of motion in terms of Tαβ gives

Tαβ = 0 . (3.27)

Two comments are in order. Firstly this is a constraint, not a dynamical

equation, and we will show later that it can be imposed as an initial condi-

tion. Secondly, this equation resembles the Einstein equation, which in four

dimensions takes the form Rµν − 1
2Rgµν = κ2Tµν , where gµν is the metric,

Rµν the Ricci tensor, R the Ricci scalar and κ the gravitational coupling con-

stant. The Einstein Hilbert action which generates the l.h.s. of this equation

is SEH = 1
κ2

∫
d4x
√
|g|R. Could we modify the Polyakov action by adding a

two-dimensional Einstein-Hilbert term? The answer is that adding an Einstein-

Hilbert term does not change the theory, at least as far as the local dynamics is

concerned: variation of the two-dimensional Einstein-Hilbert action results in a

total derivative, and therefore does not contribute to the equations of motion.

In other words, Tαβ = 0 is already the two-dimensional Einstein equation.

If we consider the worldsheet Σ globally, something more interesting hap-

pens. While the Einstein-Hilbert action does not change under small variations

of the metric, it need not be zero, and turns out to be a topological invariant

of the worldsheet, the so-called Euler number. We will come back to this later.

Add crorss reference.

6This can also be applied to field theories on a flat spacetime, by introducing a background

metric that can then be varied. An alternative defintion on a flat spacetime is through the

Noether theorem. The resulting energy momentum tensor is in general not symmetric, and

may differ from the one obtained by variation of the metric by a total derivative. However,

both types of energy momentum tensors are physically equivalent, i.p. one obtains the same

conserved quantities by integration over space Refer to literature and/or later discus-

sion.
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Let us now investigate the properties of the energy momentum tensor. On a

flat worldsheet Tαβ is conserved (has a vanishing divergence). By the equivalence

principle7 we expect it therefore to be covariantly conserved on (Σ, hαβ).

Exercise: Show that Tαβ is covariantly conserved:

∇αTαβ = 0 , (3.28) NablaT

on shell, that is, modulo the equations of motion.

Exercise: Show that Tαβ is traceless:

hαβTαβ = 0 . (3.29)

This relation holds off shell, that is, without imposing the equations of motion.

Since Tαβ is symmetric and traceless, it only has two independent components.

Remark: Note that the trace of a tensor is always defined by contraction

with the metric. This is in general different from taking the trace in the matrix

sense, which would not be reparametrization invariant.

3.2.3 The conformal gauge

One way to use symmetries is to impose ‘gauge conditions’ which bring ex-

pressions to a standard form. The Polyakov action has three local symmetries:

the reparametrizations of two coordinates and Weyl transformations. Since the

metric hαβ has three independent components, counting suggests that we can

fix its form completely, in particular that we can impose the so-called confor-

mal gauge where it takes the form of the standard two-dimensional Minkowski

metric:

hαβ
!
= ηαβ =

(
−1 0

0 1

)
. (3.30) ConfGauge

This is indeed true locally, because any two-dimensional semi-Riemannian met-

ric is conformally flat and can be written locally as the product of the standard

flat metric with a conformal factor. Since we can apply Weyl transformations

7Here we refer to Einstein’s equivalance principle, which states that if we go to a freely

falling reference frame (corresponding to Riemannian normal coordinates), physics on a curved

spacetime takes the same form as in special relativity, at the given point (the point relative

to which we have introduced Riemannian normal coordinates = the origin of the freely falling

frame).
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in addition to reparametrizations, the conformal factor can be removed, leaving

us with the standard flat metric:

hαβ → e2Ω(σ)ηαβ → ηαβ .

Globally the story is more complicated, since the reparametrizations needed for

the first step do not need to exist. Add cross or reference to literature.

We now work out various useful formulas for the Polyakov string in the con-

formal gauge. Some care is required when imposing gauge conditions on the

action itself rather than the equations of motion. In the present case, substitut-

ing the gauge condition (
ConfGauge
3.30) into the Polyakov action gives.

SP = −T
2

∫
d2σηαβ∂αX

µ∂βXµ . (3.31)

Variation of this action with respect to X gives indeed the correct equation of

motion, namely the gauge fixed version of the previous X-equation:

�Xµ = −(∂2
0 − ∂2

1)Xµ = 0 (3.32)

This is the standard ‘flat’ two-dimensional wave equation, which is known to

have the general solution:

Xµ(σ) = Xµ
L(σ0 + σ1) +Xµ

R(σ0 − σ1) , (3.33) 2dWaveGeneral

describing decoupled left- and right-moving waves.

However, not all solutions of the two-dimensional wave equations are solu-

tions of string theory. First of all, we have to impose boundary conditions.

In the conformal gauge, the consistent boundary conditions take the following

form:

Xµ(σ1 + π) = Xµ(σ) , periodic ,

X ′µ
∣∣
σ1=0,π

= 0 , Neumann ,

Ẋµ

∣∣∣
σ1=0,π

= 0 , Dirichlet . (3.34)

Morever, the equations coming from the h-variation of the Polyakov action must

now be added by hand:

Tαβ = 0 . (3.35)

The energy momentum tensor is traceless

Trace(T ) = Tαα = ηαβTαβ = −T00 + T11 = 0 , (3.36)
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and since this holds off-shell we only have two non-trivial constraints:

T01 = T10 =
1

2
ẊX ′ = 0 ,

T00 = T11 =
1

4
(Ẋ2 +X ′2) = 0 . (3.37)

In the Hamiltonian formulation of the Nambu-Goto action, constraints arose

from relations between the canonical momenta. For the Polyakov action, the

canonical momenta are:

Πµ =
∂LP
∂Ẋµ

= TẊµ , (3.38)

and the canonical Hamiltonian is:

Hcan =

∫ π

0

dσ1
(
ẊΠ− LP

)
=
T

2

∫ π

0

dσ1
(
Ẋ2 +X ′2

)
.

(3.39)

Thus T00 = T11 = 0 implies that the Hamiltonian vanishes on shell.

Exercise: Compute the worldsheet momentum densities Pαµ = ∂L/∂(∂αX
µ)

of the Polyakov action in the conformal gauge. Using that Πµ = P 0
µ is the

canonical momentum, show that the constraints (
T-constraints
3.37) are equivalent to the

constraints (
ConstraintsNG
3.17).

Remark: By comparing how the constraints arise for the Nambu-Goto

and Polyakov action, we see that in the first case they follow directly from

the definition of the canonical momenta, while in the second case they arise

through the equation of motion of an auxiliary field. This is a specal case of the

distinction between primary and secondary constraints Add Reference Dirac

or other constrained dynamics text. This distinction is independent of the

one between first and second class constraints. Our constraints are first class in

both cases.

In field theory on a flat spacetime, invariance under translations implies

energy-momentum conservation. When applying this to worldsheet field theory,

the conserved current associated with shifts in σβ is Tαβ . 8

Exercise: Verify that

∂αT
αβ = 0 , (3.40)

holds on-shell.
8Since our world sheet is not global Minkowski space but, for the propagation of a single

string, an infinite strip or cylinder, this discussion will be modified later to include boundary

conditons.
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Remark: This is the gauge-fixed version of the covariant conservation equa-

tion (
NablaT
3.28)

We have thus verified that as long as we impose the gauge fixed h-equation by

hand, we can obtain the gauge-fixed versions of all other equations by variation

of the gauge-fixed action. In general one needs to be careful when imposing

conditions directly on the action instead of the field equations, as such conditions

need not be consistent with the variational principle. In the above example we

just had to add one field equation, which is a non-dynamical constraint, by

hand. In other cases, for example when performing dimensional reductions

of actions, it can happen that the truncation of the action is not consistent,

meaning that solutions to the Euler-Langange equations of the truncated actions

are not solutions to the Euler-Lagrange equations of the original action.

3.2.4 Lightcone coordinates

Equation (
2dWaveGeneral
3.33) suggests to introduce lightcone coordinates (also called null

coordinates):

σ± := σ0 ± σ1 . (3.41)

We adopt a convention where we write σa, with a = +,− for lightcone coordi-

nates and σα, with α = 0, 1 for non-null coordinates.

To relate quantities in both types of coordinate systems, we compute the

Jacobian of the coordinate transformation and its inverse:

(J a
α ) =

D(σ+, σ−)

D(σ0, σ1)
=

(
1 1

1 −1

)
, (J α

a ) =
D(σ0, σ1)

D(σ+, σ−)
=

1

2

(
1 1

1 −1

)
.

(3.42)

Tensor indices are converted using these Jacobians. In particular, the lightcone

expressions for coordinate differentials and derivatives are:

dσ± = dσ0 ± dσ2 , ∂± =
1

2
(∂0 ± ∂1) . (3.43)

For reference, we note that the standard Minkowski metric ηαβ takes following

form in lightcone coordinates:

(ηab) = −1

2

(
0 1

1 0

)
, (ηab) = −2

(
0 1

1 0

)
. (3.44)

The lightcone components of the energy-momentum tensor are:

T++ =
1

2
(T00 + T01) , T−− =

1

2
(T00 − T01) , T+− = 0 = T−+ . (3.45)
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Note that the trace, evaluated in lightcone coordinates, is:

Trace(T ) = ηabTab = 2η+−T+− = −4T+− . (3.46)

Thus ‘tracelessness’ means T+− = 0, and the two independent components are

T++ and T−−.

We can write the gauge-fixed action in lightcone coordinates:

SP = −T
2

∫
d2σηαβ∂αX

µ∂βXµ

=
T

2

∫
d2σ = (Ẋ2 −X ′2) = 2T

∫
d2σ∂+X

µ∂−Xµ . (3.47)

For reference, the equations of motion take the form

�Xµ = −(∂2
0 − ∂2

1)Xµ = −4∂+∂−X
µ = 0 . (3.48)

Thus, in lightcone coordinates it is obvious that the general solution de-

composes into independent left- and right-moving waves with arbitrary profile:

Xµ(σ) = Xµ
L(σ0 + σ1) +Xµ

R(σ0 − σ1) . (3.49)

We also give the constraints in lightcone coordinates:

T++ = 0 ⇔ ∂+X
µ∂+Xµ = 0⇔ Ẋ2

L = 0 ,

T−− = 0 ⇔ ∂−X
µ∂−Xµ = 0⇔ Ẋ2

R = 0 . (3.50)

We did not list T+− = 0, because this condition holds off shell.

3.2.5 From symmetries to conservation lawsconservation_laws

One of the most central insights in physics is that symmetries, to be precise, rigid

symmetries, lead to conservation laws. The formal statement of this relation

is the famous first Noether theorem, which shows that given an action with a

rigid symmetry, we can construct a ‘conserved current,’ from which in turn a

‘conserved charge’ is obtained by integration of the current over a space-like

hypersurface. We will not explain this theorem in generality, but refer the

interested reader to the literature add references. Instead we will go through

two instructive and relevant examples. Before starting, let us emphasize that

Noether’s theorem can be used for both spacetime symmetries (related to group

actions on spacetime) and internal symmetries (related to group actions on
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vector or other bundles over spacetime). In our situation this terminology is

potentially ambigous, because symmetries that are spacetime symmetries from

the spacetime point of view are internal symmetries from the worldsheet point

of view. In the following it will usually be clear from the context what we mean.

Conformal transformations on Σ

When imposing the conformal gauge hαβ
!
= ηαβ we made use of both reparametriza-

tions and Weyl transformations. However, we have not completely gauge-fixed

these symmetries, because some reparametrizations only change the metric by

a conformal factor, and can therefore be undone by a compensating Weyl trans-

formation:

ηαβ → e2Ω(σ)ηαβ → ηαβ .

We will refer to reparametrizations which have this restricted form as ‘conformal

transformations,’9 and to the gauge-fixed theory as ‘conformally invariant.’ In

a later exercise Add cross reference or move exercise forward to this

position. we will show that conformal transformations take the following form

in light cone coordinates:

σ+ → σ̃+(σ+) , σ− → σ̃−(σ−) .

That is, conformal transformations are precisely those reparametrizations which

do not mix the lightcone coordinates.

We have already verified that the energy momentum tensor is conserved,

∂αTαβ = 0. In lightcone coordinates, this statement reads

∂−T++ = 0 , ∂+T−− = 0 ,

which implies that each independent component only depends on one of the

lightcone coordinates,

T++ = T++(σ+) , T−− = T−−(σ−) .

Therefore our conserved current Tαβ decomposes into two ‘chiral conserved cur-

rents.’ The decoupling of left- and right-moving quantities, which we have

9This terminology is common in physics while in mathematics what we call Weyl transfor-

mations are often called conformal transformations.
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already seen in other expressions before, is characteristic for massless two-

dimensional theories, and for strings. Given this chiral decomposition, it is

sufficient to look at one chiral current, say T++.

Since we are interested in string theory rather than in two-dimensional scalar

field theory on global Minkowski space, we need to impose boundary conditions.

Let us choose periodic boundary conditions for definiteness. This implies that

T++ is periodic, T++(σ+ + π) = T++(σ+). While integration of T++ over

σ1 gives indeed a conserved charge, we might note at this point that we can

create further conserved currents by multiplying T++ by an arbitrary (smooth)

periodic function f(σ+) since

∂−
(
f(σ+)T++

)
= 0 .

We claim that the corresponding conserved charge is:

Lf = T

∫ π

0

dσ1f(σ+)T++ .

Exercise: Show that Lf is a conserved charge, i.e. verify that

d

dσ0
Lf = 0 .

Since f(σ+) is periodic, we can expand it in a Fourier series. The Fourier basis

{e2imσ+ |m ∈ Z} then provides us with a basis {L̃m|m ∈ Z} for the conserved

charges, where

L̃m = T

∫ π

0

dσ1e2imσ1

T++ .

Exercise: Why can we write e2imσ1

instead of e2imσ+

in the above formula?

By repeating the same steps for T−− we obtain a second infinite set of

conserved charges,

Lm = T

∫ π

0

dσ1e−2imσ1

T−− .

Using the conserved charges, we can rewrite the constraints T++ = 0 = T−− as

Lm = 0 = L̃m .

These equations hold on-shell. Since we have shown that Lm, L̃m are conserved

we have now shown that we can impose the constraints as initial conditions: if

they hold at one (worldsheet) time σ0, they hold for all times. This verifies our

previous claims that the constraints are ‘first class’, that is consistent with time

evolution and therefore easier to deal with as other types of constraints.
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Exercise: Repeat this analysis for open strings, and show that there is only

one infinite set of conserved charges:

Lm = 2T

∫ π

0

dσ1
(
eimσ

1

T++ + e−imσ
1

T−−

)
.

Hint: with open string boundary conditions, left- and right-moving waves are

no longer independent, but related at the boundary. This explains why there is

only one set of charges. The derivation can be simplified by formally combining

left- and right moving quantities into a single quantity which is periodic on the

doubled interval σ1 ∈ [−π, π].

Poincaré Transformations on M. Momentum and angular momentum

of the string

The Polyakov action is invariant under global Poincaré transformations of M :

Xµ → ΛµνX
ν + aµ . (3.51)

Instead of invoking the Noether theorem, we use a short-cut, dubbed the Noether

trick to identify the corresponding conserved currents. For simplicity, we focus

on translations Xµ → Xµ + aµ. This is a rigid symmetry transformation,

but consider what happens when we ‘gauge it’, that is, when we promote the

transformation paramater aµ to ta function aµ(σ) on the worldsheet. To avoid

confusion, let us stress that we have to apply the Noether trick from the world-

sheet perspective, because we are given an action on Σ. From this viewpoint,

translations inM are internal symmetries. An infinitesimal ‘gauged’ translation

acts by δXµ = δaµ(σ). This is no longer a symmetry of the action, but we know

that the action becomes invariant if we restrict to rigid translations. Therefore

the infinitesimal variation of the action must take the form

δS =

∫
d2σ∂αa

µPαµ . (3.52)

Integration by parts gives

δS = −
∫
d2σaµ∂αP

α
µ . (3.53)

More over, once we impose the equations of motion, the action is stationary

with respect to all variations, including gauged translations. Hence the current

Pαµ must be conserved on shell:

∂αP
α
µ = 0 . (3.54)
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Pαµ , with µ fixed, is the conserved current on Σ associated with translations

in the µ-direction of M, in other words, the momentum density along the µ-

direction.

Remark: While above we assumed the conformal gauge, the method works

without gauge fixing. We quote the result for the conserved current:

Pαµ = −T
√
hhαβ∂βXµ

c.g.
= −T∂αXµ , (3.55)

In the last step we imposed the conformal gauge to check consistency with the

derivation above.

To find the angular momentum density, we have to follow the same procedure

for Lorentz transformations in M. The result for the conserved current is

Jαµν = XµP
α
ν −XνP

α
µ (3.56)

The associated conserved charges are obtained by integration of the time-like

component of the current along any space-like hypersurface σ0 = const. of Σ:

Pµ =

∫ π

0

dσ1P 0
µ = T

∫ π

0

dσ1Ẋµ

Jµν =

∫ π

0

dσ1J0
µν = T

∫ π

0

dσ1
(
XµẊν −XνẊµ

)
(3.57)

Remark: These charges are conserved on shell by construction. You can

verify this using the general Stokes theorem, which converts a volume integral

into a surface integral. You’ll have to assume that the currents vanish at space-

like infinity (if you take Σ to be global Minkowski space), or use the boundary

conditions. Alternatively you can check directly that dPµ/dσ
0 = 0, dJµν/dσ

0 =

0.

The quantities Pµ and Jµν are the total relativistic momentum of the string.

This interpretation is already justified by the fact they are the conserved charges

associated to translations and Lorentz transformations.

3.2.6 Explicit solutions

So far we have extracted information without solving the equations of motion

explicitly. We now turn to this remaining problem. We need to select those

solutions of the wave equation which satisfy the constraints and one of the

possible boundary conditions. Let us start with the boundary conditions, and
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consider periodic boundary conditions for definiteness. Since the solution is

periodic in σ1, it is clear that it must take the form

Xµ(σ) = aµ + bµσ0 +
∑
n 6=0

cµne
−2inσ− +

∑
n 6=0

dµne
−2inσ+

,

where aµ, bµ ∈ R and (cµn)∗ = cµ−n and (dµn)∗ = dµ−n, since Xµ is real.

Note that the term linear in σ0 is allowed by the boundary conditons and

solves the wave equation. To see explicity that Xµ splits into left- and right

moving parts, note that pµσ0 = 1
2p
µ(σ+ + σ−).10

The conventional parametrization is string theory looks somewhat different:

Xµ(σ) = xµ +
1

πT
pµσ0 +

i

2

√
1

πT

∑
n 6=0

1

n
αµne

−2inσ− +
i

2

√
1

πT

∑
n 6=0

1

n
α̃µne

−2inσ+

,

(3.58) X-solution

where xµ, pµ ∈ R and (αµn)∗ = αµ−n and (α̃µn)∗ = α̃µ−n. We now explain why this

slightly complicated looking parametrization is convenient.

Let us first compute the total momentum:

Pµ = T

∫ π

0

dσ1Ẋµ = pµ .

Thus the coefficient pµ of the term proportional to σ1 is the total momentum.

Next, compute the motion of the center of mass

xµCM =
1

π

∫ π

0

dσ1Xµ(σ) = xµ + pµσ0 .

For time-like pµ we can match this with the worldline of a massive relativistic

particle,

xµ(τ) = xµ(0) +
dxµ

dτ
(0)τ ,

and conclude that the center of mass of the string behaves like a relativistic

particle and moves on a straight line on Minkowski space. Since pµ = mẋµ,

worldsheet time σ0 and proper time τ are related by σ0 = m−1τ . The mass

of the string is give by PµPµ = pµpµ = −m2, and we will work out explicit

expressions later.

Exercise: Work out the modifications needed to decribe the center of mass

motion of massless string states. Must reemember to solve this myself...

10While this is less canonical, the constant part aµ is usually split symmetrically.
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We have thus seen that the motion of a string decomposes into two parts.

The zero mode part, which describes the motion of its center of mass behaves

like a relativistic particle. The remaining terms, which describe the various

possible excitations correspond, for periodic boundary conditions, to left- and

rightmoving waves.

The string tension T appears explicitly in (
X-solution
3.58) and many other equations.

It is convenient to use so-called string units where one sets

T =
1

π
in addition to c = 1 , ~ = 1 .

This is an example of a system of units where all quantities are measured in

multiples of fundamental constants. Another example are Planck units where

GN = 1, ~ = 1, c = 1. We will discuss the relation between both systems later.

Add cross reference.

Using our explicit solution, we can now evaluate the expressions found pre-

viously for the conserved charges associated with conformal transformations.

Observe that Lm, L̃m are the Fourier components of T±±, which we can eval-

uate at any worldsheet time σ0, because they are conserved. Evaluating the

Fourier components of

T±± =
1

2
(∂±X)2 (3.59)

at σ0 = 0 we find:

Lm := T

∫ π

0

dσ1 e−2imσ1

T−− =
πT

2

∞∑
n=−∞

αm−n · αn ,

L̃m := T

∫ π

0

dσ1 e2imσ1

T++ =
πT

2

∞∑
n=−∞

α̃m−n · α̃n . (3.60)

While xµ does not appear in T±±, we have included the momentum pµ in the

sum by defining

α0 = α̃0 =
1√
4πT

p
πT=1

=
1

2
p . (3.61)

The constraints T±± = 0 imply

Lm = L̃m = 0 . (3.62)

By evaluating the canonical Hamiltonian,

H =

∫ π

0

dσ1
(
ẊΠ− L

)
=
T

2

∫ π

0

(Ẋ2 + (X ′)2)2 = L0 + L̃0 , (3.63)
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we see that it coincides with the so-called worldsheet Hamiltonian L0 + L̃0.11

The ‘Hamiltonian constraint’ H = 0 allows us to express the mass of a state

in terms of its Fourier coefficients:

H = L0 + L̃0 =
πT

2

∞∑
n=−∞

(α−n · αn + α̃−n · α̃n)

=
p2

4
+ πT (N + Ñ) = 0 , (3.64)

where we defined the total occupation numbers

N =

∞∑
n=1

α−n · αn , Ñ =

∞∑
n=1

α̃−n · α̃n .

This provides us with the ‘stringy mass shell condition’:

M2 = −p2 = 4πT (N + Ñ) .

Since L0 = L̃0 we have the additional constraint

N = Ñ .

This is called level matching, because it implies that left- and right-moving

modes contribute equally to the mass. The physical interpretation of the other

constraints Lm = 0 = L̃m, m 6= 0 will be discussed later.

For references, we also give the results for open string with Neumann bound-

ary conditions, and recommend filling out the intermediate steps as an exercise.

The solution is

Xµ(σ) = xµ + pµσ0 +
i√
πT

∑
n 6=0

1

n
αµne

−inσ0

cos(nσ1) , (3.65) FourierOpen

This can still be decomposed into left- and right-mvoing parts X = XL(σ+) +

XR(σ−):

Xµ
L/R(σ±) =

1

2
xµ +

1

πT
pµL/Rσ

± +
i

2
√
πT

∑
n 6=0

1

n
αµn (L/R)e

−inσ± , (3.66)

but the boundary conditions X ′µ(σ1 = 0, π) = 0 imply

pL = pR =
1

2
p , αn(L) = αn(R) . (3.67)

11We will see later that L0+L̃0 generates translations of σ0, which explains this terminology.

Add cross reference.
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We see that due to the boundary conditions left- and rightmoving waves are

reflected at the boundaries and combine into standing waves. As a consequence,

there are only half as many independent oscillations as for closed strings.

Exercise: Show that the ends of an open string must move with the speed

of light. Hint: You need to use constraints as well as the boundary conditions.

We mentioned before that with Neumann boundary conditions there is only

one set of conserved charges Lm. Here is their explicit form in terms of Fourier

coefficients:

Lm = 2T

∫ π

0

dσ1
(
eimσ

1

T++ + e−imσ
1

T−−

)
=
T

4

∫ π

−π
eimσ

1
(
Ẋ +X ′

)2

=
1

2
πT
∑
n

αm−nαn (3.68)

where we defined α0 = p. The canonical Hamiltonian is H = L0.

As for closed strings, the Hamiltonian constraint H = L0 = 0 is the mass

shell condition:

M2 = −p2 = 2πTN .

3.2.7 Open strings with Dirichlet boundary conditions

Exercise: Work out the details for Dirichlet boundary conditions and compare

to the literature.

Hints: Dirichlet boundary conditions allow a term linear term in σ1, but

no tmer linear in worldsheet time σ0. For the osciallators, cos is replaced by

sin. Thus Ẋ = 0 at the ends (ends don’t move), but X ′ 6= 0 at the ends, cor-

responding to exchange of momentum with a D-brane. Consider what happens

when you force the ends of an open strings two live on to spatially separated

D-branes.

3.2.8 Non-oriented strings

to be added



Chapter 4

Quantized relativistic

particles and strings

In this chapter we introduce the covariant quantization of relativistic particles

and strings, and explain their relation to the quantization of (scalar) fields. The

detailed analysis of the resulting Hilbert space of states for relativistic strings

will be performed in Part 3, after we have developed various useful tools from

two-dimensional conformal field theory in Part 2.

4.1 Quantized relativistic particles

The usual heuristic approach to ‘quantization’ is to identify the canonical coor-

dinates and canonical momenta of a classical theory, and then to promote them

to self-adjoint operators acting on a separable Hilbert space H, which satisfy

canoncial commutation relations. The canonical commutation relations can be

motivated by replacing the Poisson brackets of the classical theory by quantum

commutators, through the formal substitution rule {·, ·} → −i[·, ·]. In the fol-

lowing we will not assume that the reader is familiar with Poisson brackets, and

simply postulate the canonical commutation relations.

In the case of a free non-relativistic particle with (Cartesian) coordinates xi

and canonical (= kinetic) momentum pj , the canonical commutation relations

are

[xi, pj ] = iδij , (4.1) xp-non-rel

49
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where we have set ~ = 1, and where the unit operator on the Hilbert sapce H is

understood on the right hand side. In the following we will procede formally and

ignore the technical complications caused by the fact that xi, pj are unbounded

operators on an infinite dimensional Hilbert spaces. In particular we will not

specify the domains of these operators, and we will assume throughout that any

Hermitian operator we encounter has a complete set of eigenstates.

For a relativistic particle the natural generalization of (
xp-non-rel
4.1) is

[xµ, pν ] = iηµν . (4.2) Qxp

However, we know that the components of the relativistic momentum are sub-

ject to the mass shell condition p2 + m2 = 0. One option is to solve this

constraint in the classical theory, and then to quantize the theory using only

gauge-inequivalent quantities. A specific version of this procedure is the so-

called light cone quantization, which will be discussed later add cross ref-

erence. Any such scheme has the disadvantage that Lorentz invariance is no

longer manifest, because one has to solve for one component of the relativistic

momentum in terms of others. Here we will follow the complementary, covari-

ant approach, where canonical commutation relations are imposed on Lorentz

covariant quantities. The constraint p2 + m2 will be imposed as a condition

which selects physical states later.

We therefore start by constructing a representation space F for the relations

(
Qxp
4.2), which we call the Fock space. This is done by postulating the existence

of a distinguished state, the vacuum |0〉, which is translation invariant:

pν |0〉 = 0 .

The Fock space F is then generated by applying operators build out of xµ.

Since we assume that pν has a complete set of eigenstates, this amounts to

constructing momentum eigenstates.

Exercise: Show that the operator eik·x, where k = (kµ) ∈ RD, creates

eigenstates of pν with eigenvalue kν :

|k〉 := eik·x|0〉 ⇒ pν |k〉 = |kν〉 .

The scalar product between momentum eigenstates is defined using the Dirac

delta function:

〈k|k′〉 = δD(k − k′) .
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Since momentum eigenstates are not normalizable, they are not physical states,

though they are extremely useful in handling them. To obtain normalizable

states we form superpositions, ‘wave packages,’ of the form

|Φ〉 =

∫
dDk Φ̃(k)|k〉

and require them to be square-integrable:

|〈Φ|Φ〉| <∞ .

Since the scalar product between wave packages is

〈Φ|Φ′〉 =

∫
dDkdDk′Φ̃(k)Φ̃(k′)〈k|k′〉 =

∫
dDkΦ̃(k)Φ̃(k) ,

and the resulting Hilbert space H is isomorphic to L2(RD), the space of square-

integrable functions in D variables.

This is, however, not the Hilbert space of physical states, because we still

have to impose the constraint p2 + m2 = 0. Therefore, we define the physical

subspaces Fphys ⊂ F and Hphys ⊂ H as

Fphys = {|Φ〉 ∈ F|(p2 +m2)|Φ〉 = 0}

and

Hphys := {|Φ〉 ∈ H|(p2 +m2)|Φ〉 = 0} ⊂ Fphys ⊂ F

States satisfying the mass shell constraint can be parametrized as

|Φ〉 =

∫
dDkδ(k2 +m2)φ̃(k)|k〉 ,

where the δ-function forces the momenta entering into the wave package to live

on the mass shell k2 + m2 = 0. The mass shell condition has two solutions for

the energy k0:

k0 = ±
√
~k 2 +m2 .

Restricting to positive energies k0 > 0, and using that (see (
delta-composed
B.1)

θ(k0)δ(k2 +m2) =
1

2|k0|
δ

(
k0 −

√
~k 2 +m2

)
we obtain

|Φ〉 =

∫
dD−1~k

2ω
φ̃(k)|k〉 ,
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where ω =
√
~k 2 +m2, and where k is restricted to values on the hyperboloid

k2 +m2 = 0, k0 > 0.

The scalar product between two normalizable states satisfying the mass shell

condition |Φi〉 ∈ Hphys, i = 1, 2 is

〈Φ1|Φ2〉 =

∫
dD−1~k

2ω
φ̃∗1(k)φ̃2(k) .

The resulting Hilbert space Hphys is isomorphic to L2(RD−1, dµ), where

dµ =
dD−1~k

2ω

is the Lorentz invariant measure on the mass hyperboloid k2 +m2 = 0, k0 > 0.

As an extension, one can also consider negative k0 < 0. The corresponding

modes are not interpreted as describing negative energy states, but as positive

energy modes of an ‘antiparticle.’ The particle-antiparticle Hilbert space con-

sists of two orthogonal copies of L2(RD−1, dµ). We remark that particles and

antiparticles are in general distinct, and carry charges of opposite sign under all

global symmetries. Thus identifying particle and antiparticle and working with

just one component of the mass hyperboloid is only possible for particles which

are real, or neutral, in the sense that they do not carry charge under any global

symmetry. Examples for neutral particles are photons and gravitons.

Exercise: Consider the x-representation1 of physical states |Φ〉 ∈ Hphys in

terms of ‘position space wave functions’

Φ(x) = 〈x|Φ〉 ,

and show that Φ(x) satisfies the Klein-Gordon equation:

(−� +m2)Φ(x) = 0 ,

where � = ∂µ∂
µ = −∂2

0 + ∆ is the wave operator.

Remark: For solutions of the Klein-Gordon equation one can define a positive

definite and time-independent scalar product using the conserved current

jµ = i(Φ∗∂µΦ− ∂µΦ∗Φ) ,

which has the interpretation of a charge density. One can show that this scalar

product agrees with the one which we have introduced above using momen-

tum eigenstates (the k-representation), and momentum space wave functions.

1See Appendix
bra-ket
B.3 for a short summary of the bra-ket notation we are using here
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Note that when taking Φ(x) to be complex, the conserved current cannot be

interpreted as a probability density, and that the naive x-representation scalar

product

〈Φ1|Φ2〉 = i

∫
x0=const

dD−1~xj0

= i

∫
x0=const

dD−1~xΦ∗1(x)∂0Φ2(x)− (∂0Φ1(x))Φ∗2(x)

is indefinite. This can be corrected by interpreting Fourier modes of Φ(x) with

negative k0 as momentum modes of an antiparticle carrying opposite charge to

the particle with k0 > 0. The conserved current is then interpreted as a charge

rather than probability density. Since states with positive and negative k0 are

orthogonal with respect to the above scalar product, and since its restriction to

states with positive (negative) k0 is positive (negative) definite, one can make the

scalar product positive definite by introducing a relative sign between the two

complementary subspaces. We will see this from the perspective of momentum

space in the next section, although we will give the function Φ(x) a different

physical interpretation.

4.2 Field quantization and Quantum Field The-

ory

As the above exercise has shown, the Klein-Gordon equation can be viewed as

the implementation of the constraint p2+m2 = 0 on physical states, when states

are realized in the x-representation, that is as position space wave functions

Φ(x) = 〈x|Φ〉. With this interpretation the Klein-Gordon equation is analogous

to the Schrödinger equation.

There is an alternative interpretation of the Klein Gordon field as a classical

field, analogous to the electromagnetic field. While the interpretation is dif-

ferent, the mathematics of solving the Klein-Gordon equation and representing

the solution as a Fourier integral remains the same. We will now discuss what

happens if we quantize a classical complex Klein Gordon field and compare the

result to the quantization of a relativistic particle discussed above. We start by

noting that the Klein-Gordon equation

(−� +m2)Φ(x) = 0
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follows from the action principle

S[Φ] =

∫
dDx

(
−∂µΦ∂µΦ∗ −m2ΦΦ∗

)
,

and the canonically conjugated momentum is

Π(x) =
∂L

∂∂0Φ
= ∂0Φ∗ .

The Fourier representation of the general solution can be parametrized in the

following form:

Φ(x) =

∫
dDk

(
θ(k0)δ(k2 +m2)φ̃+(k) + θ(−k0)δ(k2 +m2)φ̃∗−(k)

)
.

Here we used the step function

θ(y) =

{
1 , for y ≥ 0 ,

0 , for y < 0 .

to separate the two components of the hyperboloid k2 +m2 = 0. Carrying out

the k0-integration using the δ-function we obtain

Φ(x) =
1

(2π)(D−1)/2

∫
dD−1~k

2ω~k

(
φ+(k)eikx + φ∗−(k)e−ikx

)
k0=ω~k

.

Here φ±(k) are suitably rescaled versions of φ̃±(k). We now quantize the com-

plex Klein-Gordon field by declaring Φ(x) to be an operator satisfying the canon-

ical commutation relation

[Φ(x),Π(y)]x0=y0 = iδD−1(~x− ~y) .

Since Φ(x) depends on time x0, we are in the Heisenberg picture of quantum

mechanics, where operators depend on time while states are time-independent.

We only need to specify the commutator at equal times, because the commuta-

tor at other times is fixed by time evolution. Comparing back to the relativistic

particle, we see that the spatial coordinate is treated as a continuous index

labelling degrees of freedom located at different points of space. This is the

original idea of ‘field quantization’ Add reference Dreimännerarbeit. The

operator Φ(x) can be represented as a Fourier integral, with the Fourier coef-

ficients φ±(k) promoted to operators. Complex conjugated quantities are now

interpreted has Hermitian conjugate operators, and denoted Φ†(x), φ†±(k).
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Exercise: Substitute the Fourier decomposition of Φ(x) into the canonical

commutation relations, and show that the quantized Fourier modes satisfy the

relations:

[φ±(~k), φ†±(~k ′)] = 2ω~kδ
D−1(~k − ~k ′) , [φ±(~k), φ†∓(~k′)] = 0 . (4.3) CRphipm

Now we can construct a Fock space based on a ground state |0〉 defined by the

properties

φ±(~k)|0〉 = 0 , 〈0|0〉 = 1 .

The states

|~k〉± = φ†±(~k)|0〉

are interpreted as momentum eigenstates for two particles, which are related

by Φ → Φ†, and are interpreted as a particle and its antiparticle. The mutual

scalar products between such states are

±〈~k|~k ′〉± = 〈0|φ±(~k)φ†±(~k′)|0〉 = 〈0|[φ±(~k)φ†±(~k′)]|0〉 = 2ω~kδ
D−1(~k − ~k ′)

and

∓〈~k|~k ′〉± = 0 .

Thus particle and antiparticle states are orthogonal. By taking square-integrable

superpositions we obtain two orthogonal copies of the Hilbert space L2(RD−1, dµ).

This is the same Hilbert space that we obtained above by quantizing the rela-

tivistic particle, provided that we include both sheets of the mass hyperboloid.

The advantage of field quantization is that it gives us more, because multiple

application of creation operators φ†±(~k) allows us to obtain multiparticle mo-

mentum eigenstates

φ†+(~k1)φ†+(~k2) · · ·φ†−(~k ′1)φ†−(~k ′2) · · · |0〉 .

Since creation operators commute among themselves, the multiparticle Hilbert

space obtained by taking square integrable superpositions of momentum eigen-

states has the form

Hmultiparticle
phys = C⊕H+

phys ⊕
2∨
H+

phys ⊕ · · · ⊕ H
−
phys ⊕

2∨
H−phys ⊕ · · · ,

where C is the zero-particle sector spanned by |0〉, where H±phys ' L2(RD−1, dµ)

are the one-particle Hilbert spaces for particle and antiparticle, and where∨kH±phys denotes the k-th symmetrized tensor power.
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The commutation relations (
CRphipm
4.3) resemble those of harmonic oscillators labled

by the momentum ~k. In the quantum field theory literature it is common to

use rescaled operators

a(~k) = (2ω~k)−1/2φ+(k) , b(~k) = (2ω~k)−1/2φ−(k) ,

and their Hermitian conjugates

a†(~k) = (2ω~k)−1/2φ†+(k) , b†(~k) = (2ω~k)−1/2φ†−(k) .

These satisfy standard harmonic oscillator ‘with a continuous index ~k.’

[a(k), a†(~k )] = δD−1(~k − ~k ′) , [b(k), b†(~k )] = δD−1(~k − ~k ′) ,

and the mode expansion of the field operator takes the form

Φ(x) =
1

(2π)(D−1)/2

∫
dD−1~k√

2ω~k

(
a(k)eikx + b†(k)e−ikx

)
k0=ω~k

.

While one can use either parametrization, we remark that while

dµ =
dD−1

2ω~k
and 2ω~kδ

D−1(~k − ~k ′)

are a Lorentz invariant measure and a Lorentz invariant δ-function on the mass

shell k2 +m2 = 0, the expressions

dD−1√
2ω~k

and δD−1(~k − ~k ′)

are not Lorentz invariant. This also implies that states of the form Φ†(~k)|0〉 =√
2ω~k|0〉 are Lorentz invariant, while states of the form a†(~k)|0〉 are not.

The Lorentz invariance of dµ is clear because we obtained it by localizing

the volume element dDk on the mass shell using δ(k2 +m2). Similarly since

δD(k − ~k ′) = δ(k0 − k′0)δD−1(~k − ~k ′)

and, using (
delta-composed
B.1)

δ(k · k − k′ · k′) =
1

2|k0|
δ(k0 − k′0) ,

we have

δD(k − ~k ′) = δ(k · k − k′ · k′)2|k0|δD−1(~k − ~k ′) ,

which implies that 2|k0|δD−1(~k − ~k ′) is Lorentz invariant.
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Instead of a complex classical field, we could have considered a real classical

field. This case is recovered from the above formulae by setting Φ(x) = Φ†(x),

which implies φ+(k) = φ−(k) and a(~k) = b(~k). Thus particle and antiparticle

are identified. Note that this identification requires that there is no symmetry

or interaction which acts on the phase of the scalar field Φ. For example, if we

couple a scalar field to an electromagnetic field, then particle and antiparticle

automatically carry opposite charges and cannot be identified. More technically,

the minimal coupling of a scalar field to an electromagnetic field requires a

symmetry of Φ(x) under local U(1) phase transformations, and therefore Φ(x)

must be complex.

We finish this section with some additional remarks. Firstly, the appearance

of δ-functions in the commutation relations for the operators Φ(x) and φ±(k)

reflects an issue that is similar to the fact that momentum eigenstates are not

normalizable and therefore do not lie in the Hilbert space. The ‘operators’

Φ(x) and φ±(k) are not proper operators but operator valued distributions.

While momentum eigenstates must be combined into ‘wave packets’ to obtain

states in the Hilbert space, operator valued distributions become operators on

the Hilbert space once they are applied to suitable testfunctions. Add refer-

ence, for example Haag. However, in practice it is more convenient to work

with momentum eigenstates, δ-functions and field operators Φ(x) than with the

actual Hilbert space and operators defined thereon.

Secondly, we have seen that the advantage of field quantization (‘second

quantization’) over particle quantization (‘first quantization’) is that it directly

leads to a multiparticle theory, which is what one needs in a relativistic set-

ting where particles can be created and annihilated. Therefore quantum field

theory is the standard formulation of quantized relativistic systems based on

point particles, although methods based on the ‘first quantized’ approach (som-

times called worldline formalism) have some uses. Unfortunately, the analogous

‘second quantized’ approach to string theory, or string field theory, is very com-

plicated and not as much developed as quantum field theory. However the first

quantized approach to the quantum theory of relativistic string is workable and

by now highly developed.
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4.3 Quantized relativistic strings

From the classical solutions we found in the previous chapter we know that a

free relativistic string in Minkowski space is, as far as its degrees of freedom

are concerned, the combination of a relativistic particle, corresponding to its

center of mass motion, and an infinite set of harmonic oscillators corresponding

to left- and right-moving waves (possibly coupled by the boundary conditions).

Therefore we should expect that the Hilber space is the product of the one a

relativistic particle with infinitely many harmonic oscillators. But instead of

postulating canonical relations piecemeal for xµ, pν and the Fourier coefficients,

we can use the canonical coordinates Xµ(σ0, σ1) and the canonical momenta

Πν(σ0, σ1). We work with the Polyakov action in the conformal gauge, and can

interprete Xµ either as embedding coordinates for a string in spacetime, or as a

set of scalar fields on the worldsheet Σ. In the conformal gauge Πµ = TẊµ. Both

Xµ and Πν are time-dependent operators, and we are thus in the Heisenberg

picture of quantum mechanics. Canonical commutators are imposed at equal

worldsheet time, and σ1 is treated as a continuous index, similar as µ is a

discrete index. We consider periodic boundary conditions for definiteness. Then

the canonical commutation relations are:

[Xµ(σ0, σ1) ,Πν(σ′0, σ′1]σ0=σ′0 = iηµνδπ(σ1 − σ′1) , (4.4) QXP

where

δπ(σ1) =
1

π

∞∑
k=−∞

e−2ikσ1

= δπ(σ1 + π)

is the periodic δ-function with period π, see Appendix
Fourier
B.2.

Exercise: Use the canonical commutation relations (
QXP
4.4) to derive the fol-

lowing commutation relations among the Fourier mode operators:

[xµ , pν ] = iηµν , [αµm , ανn] = mδm+n,0 , [α̃µm , α̃νn] = mδm+n,0 .

Since Xµ is Hermitian, it also follows that

(xµ)† = xmu , (pµ)† = pµ , (αµm)† = αµ−m , (α̃µm)† = α̃µ−m .

Comparing the relations for αµm to the standard relations between creation and

annihilation operators of a harmonic oscillator

[a, a†] = 1 ,
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we see that we indeed get an infinite set of harmonic oscillators. More precisely,

setting

αµm =

{ √
maµm for m > 0 ,
√
−m(aµ−m)† for m < 0 ,

we obtain

[aµm , (aνn)†] = ηµνδm,n .

While these are standard harmonic oscillator relations for µ, ν 6= 0, we obtain

an additional minus sign in the relations for µ = ν = 0.

To explore this further, let us build a Fock space Fosc by starting with a

ground state |0〉, defined by

ανn|0〉 , n > 0 .

If we include the zero mode part corresponding to xµ, pν we should of course

add the condition pν |0〉 = 0. But we already know how to deal with this ‘zero

mode part’ of the Fock space and concentrate on the ‘oscillator part’ Fosc for

the time being.

Oscillator eigenstates are generated by applying creation operators αµ−m,

m > 0 to the ground state. We take the ground state to be normalized as

〈0|0〉 = 1. Now consider scalar products of the form(
αµ−m|0〉 , αν−n|0〉

)
= 〈0|αµmαν−n|0〉 = 〈0|[αµm , αν−n]|0〉 = ηµνδm,n .

Thus the natural, relativistically covariant scalar product on Fosc is indefinite,

while the space of states in a quantum theory must have a positive definite

scalar product. However, we still need to impose the constraints Lm = 0 (and

L̃m = 0). Since solving them before quantisation obscures relativistic covari-

ance, we impose them on states of the quantum theory, and define the subspace

of physical states Fphys ⊂ F by requiring that the matrix elements of Lm, L̃m

vanish between physical states |Φ〉, |Φ′〉:

〈Φ|Lm|Φ′〉 = 0 , 〈Φ|L̃m|Φ′〉 = 0 .

As we will see later, only the constraints with m 6= 0 takes this form, while there

is a modification for m = 0.

While one might have hoped that Fphys is positive definite, the situation is

more complicated. First of all, the best one can achieve is that Fphys is positive

semi-definite:

〈Φ|Φ〉 ≥ 0 .
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One can show that there are always ‘null states,’ which are physical and different

from the zero state, but have zero norm squared. The presence of these states

is related to the residual residual symmetry under conformal transformations,

which has not been fixed by imposing the conformal gauge. Physical states

which differ by a null states are related by conformal transformations, and should

thus been identified. Writing |Φ〉 ∼ |Φ′〉 when to physical states differ by a null

state, the candidate for the physical Hilbert space is

H = Fphys/ ∼ .

In Part 2 of this book we will develop various tools from conformal field theory

which will help us to better understand the structure of the Hilbert space. The

spacetime interpretation of the resulting physical states will then be a main

subject of Part 3.

Continuing our preview of things to come we remark that further conditions

need to be imposed to guarantee that Fphys is positive semi-definite. The so-

called ‘no-ghost theorem’ shows the absence of negative norm states for D ≤ 26,

while for D > 26 negative norm states always exist.2 This implies that strings

in Minkowksi space can only be quantised consistently if D ≤ 26. Moreover,

once string interactions are included, negative norm states, which naively have

been projected out by imposing the constraints can re-occur as intermediate

states in loop diagrams. Since for consistency they then have to be allowed

as asymptotic states as well, the essential ‘unitarity’ or positive definiteness

of the quantum theory is lost. The only case where negative norm states can

be decoupled consistently for strings in a Minkowski background is in D = 26

dimensions. Since, at least at length scales accessible to current experiments,

we live in a spacetime of dimension 4, this raises the question how to account

for the the extra dimensions. We will come back to this question in Part 4 of

the book.

2By ‘negative norm states’ we refer to states |Φ〉 where 〈Φ ,Φ〉 < 0. ‘Negative norm-squared

states’ would be more accurate, but somewhat tedious.



Appendix A

Physical Units
Units

For the benefits of readers without a strong physics background, we add a few

remarks on physical units. Physical quantites are measured by comparing to

an agreed standard unit of measure. In the SI system one uses the units meter,

second, kilogram, ampere, and degree Kelvin for the quanitites length, time,

mass, current and temperature. All further units are products of these basic

units. The basic quantities are referred to as ‘dimensions,’ but note that while

physical quantities can be multiplied, they can only be added if they ‘have the

same dimension’, that is are measured in the same unit. Thus the units or

dimensions do not form a vector space reference. For our purposes only those

quanties which derived from length, time and mass will be relevant. As a slightly

non-trivial example consider the action functional (
ActionI
2.11). When using SI units

this takes the form

S = −mc2
∫
dt

√
1− ~v 2

c2
. (A.1) Action-dimensionful

In mechanics, the action of a force on a particle is the integral of work done

over time, and therefore has dimension energy × time. The actions used in

formulating actions principles are generalizations of this quantity and have the

same dimension.

Like most of the theoretical and mathematical literature, we will not use SI

units, but ‘natural units.’ Such units are based on using constants of nature

instead of conventionally chosen units. One such constant is speed of light c,

which we set to unity, c = 1. In the resulting system of units, time and space

are measured in the same units (light seconds, light years, etc), velocities are
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dimensionless and measured in multiples of the speed of light, while mass and

energy have the same dimension. In high energy physics it is common to specify

the masses of elementary particles in energy units (electron volts) rather than

mass units. Setting c = 1 in (
Action-dimensionful
A.1), we recover (

ActionI
2.11), which at this point has

dimension Energy × time = Mass × time. As a further simplification one also

sets to unity the reduced Planck quantum of action, ~ = h
2π = 1. In the resulting

‘natural’ system of units, mass/energy and time/distance have inverse units to

one other, and action is dimensionless.

Remark: Dimensional analysis is useful to constrain the structure and

sometimes the qualitative behaviour and order of magnitude of physical quan-

tities. Ref: Zeidler Vol 1, other articles on metrology. Moreover it is

often invoked in ‘naturalness arguments,’ which go along the line that once a

physical quantity is expressed as a pure number by setting constants of nature

to unity, this number should be ‘of order one’ or ‘not very large or very small’

unless there is a ‘good reason.’ For example, the cosmological constant, when

expressed in natural units is considered ‘unnaturally small.’ Add numerical

values? Add tables for units or refer to textbook? As indicated, natu-

ralness arguments are subject to interpretation (what is ‘natural’) and thus to

debate. Their value lies in probably more in instigating discussion, rather than

providing answers.



Appendix B

Dirac δ-functions, Fourier

analysis and bra-ket

notation

B.1 Dirac δ-functions

The Dirac δ-function is the generalized function (or distribution) associated

with the functional which evaluates a function at a given point:

δx0
[f ] = f(x0) .

Using the δ-function, this is represented as∫
δ(x− x0)f(x) = f(x0) ,

where δ(x − x0) is a ‘generalized function supported at the point x = x0’.

While a function with the above properties does not exist, one can define a

generalized function provided that the functions f with which it is paired are

sufficiently well behaved. For example, if f is a Schwartz function, which means

that f is smooth and that f and all its derivatives decay faster than any power

at infinity, then the dual space (with respect to a suitable norm) of tempered

distributions contains the δ-function. Properties of distributions are established

by integrating them against test functions, that is functions in the dual space.
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For example, using integration by parts one shows∫
dxδ′(x− x0)f(x) = −f ′(x0) .

Similarly, given a function g(x) which has a single zero g(x0) = 0 such that

g′(x0) 6= 0, one can use the substitution y = g(x) to show that

δ(g(x)− g(x0)) =
1

|g′(x0)|
δ(x− x0) .

For functions g(x) with multiple zeros x1, x2 . . . , xN , with g′(xi) 6= 0 this gen-

eralizes to

δ(g(x)− g(x0)) =

N∑
i=1

1

|g′(xi)|
δ(x− xi) . (B.1) delta-composed

B.2 Fourier sums and Fourier integralsFourier

Periodic functions with period 2π, f(x + 2π) = f(x) can be represented by a

Fourier series

f(x) =
1√
2π

∞∑
k=−∞

cke
ikx .

The Fourier coefficients are determined by the inverse transformation

ck =
1√
2π

∫ π

−π
dx f(x)e−ikx .

A sufficient condition for the Fourier series to exist is that that the sequence cn

is square-summable,
∑∞
k=−∞ |ck| <∞.

For a general period P , that is for functions where f(x + P ) = f(x), the

formulae are modified as follows:

f(x) =
1√
P

∞∑
k=−∞

cke
(2πix)/P ,

and

ck =
1√
P

∫ x0+P

x0

f(x)e(−2πikx)/P .

Fourier sums can be extended to generalized functions. One example is the

periodic Dirac function or ‘Dirac comb,’ δP (x) = δP (x + P ). By applying the

inverse Fourier formula formally, we immediately obtain its representation as a

Fourier sum:

δP (x) =
1

P

∞∑
k=−∞

e(2πixk)/P .
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Non-periodic functions which decay sufficiently fast at infinity admit a rep-

resentation as Fourier integrals, which can be viewed as ‘expansions in plane

waves.’

The D-dimensional Fourier transformation

f(x) =
1

(2π)D/2

∫
dDkf̃(k)eikx

has the inverse

f̃(k) =
1

(2π)D/2

∫
dDxf(x)e−ikx .

Sometimes it is convenient to distribute the powers of
√

2π asymmetrically.

The D-dimensional Dirac δ-function can be represented as the Fourier trans-

form of the constant function (2π)−D/2:

δD(x) =
1

(2π)D

∫
dDkeikx .

This follow immediately by formally applying the inverse Fourier transforma-

tion.

B.3 Bra-ket formalismbra-ket

Dirac’s bra-ket formalism allows to formally manipulate states and operators by

using the analogy with finite dimensional vectors and matrices. Consider a non-

relativistic particle in one dimension. We denote the position and momentum

operator by Q,P and the corresponding eigenstates |x〉, |k〉:

Q|x〉 = x|x〉 , P |k〉 = k|k〉 .

We normalize eigenstates of Q according to:

〈x|x′〉 = δ(x− x′) .

The operator Q has the spectral representation

Q =

∫
dx x|x〉〈x|

and matrix elements:

〈x|Q|x′〉 = xδ(x− x′) .
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Since we assume that Q has a complete spectrum of eigenstats, we can write

general states as superpositions of position eigenstates:

|ψ〉 =

∫
dxψ(x)|x〉 .

The scalar product between such states is

〈ψ1|ψ2〉 =

∫
dxψ∗1(x)ψ2(x) .

Normalizable states satisfy

〈ψ|ψ〉 =

∫
dx|ψ(x)|2 <∞ .

The resulting Hilbert space is isomorphic to L2(R).

The expansion coefficients ψ(x) can be projected out using 〈x|:

ψ(x) = 〈x|ψ〉 .

They can be identified with the usual position space wave functions of quantum

mechanics. Therefore ψ(x) is called the ‘x-representation’ or position space

representation of the ‘abstract state’ |φ〉.
Momentum eigenstates in the x-representation satisfy

Pψ(x) := −i d
dx
ψ(x) = kψ(x) .

Solutions of this eigenvalue equation, that is momentum eigenstates in the x-

representation. are plane waves

ψ(x) = ceikx .

We normalize momentum eigenstates such that

〈k|k′〉 = δ(k − k′) .

Since

δ(k) =
1

2π

∫
dxeikx ,

this implies

〈x|k〉 =
1√
2π
eikx , 〈k|x〉 =

1√
2π
e−ikx .

In the main part of this book, the momentum operator is often denoted p and

we use x for both the ‘position operator’1 and its eigenvalues.

1In a relativistic theory xµ is not Hermitian on physical states and should not be interpreted
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as being related to time or the observable position of a particle. On physical states one can

define a Hermitian position operator, but its eigenstates are not arbitrarily sharply (δ-function

like) localized. Moreover, it is not clear how to define a time operator. The Hamilton operator

should be bounded from below which prevents one from defining a time operator by Fourier

transformation.
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