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Abstract: The patchy distribution of genes across the prokaryotes may be caused by multiple gene losses or lateral transfer. 
Probabilistic models of gene gain and loss are needed to distinguish between these possibilities. Existing models allow 
only single genes to be gained and lost, despite the empirical evidence for multi-gene events. We compare birth-death 
models (currently the only widely-used models, in which only one gene can be gained or lost at a time) to blocks models 
(allowing gain and loss of multiple genes within a family). We analyze two pairs of genomes: two E. coli strains, and the 
distantly-related Archaeoglobus fulgidus (archaea) and Bacillus subtilis (gram positive bacteria). Blocks models describe 
the data much better than birth-death models. Our models suggest that lateral transfers of multiple genes from the same 
family are rare (although transfers of single genes are probably common). For both pairs, the estimated median time that 
a gene will remain in the genome is not much greater than the time separating the common ancestors of the archaea and 
bacteria. Deep phylogenetic reconstruction from sequence data will therefore depend on choosing genes likely to remain 
in the genome for a long time. Phylogenies based on the blocks model are more biologically plausible than phylogenies 
based on the birth-death model. 
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Introduction

The need for models of gene content
Some genes are patchily distributed over the prokaryote phylogeny. This pattern can be explained either 
by the presence of these genes in a common ancestor, followed by multiple gene losses, or by lateral 
transfer (Boucher et al. 2003). Here, we develop probabilistic models for the number of genes in gene 
families, and use these models to estimate the rates of gene loss and lateral transfer. Knowing these 
rates will help us to decide whether multiple gene loss or lateral transfer is a better explanation for the 
observed distribution of genes.

A gene family is defi ned as all the genes in a genome that belong to a group of repeated sequences 
(Graur and Li, 2000, p. 264). These sequences ultimately derive from a common ancestor, either by 
duplication or by lateral transfer from another lineage. All genes in a genome may have been descended 
from a single ancestral sequence in the distant past, so in practice, we (either implicitly or explicitly) 
choose a divergence time beyond which genes are placed in different families. One might divide the 
data into many small families to resolve close relationships, or few large families to resolve distant 
relationships. Different levels of family resolution do not always give compatible trees (Hughes et al. 
2005), although this may be simply due to noise. Here, we use gene families from the COG (Clusters of 
Orthologous Groups of proteins) database (Tatusov et al. 2003). We chose the COG database because 
it has been used for several other gene-content-based phylogenies, allowing us to compare our results 
with those from other methods. In the COG algorithm, families are identifi ed based on three-way sets 
of mutual best hits (Tatusov et al. 1997). Three-way best hits do not depend on the absolute similarity 
between sequences, which should reduce the effects of variation in evolutionary rates on gene family 
identifi cation. However, this approach cannot identify gene families that occur in fewer than three 
genomes.

Previous attempts to estimate the rates of gene loss and lateral transfer have usually relied on parsi-
mony analysis of the presence and absence of gene families. For example, Kunin and Ouzounis (2003) 
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assigned ancestral gene states to internal nodes on 
a phylogeny, assuming equal penalties for gain and 
loss of genes. If the difference between the number 
of gains and losses required to explain the pattern 
of gene content in descendants of a node was larger 
than an arbitrary threshold, they assigned family 
presence to the node. If it was less than another 
arbitrary threshold, they assigned family absence 
to the node. Ambiguous cases were resolved by as-
suming that the ancestral state of every family was 
absence, and that the appearance of new families 
should be delayed as long as possible, moving from 
the root to the leaves of the tree. There are major 
problems with this approach. First, the number of 
events will be underestimated (Hao and Golding, 
2004). If a gene family has the same state in two 
sister taxa, Kunin and Ouzounis (2003) assume that 
the family had this state in the common ancestor 
of the taxa. Cases of inparalogy sensu Sonnham-
mer and Koonin (2002), in which parallel gene 
gains occurred in sister taxa, will not be dealt with 
correctly. Second, the penalties for gain and loss 
cannot be estimated from the data, but must be 
fi xed in advance. This is a major problem, given 
that these are the events we are interested in. Other 
parsimony-based methods have used different cri-
teria for deciding on gain and loss penalties. For 
example, Mirkin et al. (2003) and Boussau et al. 
(2004) chose penalties that gave plausible meta-
bolic pathways in reconstructed ancestors. Since 
there is no way to determine whether one set of 
penalties is signifi cantly better than another for a 
given data set, we cannot make a choice between 
penalties chosen using different external criteria. 
Third, the thresholds for assigning family presence 
and absence to nodes are arbitrary. Kunin and 
Ouzounis (2003) used an ad-hoc method to esti-
mate one of these thresholds, and fi xed the other 
without reference to any data. Fourth, different 
ways of resolving ambiguous internal states give 
different results (Boussau et al. 2004), and the 
choice of one resolution is arbitrary. Fifth, this 
method ignores uncertainty in the assignments of 
internal states. Unobserved data on internal nodes 
are treated in exactly the same way as observed 
data in extant taxa. In reality, the probability of 
correct reconstruction can be low when the rates of 
change between states are large (Maddison, 1995).

All of these problems can be solved by using 
maximum likelihood methods with an explicit 
model for gene gain and loss. Under a likelihood 
approach, multiple and parallel changes are not 

ignored. If two sister taxa each have 10 members 
of a gene family, we do not assume that their common 
ancestor also had 10 members. If the two taxa are 
closely related, it is most likely that there have 
been few deletions and duplications, so the genes 
will probably be orthologs related by speciation. On 
the other hand, if the two taxa are distantly related, 
many independent changes may have occurred and 
the genes may be inparalogs sensu Sonnhammer 
and Koonin (2002). Gain and loss parameters are 
estimated from the data, rather than from arbitrary 
criteria. We can then use statistical methods to test 
hypotheses about these parameters. Uncertainty in 
internal states is not ignored. Instead, the likelihood 
is summed over ancestral states weighted by their 
probabilities.

There have been several attempts to develop 
explicit models for gene gain and loss. Huson and 
Steel (2004) derived a maximum likelihood dis-
tance for gene presence/absence data from a simple 
model for the number of genes in a genome. In 
their model, new genes are acquired at a constant 
rate, and existing genes are lost at a constant rate 
per gene, the same for all genes. They showed that 
both Dollo parsimony and their maximum likeli-
hood distance outperformed the distance measure 
used by Snel et al. (1999) in phylogeny estimation 
from simulated data. It is not easy to estimate the 
rate of lateral transfer from presence/absence data, 
because we cannot distinguish between the evolu-
tion of a new gene and the acquisition of a gene 
by lateral transfer. However, if we assume that 
the evolution of new genes is rare, then maximum 
likelihood can be used with presence/absence data 
to estimate the rate of lateral transfer and gene 
loss (Brian Golding and Weilong Hao, McMaster 
University, personal communication).

Data on the number of members of a gene fam-
ily could give more information on the rates of gene 
gains, losses and transfers. As far as we know, all 
existing models of gene content that count the num-
ber of members of gene families use birth-death 
models (Gu, 2000; Gu and Zhang, 2004; Zhang and 
Gu, 2004; Arvestad et al. 2003, 2004; Karev et  al. 
2004; Felsenstein, 2004; Hahn et al. 2005). In these 
models, the number of genes in a family can in-
crease or decrease by the deletion or duplication of 
one gene at a time. This is unrealistic, because there 
is strong empirical evidence that multi-gene events 
can occur. For example, duplications of blocks 
of three to four genes (the typical operon size) 
are common in prokaryotes (Gevers et  al. 2004).
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The γ-proteobacterium Vibrio vulnifi cus apparently 
gained 495 genes in 260 duplication events, when 
compared to its close relative V. cholerae (Chen
et al. 2003). It is almost certainly possible to 
transfer or delete more than one gene at a time. In 
E.  coli, the average gene is 1kb. Among closely 
related strains, the average acquired segment is 8.3 
kb, and the average deletion is 6.4 kb (Ochman and 
Jones, 2000). Similarly, detected deletions among 
clinical clones of Mycobacterium tuberculosis 
contained an average of 4 open reading frames 
(Kato-Maeda et al. 2001). Detected insertions 
(apparently acquired by lateral transfer) contained 
between 2 and 36 open reading frames (ORFs), 
and detected deletions contained between 2 and 24 
ORFs (Ochman and Jones, 2000). If the fi xation of 
laterally transferred genes in local subpopulations 
depends on selection, and several genes are needed 
to perform a particular function, a transfer of all 
the required genes at once would be more likely 
to be fi xed than a transfer of only one of the genes 
(Boucher et al. 2003, p. 319). Here, we compare 
the fi t of a birth-death model to real data on pairs 
of prokaryote genomes with that of models allow-
ing multi-gene events (blocks models). We show 
that blocks models are a better description of the 
data for two closely-related E.  coli strains, and for 
the distantly-related pair A.  fulgidus (archaea) and 
B. subtilis (gram-positive bacteria).

If genes may appear (by evolution from other 
sequences, duplication, or lateral transfer) and 
disappear (by deletion) from genomes, any single 
gene is unlikely to have been present in a lineage 
for its entire history. We can think of this using 
the ‘rope metaphor’ for a genome (Zhaxybayeva 
and Gogarten, 2004): there may be no single fi ber 
(gene) running the entire length of the rope, yet the 
rope itself (the organismal lineage) is continuous. If 
we know the rates of appearance and disappearance 
of genes, we can estimate the expected residence 
time of a gene in the genome of a lineage. This 
tells us how far back in time we might be able to 
reconstruct the history of an organism from a single 
gene. We calculate residence times for the E.  coli 
strains and for A.  fulgidus and B.  subtilis. We then 
use the estimated divergence times between pairs 
of taxa to estimate a least-squares phylogeny for 
66 sequenced genomes in the COG database.

Unobservable data
For nucleic acid or protein sequences, all states 
are observable in extant taxa. In contrast, a gene 

family that is absent from every taxon in the data 
set may not be observable. One way to solve this 
problem is to calculate likelihoods conditional 
on a gene family being observable (Gu, 2000). 
However, a gene family does not appear in the 
COG database unless it is present in at least three 
taxa. A gene family present in both members of 
a pair is not necessarily observable, and a gene 
family absent from both members of a pair is not 
necessarily unobservable. It is therefore diffi cult to 
use the conditioned likelihood approach when es-
timating pairwise maximum likelihood distances. 
Instead, we used a locally-weighted least-squares 
method to impute the numbers of unobserved gene 
families for each pair of taxa, as described in the 
methods.

General form of the models
We make two key assumptions, family indepen-
dence and a fi nite number of states, that allow us 
to model the dynamics of gene family size as a 
fi nite-state continuous-time Markov chain.

A realistic model for genome evolution would 
allow multigene events to affect members of more 
than one family, whenever genes from two or more 
families were adjacent on the genome (Felsenstein, 
2004, page 515). Such a model would have to 
specify which genes are adjacent to each other, 
and would not treat each family independently. 
Functional relationships could also introduce de-
pendencies, whether genes were adjacent or not. 
Both processes result in dependence across the 
entire genome. Thus, the number of possible states 
would be the number of different ordered genomes. 
When calculating the likelihood, we would have to 
sum over all possible states at the root (Equation  1, 
below). This becomes unfeasible as the number 
of possible states gets very large. Probabilistic 
models of gene order exist (Miklós, 2003) but 
are too complicated to use for phylogenetic infer-
ence. Adding changes in gene content will make 
this worse, as well as requiring more parameters 
and assumptions. Treating families as independent 
seems necessary if unrealistic. As far as we know, 
all existing probabilistic models for gene content 
make this assumption (Gu, 2000; Gu and Zhang, 
2004; Arvestad et al. 2003, 2004). Fortunately, the 
consequences of assuming family independence 
are unlikely to be severe. Our models describe the 
dynamics of a single gene family. The parameter 
estimates therefore depend on the marginal 
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distribution of gene family size within a family, 
not the joint distribution across gene families. This 
marginal distribution is unaffected by dependen-
cies among families. We can think of dependencies 
among gene families as reducing the number of 
independent observations. Asymptotically, this will 
affect the variances but not the means of the pa-
rameter estimates. Since we have large numbers of 
data, the small-sample bias introduced by the incor-
rect variance is unlikely to be large. An analogous 
situation occurs in RNA evolution. Base pairing 
introduces strong dependence between sites, but 
treating sites as independent does not signifi cantly 
reduce the accuracy of phylogeny estimation by 
likelihood (Tillier and Collins, 1995).

In principle, the number of genes in a family 
can take any non-negative integer value. Never-
theless, most gene families have only a few rep-
resentatives in a given genome (Huynen and van 
Nimwegen, 1998). To simplify the calculation of 
likelihoods, we will use k  +  1 states, corresponding 
to [0, 1, 2, 3,   ...  k – 1, ≥ k] genes. We will make k 
large enough that the k  th state is rarely reached, 
so the errors due to truncation will be small. Over 
the whole COG database, there were 83675 cases 
where a gene family was present in a species. Of 
these, only 320 (0.4%) were cases of families 
with more than 20 members. We therefore choose 
k  =  20. We also did preliminary experiments using 
k  =  10, with similar results.

Given these two assumptions, our models can 
be based on a matrix Q of instantaneous rates 
of transition qij from state i to state j. We use 
a homogeneous model, in which Q is the same 
everywhere, because non-homogeneous models 
require many more parameters. We have only two 
taxa and their common ancestor, so there is only 
one tree topology to consider. The likelihood L of 
the data for a given model is
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(Norris, 1997, pp. 62–63). Because we cannot 
obtain absolute rates, we express all the qij relative 
to q01, and scale the Q matrix so that the expected 
number of events per gene family per unit time 
is  1 (Yang, 1994a). The times ts are then expected 
numbers of events per gene family.

In Equation 1, the summation is over all pos-
sible ancestral states i. This allows us to deal cor-
rectly with inparalogy. Figure 1 illustrates this for 
a single gene family in a hypothetical case (using 
the blocks model described below, with parameters 
other than edge lengths from Table 3). Two sister 
taxa, each with 10 genes in the family, are con-
nected to a common ancestor by edges of length 
t. The conditional probability of an ancestral state 
h  is πh P(h,10|t) P (h,10|t)/ i

k
0R = πi P(i,10|t) P (i,10|t).

When t is small (Figure 1a), the conditional prob-
ability that the common ancestor also had 10 genes 
is 0.985. The genes are most likely to be ortho-
logs, each being related by speciation. When t is 
large (Figure 1b), the distribution of conditional 
probabilities is much broader. The conditional 
probability of 10 genes in the common ancestor is 
very small (0.011). Ancestral states with few genes 
have higher conditional probabilities, so most of 
the observed genes are likely to be inparalogs that 
arose by parallel gains. For these data, parsimony-
based methods (Kunin and Ouzounis, 2003; Hao 
and Golding, 2004; Mirkin et al. 2003; Boussau
et al. 2004) always assign 10 genes to the common 
ancestor. When the divergence time is large, this 
will be a poor choice.

The processes by which gene content may 
change are deletion, duplication, lateral transfer, 
and innovation (the evolution of a new member of 
a gene family from an existing sequence). Since 
the set of taxa under study is much smaller than 
the set that could have given rise to transfers, we 
assume that lateral transfers always come from a 
taxon other than the pair of taxa we are analyzing. 
We now consider some specifi c models.

Birth-death models
In a birth-death model, we assume that one gene 
can be duplicated or deleted at a time. In the 
standard form of this model (Kendall, 1948), we 
assume that each gene has independent and equal
probabilities of deletion (  f  ) and duplication (g). Thus
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Note that the state space here is fi nite, with states 
[0,  1, ... , k – 1, ≥ k], unlike the infi nite-state model 
described in Kendall (1948). In equation 3, the zero 
state is absorbing, so the stationary probability has 
all its mass at zero. When calculating the likelihood 
of molecular phylogenetic data given a tree and 
parameter estimates, it is usual to assume a station-
ary distribution of states at the root (equation 1) 
(Felsenstein, 1981). If we do this for the model in 
equation 3, any pattern other than zeros at every 
leaf has probability zero. We could assume that at 
least one member of the family was present at the 
root (Gu, 2000; Gu and Zhang, 2004; Zhang and 
Gu, 2004; Arvestad et al. 2003, 2004). Alterna-
tively, we could add a non-zero rate from state zero 
to state one, so that zero is no longer an absorbing 
state (Karev et al. 2002). This rate represents either 
lateral transfer or innovation. Huson and Steel 
(2004) used a model with a constant birth rate for 
all states, which has similar consequences. 

We will use a model called the linear birth-
death-innovation model by Karev et al. (2002), in 
which there is a non-zero rate e from state zero to 
state one, and the other single-gene events have both 
linear (gi for duplications,  fi  for deletions from 
state i) and constant (g2 and   f2) components. This is 
a generalization of the standard birth-death model 
and of the model used by Huson and Steel (2004). 
More complex models with other kinds of relation-
ship between gene family size and rates have been 
considered (Karev et al. 2003, 2004). As in all our 
models, we will truncate at an upper limit state 
k. This model is time-reversible, so the two edge 
lengths t1 and t2 affect the likelihood only through 
their sum. Table 1 illustrates the structure of the 
Q matrix for this model. Non-zero values of the 
constant terms f2 and g2 are evidence for processes 
other than independent deletion and duplication of 
single genes, including lateral transfer. In future, 
we will refer to this model simply as birth-death.

Figure 1. Conditional probabilities of each possible ancestral state, given 10 members of a gene family in two taxa, each separated from 
a common ancestor by an edge of length 0.01 (a) or 1 (b) expected changes. Calculated under the blocks model with parameters (other 
than edge lengths) from Table 3.
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Blocks models
In a blocks model, we divide the Q matrix into 
blocks representing different kinds of process, and 
assume that duplications, deletions and transfers 
can affect multiple genes within a family. As in 
the birth-death model, we assume that duplica-
tion and deletion events operate independently 
and at a constant rate on each possible unit. In 
the blocks models, the units may be larger than 
one gene. If the order of genes on the genome is 
unimportant, then the number of possible units on 
which an event can operate to cause a transition 
from state i to state j is ( )| |j i

i
- . We assume that each 

existing gene is equally likely to be part of a unit. 
We model innovation, deletions and duplications 
of single genes exactly as in the birth-death model, 
with the exception of the transition from state 1 to 
state 0. For deletions that result in the loss of an 
entire gene family, there is only one possible unit 
(the whole family). We therefore assign a constant 
rate a to the transition from all states i  >  1 to 0. We 
allow a separate parameter for these deletions 
because loss of an entire family might have dif-
ferent consequences from loss of some but not all 
genes in a family. We assign a separate parameter 
h to the transition from 1 to 0. We model the rates 

of deletion of more than one but less than an entire 
family of genes as ( )| |j i

i
-  b + b2. Similarly, we model 

the rates of duplications of more than one gene as 
( )| |j i

i
-  c + c2.
We model transitions from state i to state j  >  2i 

with a constant rate d. These transitions correspond 
only to lateral transfers. Duplication cannot cause 
a transition from i to state j  >  2i. Innovation can 
create new members of an existing family, but 
cannot create more than one new member at a 
time. For example, if a non-coding sequence is 
duplicated and both copies become genes soon 
after by acquiring start codons, they will probably 
both be placed in the same family, but two separate 
mutations at different times are required to create 
the start codons. We use a constant lateral transfer 
rate because we do not have much information on 
the distribution of the number of genes transferred 
from another genome in a single event. Table  2 
shows an example Q matrix for a blocks model. 
This model is not time-reversible in general.

For the blocks model, d provides a direct esti-
mate of the rate of acquisition of more than one 
member of a family by lateral transfer, when we 
are acquiring more genes than could be added by 
duplication or innovation.

Table 1. Structure of the instantaneous rate matrix Q for the linear birth-death-innovation model, illustrated 
with k = 6. Diagonal elements (not shown) are –Σi ≠ j qij . The states (labelled in the fi rst row and column) are
0,1...k – 1, ≥ k members of a gene family.

 0 1 2 3 4 5 ≥ 6
0  - e 0  0  0  0  0  
1  f + f2  -  g + g2  0  0  0  0  
2  0  2f + f2  - 2g + g2  0  0  0  
3  0  0  3f + f2  -  3g + g2  0  0  
4  0  0  0  4f + f2  -  4g + g2  0  
5  0  0  0  0  5f + f2  - 5g + g2  
≥ 6  0  0  0  0  0 6f + f2  -  

Table 2. Structure of the instantaneous rate matrix Q for the blocks model, illustrated with k = 6. Diagonal ele-
ments (not shown) are – Σi ≠ j qij . The states (labelled in the fi rst row and column) are 0,1...k – 1, ≥ k members of 
a gene family.

 0  1   2   3   4   5   ≥ 6
0  -   e    d   d    d    d    d 
1  h   -   g + g2  d   d    d    d 
2  a  2f + f2   -   2g + g2  c + c2   d    d 
3  a 3b + b2 3f + f2    -   3g + g2 3c + c2 c + c2 
4 a 4b + b2 6b + b2 4f + f2  -   4g + g2 6c + c2 
5  a  5b + b2 10b + b2 10b + b2 5f + f2  -  5g + g2 
≥ 6  a 6b + b2 15b + b2 20b + b2 15b + b2 6f + f2  -



Evolutionary Bioinformatics Online 2006: 2 171

Gene content models 

Model comparison
The blocks model has 13 parameters. The birth-
death model has only fi ve, and can be obtained 
from the blocks model by setting a, b, b2, c, c2 and d 
to zero, and h to f  +  f2. The blocks model can never 
be a worse description of the data than the birth-
death model. We therefore need to establish that 
the improved fi t of the blocks model is statistically 
signifi cant. To do this, we use likelihood-ratio tests 
(for a review of likelihood ratio tests in phylogenet-
ics, see Huelsenbeck and Crandall, 1997).

Two models are nested when the simpler model 
is a special case of the more complex one (as in 
our situation). If the simpler model is the true 
model, the extra parameters in the more complex 
model are unnecessary and will give only a small 
improvement in fi t. In most such cases, twice the 
log likelihood ratio has a distribution approach-
ing χn

2, for a pair of models in which the values 
of n parameters are fi xed in the simpler model. 
Thus, if twice the observed log likelihood ratio 
was unlikely to have been drawn from the χ n

2 
distribution, we can reject the hypothesis that the 
extra parameters did not signifi cantly improve the 
fi t. Setting parameters to boundary values such as 
zero involves minor changes to this approach, as 
described in the appendix. We are also interested 
in whether the estimated rate of lateral transfer in 
the blocks model is signifi cantly greater than zero. 
As described in the appendix, we can test whether
d > 0 using a likelihood-ratio test, although this will 

not tell us about transfers of one or a few genes 
from the same family. If the blocks model is sig-
nifi cantly better than the birth-death model, it will 
be useful to know which parameters are important. 
We therefore use likelihood-ratio tests to compare 
the full blocks model to models with no multiple 
gene losses (a, b and b2 set to zero) or no multiple 
gene gains (c, c2 and d set to zero).

The number of parameters we are estimating is 
not large, given that we have 4873 gene families, 
each with 21 possible states. For comparison, the 
General Time-Reversible model of nucleotide sub-
stitution has 8 parameters plus edge lengths, but 
these must be estimated from data with only four 
states. Amino acid substitution matrices typically 
require 189 parameters to model 20 possible states, 
and require very large databases for reliable estima-
tion. It is often the case that even complex models 
do not fi t phylogenetic data well, but this is not a 
major problem (Huelsenbeck and Crandall, 1997). 
We are interested in knowing whether a more 
complex model is a signifi cantly better description 
of the data, even though we cannot capture all the 
details of the evolutionary process. 

Results

E. coli data
For the E. coli data, the blocks model was much 
better than the birth-death model (Table 3, –2Δlog 

Table 3. Parameter estimates for E. coli strains K12 and 0157:H7 EDL933. Q matrix parameters are scaled so 
that the expected number of events per unit time is 1, and edge lengths t1 (from the root to K12) and t2 (from the 
root to 0157:H7 EDL933) are in expected numbers of events per gene family. Parameters that were constrained 
to be zero are indicated by -. In the birth-death model, h was constrained to be f + f2.

model blocks blocks, d = 0 no multi-gene  no multi-gene birth-death
   gains losses  
log likelihood  –5.8975 × 103  –5.8980 × 103  –5.9065 × 103  –5.9779e + 03  –6.1584 × 103 
a  1.11  1.20  1.21  -  - 
b 2.71 × 10–27  3.15 × 10–39  3.29 × 10–29  -  - 
b2  0.62  0.53  0.42  -  - 
c  3.06 × 10–4  3.22 × 10–4  -  6.97 × 10–5  - 
c2  0.20  0.24  -  0.05  - 
d  5.21 × 10–4  -  -  6.31 × 10–4  -  
e  0.27  0.27  0.26  0.18  0.11 
f  3.95 × 10–5 2.51 × 10–7 8.86 × 10–21 1.28  1.66 
f2 0.27  0.11  0.07  6.20 × 10–5 –1.29 
g 1.22  1.26  1.66  0.48  1.35 
g2 –0.60  –0.61  –1.04  0.05  –0.98 
h 0.47  0.42  0.37  0.64  f + f2 
t1  0.04  0.04  0.04  0.03  0.10 
t2  0.04  0.04  0.05  0.08  0.10
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L = 522, conservative test using χ8
2, p ≤ 10–16). The 

relatively poor fi t of the birth-death model was 
mainly due to under-prediction of gene families 
absent from the K12 strain but with more than 
one member in the 0157:H7 EDL933 strain (fi rst 
row, third and higher columns in Figure 2b), and 
in families having small and equal numbers of 
genes in both strains (the second to fi fth entries of 
the main diagonal in Figure 2b). In contrast, the 
blocks model made good predictions for almost all 
patterns (Figure 2a).

In the blocks model, the estimated rate of lat-
eral transfer of more genes than could be acquired 
by duplication or innovation ( d ) was three orders 
of magnitude lower than the estimated rate of ac-
quisition of new gene families (e). Setting d to zero 
did not signifi cantly reduce the likelihood (–2Δ 
log L = 1.10, tested against 2

1
0
2

2
1

1
2|+| , p = 0.15). 

However, setting all multiple gene gains to zero 
(c, c2 and d = 0, –2Δ log L = 18.07, conservative 
test using 3

2| , p = 4 × 10– 4) resulted in a signifi -
cantly worse model. Setting all multiple gene 

losses to zero had an even stronger effect on the 
likelihood (a, b and b2 = 0, –2Δ log L = 161, conser-
vative test using 3

2| , p  ≤ 10–16).
For both models, the predicted marginal distri-

butions of gene family size in single species were 
quite close to the observed distributions (Figure 
3a). For the E. coli data, the expected residence 
time of a gene was 0.60 under the blocks model. 
The distribution was strongly right-skewed, with 
a median of 0.33, a maximum of 9.06, a 95th per-
centile of 2.13 and a standard deviation of 0.76. 
91% of simulated genes had residence times greater 
than the mean of t1 and t2 (0.04, the mean number 
of events separating one of the two strains from 
their common ancestor).

A. fulgidus and B. subtilis data
For A. fulgidus and B. subtilis, the blocks 
model was signifi cantly better than the birth-death 
model (Table 4, –2Δlog L = 74, conservative test 
using  χ8

2, p = 6 × 10–13). Both the blocks model 
(Figure 2c) and the birth-death model (Figure 2d) 

Figure 2. Performance of blocks and birth-death models for two E. coli strains K12 and 0157:H7 EDL933 (a: blocks model, b: birth-death 
model) and for Archaeoglobus fulgidus and Bacillus subtilis (c: blocks model, d: birth-death model). The data are nt ij (log ft ij (model) – log (nt ij  / n)), 
the contribution to the log likelihood ratio between a given model and the best possible model from each pattern. nt ij is the LOWESS imputed 
count of state i (row) in the fi rst species and state j (column) in the second species, ft ij (model) is the model predicted relative frequency of pat-
tern ij, and nt ij  / n is the LOWESS imputed relative frequency. States are ordered from 0 to ≥ 20 family members in both rows and columns. 
Cells are red where the model predicts too high a frequency and blue where it predicts too low a frequency. White cells are patterns for which 
there were no observations (these make no contribution to the likelihood).
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Figure 3. Marginal distributions of gene family size for single species. Symbols are the imputed counts used as data, and lines are predictions 
from the stationary distributions of the models, with parameters estimated from pairs of species. a: E. coli strains K12 (circles) and 0157:
H7 EDL933 (squares), b: Archaeoglobus fulgidus (circles) and Bacillus subtilis (squares). In both panels, the blocks model is the solid line 
and the birth-death model is the dashed line. The vertical axis is on a logarithmic scale, so we use (frequency+1) to allow zero frequencies 
to be represented.

performed badly for patterns with small numbers 
of genes in both taxa, tending to overpredict the 
frequency with which gene families were absent 
from B. subtilis and present in A. fulgidus (fi rst 
column, second and third rows of Figure 2c and 
d), and to underpredict the opposite case (fi rst 
row, second to fourth columns of Figure 2c and 
d). The birth-death model also underpredicted 
the frequency of families with small but equal 
numbers of members in both taxa (Figure 2d, fi rst 
three entries on main diagonal). These problems 
are due to the assumption of a homogeneous 
model, which is unlikely to hold over large evolu-
tionary distances. For both models, the predicted 
marginal distributions (Figure 3b) are averaging 
over the small A. fulgidus and the large B. subtilis 
genome, but nevertheless have approximately the 
right shape. This suggests that it is much easier 
to build a plausible model for the distribution of 
gene family size in a single taxon than for sets of 
related taxa.

In the blocks model, d was seven orders of 
magnitude lower than e, and could be set to zero 
without signifi cantly reducing the likelihood (like-

lihoods were the same to four decimal places). As 
with the E. coli data, models without any multiple 
gene losses (–2Δ log L = 13.71, conservative test
using 3

2| , p = 3 × 10–3) and gains (–2Δ log L = 25.56, 
conservative test using 3

2| , p = 5 × 10–4) were sig-
nifi cantly worse than the full model.

For A. fulgidus and B. subtilis, the expected 
residence time was 0.48 under the blocks model. 
Again, the distribution was right-skewed (median 
0.34, maximum 3.71, 95th percentile 1.44, stan-
dard deviation 0.48). 42% of simulated genes had 
residence times greater than the mean of t1 and t2 
(0.43 for these species).

Model comparisons over all
pairs of taxa
Over all 2145 pairs of taxa from the COG database, 
95% had –2Δlog L ≥ 9. The median –2Δlog L was 
85, and the range was 0 to 522. Thus, although 
the E. coli pair had the largest likelihood ratio 
(by chance: we did not know this in advance), 
the blocks model was substantially better than the 
birth-death model for most pairs.
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Phylogenies
We found three equally good least-squares trees 
based on distances from the birth-death model, 
but the only difference between them was in the 
arrangement of subgroups around zero-length 
edges within a clade containing parasitic/endosym-
biotic α – and  γ - proteobacteria, chlamydiae, spi-
rochaetes, and mycoplasmas. The tree (Figure 4) is 
biologically implausible, placing Methanosarcina 
acetivorans (Archaea) with the cyanobacteria. M. 
acetivorans might be misplaced because it has an 
unusually large genome for an archaeon, perhaps 
due to the presence of retrointrons transferred 
from bacteria (Rest and Mindell, 2003). The three 
eukaryotes (Encephalitozoon cuniculi, Saccha-
romyces cerevisiae, and Schizosaccharomyces 
pombe) form a clade within the bacteria, perhaps 
because of mitochondrial genes transferred to the 
nucleus. Given these obvious problems, we do 
not discuss the trees from the birth-death model 
further. In contrast, the single best least-squares 
tree based on distances from the blocks model 
(Figure 5) has each of the three kingdoms as a 
monophyletic group.

Two other published phylogenies have been 
based on subsets of the same data: Wolf et al. 
(2002) used pairwise Jaccard distances among the 
58 genomes then available, while Gu and Zhang 
(2004) selected 35 genomes and calculated dis-
tances based on a birth-death model. Like our tree 

from the blocks model, both have a clade contain-
ing parasitic and endosymbiotic bacteria with small 
genomes: the parasitic α - proteobacteria Rickettsia 
spp., chlamydiae (Chlamydia trachomatis, Chla-
mydophila pneumoniae), spirochaetes (Treponema 
pallidum and Borrelia burgdorferi), mycoplasmas 
(Mycoplasma spp. and Ureaplasma urealyticum), 
and the endosymbiont γ - proteobacterium Buch-
nera. This clade is probably an artefact resulting 
from parallel loss of genes that are unnecessary 
for parasites (Wolf et al. 2001). Dealing with this 
artefact may require mixture models, in which 
different subsets of the data have different edge 
lengths.

Discussion
There are many fundamental improvements that 
can be made to models of gene content, such as 
including gene order (Miklós, 2003) or nucleotide 
substitions (Arvestad et al. 2004). Unfortunately, 
these are usually very diffi cult. Here, we have 
shown that large improvements in likelihood 
over the widely-used birth-death models can be 
achieved by allowing multi-gene events, a change 
that is both simple and biologically reasonable. Our 
analyses show strong evidence that duplications 
and deletions of multiple genes are possible. This 
is not surprising, since we know that rearrange-
ments of multiple genes occur in nature (Deng
et al. 2003). The physical arrangement of the 

Table 4. Parameter estimates for A. fulgidus and B. subtilis. Q matrix parameters are scaled so that the expected 
number of events per unit time is 1, and edge lengths t1 (from the root to A. fulgidus) and t2 (from the root to B. 
subtilis) are in expected numbers of events per gene family. Parameters that were constrained to be zero are 
indicated by -. In the birth-death model, h was constrained to be f + f2.

model blocks blocks, d = 0 no multi-gene  no multi-gene birth-death
   gains losses  
log likelihood  –7.0311 × 103  –7.0311 × 103 –7.0379 × 103 –7.0439 × 103 –7.0683 × 103 
a  2.11  2.12  1.00  -  - 
b  6.04 × 10–7  6.18 × 10–7 2.89 × 10–7  -  - 
b2  0.24  0.23  0.09  -  - 
c  7.00 × 10–6 9.29 × 10–8 - 1.93 × 10–4  - 
c2  0.30  0.31  -  0.02  - 
d  6.79 × 10–8 - - 1.51 × 10–4 - 
e  0.40 0.40 0.28 0.14 0.14 
f  2.51 × 10–3 1.21 × 10–4 3.53 × 10–5 1.39  2.30 
f2  3.57 × 10–4 3.49 × 10–4 3.02  1.84  –1.58 
g  0.86  0.84  1.06  1.00  1.83 
g2  0.03  0.07  1.08 × 10–4 2.25 × 10–3 –1.28 
h  1.25 1.25 1.05 0.76 f + f2 
t1  0.33 0.33 0.57 1.57 1.51 
t2  0.52 0.52 0.69 1.11 1.51
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Figure 4. Phylogeny based on birth-death distances for all 66 genomes in the COG database, estimated by least squares with inverse 
square weighting (three equally good topologies were found, but they differed only in the arrangement of clades separated by zero-length 
edges). The tree is rooted with all the archaea except Methanosarcina acetivorans as an outgroup. Edge lengths are expected numbers of 
gene events per gene family. The weighted sum of squares was 830.

E. coli genome also suggests multi-gene events 
have occurred. For example, E. coli 0157:H7 
EDL933 has two identical copies of a 106-gene 
island (Perna et al. 2001), which are unlikely to 
have arisen by repeated single duplications. Since 
the birth-death model does not allow multi-gene 
events, it is unlikely to be the best model for the 

evolution of gene content. This has been suggested 
elsewhere (Hahn et al. 2005), but we are not aware 
of any other models that address the problem. We 
assumed that the number of units on which events 
can operate to produce a transition from state i to 
state j is ( )| |j i

i
- . This ignores the order of genes on 

the genome. It might be possible to improve the 
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Figure 5. Phylogeny based on blocks model distances for all 66 genomes in the COG database, estimated by least-squares with inverse 
square weighting. The tree is rooted with the archaea as an outgroup. Edge lengths are expected numbers of gene events per gene family 
(note the difference in scale from Figure 4). The weighted sum of squares was 157.

model using a suitable distribution of breakpoint 
locations (Nadeau and Taylor, 1984; Pevzner and 
Tesler, 2003), so that duplications of few genes are 
more frequent than duplications of many genes. 
On the other hand, if genome rearrangements are 

so frequent that the order of genes is randomized 
between duplication or deletion events, our simple 
model might be a better choice.

For both pairs of taxa that we studied in detail, 
the estimated rate of lateral transfer of more genes 
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from a single family than could be acquired by 
duplication or innovation was not signifi cantly 
greater than zero. There is other evidence of lateral 
transfers into E. coli. For example, of 108 islands 
larger than 1kb present in E. coli 0157:H7 EDL933 
but absent in E. coli K12, at least 84% had atypi-
cal base composition, which may suggest they are 
recent lateral transfers (Perna et al. 2001). Nev-
ertheless, these events might only rarely transfer 
multiple genes from the same family. Alternatively, 
our assumption of a constant rate for all numbers of 
transferred genes might be unrealistic. The distri-
bution of detected additions in E. coli strains has its 
mode in the 5kb (approximately 5-gene) category, 
with much lower rates for longer sections of DNA 
(Ochman and Jones, 2000, their fi gure 2). With a 
single rate for all numbers of transferred genes, we 
might underestimate the rate of transfer of small 
numbers of genes. Our models do not allow us 
to estimate the rate of lateral transfers of single 
genes, because we cannot separate such events 
from duplications and innovations. Nevertheless, 
the transition rate e from state 0 to state 1 was not 
negligible relative to other transitions (in both 
cases, about 1/5 of the rate of deletion of entire 
gene families). This transition can only happen 
by innovation or lateral transfer. If we believe that 
innovations are rare events, then e not being negli-
gible is consistent with the widely-held view that 
lateral transfers of single genes are frequent. Brian 
Golding and Weilong Hao (McMaster University, 
personal communication) analyzed presence/ab-
sence data for closely related species of bacteria 
using conditional maximum likelihood on a known 
tree. They also found that the rates of gain and loss 
of gene families were substantial. However, most 
gene family sizes do not vary greatly among strains 
within species (Pushker et al. 2004), so the rate of 
lateral gene transfer may not be so high that vertical 
inheritance and gene duplication are unimportant.

The estimated edge lengths for A. fulgidus and 
B. subtilis under the blocks models were an order 
of magnitude greater than for the E. coli strains. 
This is expected as A. fulgidus and B. subtilis are 
from different kingdoms. More interestingly, the 
sum of edge lengths increased more under the 
birth-death model for A. fulgidus and B. subtilis 
than for the E. coli strains. When only single-gene 
events are allowed (as in the birth-death model), 
a large number of events are required to explain 
families with multiple members in one taxon and 
no members in another. As a result, the sum of edge 

lengths was much greater for the birth-death tree 
for all taxa (30 expected events per gene family) 
than for the blocks model tree (9 expected events 
per gene family). For both models, the poor predic-
tion of families present in only one of A. fulgidus 
and B. subtilis suggests that the evolutionary pro-
cess might not be homogeneous over large time 
intervals. This is supported by the fact that we only 
found optimization problems for pairs of taxa from 
different kingdoms. It is diffi cult to construct non-
homogeneous phylogenetic models. In principle, 
we could have different rate parameters on every 
edge (Galtier et al. 1999), but we would need very 
large numbers of data to get good estimates. If we 
can identify groups of taxa (such as archaea and 
bacteria) with different rates a priori, we could 
have a small number of different rate matrices. 
Distances based on the logdet transformation do 
not require the assumption of homogeneity, and 
have been applied to gene content data (Lake and 
Rivera, 2004; Rivera and Lake, 2004), but do not 
provide parameter estimates for rates of gene gain 
and loss.

For birth-death-innovation models allowing 
only single-gene events, the mean time required for 
formation of the largest observed gene families is 
unrealistically high compared to the time available 
for the evolution of life (Karev et al. 2003, 2004). 
These authors suggest that the minimum rather than 
the mean time necessary for evolution of the largest 
observed gene families is the relevant statistic, and 
that the minimum time may be realistic for some 
models with nonlinear relationships between rates 
and family sizes. Another explanation is that multi-
gene events have been important in the formation 
of large gene families.

For both pairs of taxa that we studied in detail, 
the median residence time for a gene under the 
blocks model was around 0.33 gene events. The 
distance between the last common ancestor of 
the bacteria and the last common ancestor of the 
archaea on the blocks model tree was 0.19 gene 
events. Furthermore, extant taxa are typically quite 
far from either of these last common ancestors. 
For example, the maximum likelihood distance 
between A. fulgidus and B. subtilis under the blocks 
model was about 0.4 gene events. Deep phyloge-
netic reconstruction from sequence data therefore 
depends on picking genes with long residence 
times, rather than using a large number of randomly 
selected genes. Phylogeneticists already do this to 
some extent, because genes with short residence 
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times are less likely to be present in every sampled 
taxon than genes with long residence times. Adding 
rate variation among gene families to the blocks 
models would allow more accurate residence time 
calculation, and would help to identify families 
with long residence times. It is likely that these 
families will include the information transfer and 
central metabolic genes often thought of as the 
core genes (Lawrence and Hendrickson, 2003). 
Rate variation among gene families will also be 
important to deal with selection for large numbers 
of genes in some families.

Our phylogeny based on evolutionary dis-
tances from the blocks model showed many 
similarities to phylogenies based on distances from 
a birth-death model (Gu and Zhang, 2004) and 
from Jaccard distances (Wolf et al. 2002). Despite 
not being based on an evolutionary model, the Jac-
card distance tree did not appear less biologically 
reasonable. All three trees shared a common weak-
ness: parasites and endosymbionts with reduced 
genomes tended to be grouped together. This is 
probably a consequence of parallel evolution. The 
same genes are likely to be lost in many parasites 
and endosymbionts, because of the similar environ-
ments they inhabit. Such patterns require models 
that allow evolutionary rates to vary in different 
ways over time as well as between gene families: 
the genome equivalent of heterotachy (Lopez
et al. 2002). Interestingly, trees based on the dis-
tances used in the SHOT web server (Korbel et al. 
2002) do not have a problem with the placement 
of parasites and endosymbionts. This is because 
the distance measure used in SHOT assumes the 
shared absence of a gene is uninformative (which 
is probably true for parasites but not for other
organisms). Methods that use normalized BLASTP 
scores, which take sequence similarity into
account, also place the parasites and endosymbi-
onts correctly (Gophna et al. 2005; Kunin et al. 
2005). The good performance of SHOT distances 
and normalized BLASTP scores, which are not 
proper measures of evolutionary distance, suggests 
that the phylogenetic signal in whole genome data 
is far from saturation. A good modelling approach 
might therefore be to estimate a phylogeny using 
one of these simple methods, then fi t more complex 
models on this phylogeny to estimate rates of gene 
gain and loss.

All three gene content trees (Wolf et al. 2002; 
Gu and Zhang, 2004, and our tree) misplaced Halo-
bacterium, an archaeal species with many genes 

of bacterial origin. Two of the three trees (Wolf
et al. 2002, and our tree) misplaced Thermotoga, a 
hyperthermophilic bacterium with many archaeal 
genes. It has been suggested that proper models 
of genomic evolution will be unaffected by lateral 
gene transfer (Lake and Rivera, 2004). We do not 
think this is true, because a taxon that acquired 
many genes by lateral transfer from the same 
source will tend to share the presence of genes 
with close relatives of that source.

Our tree based on the birth-death model was 
much less plausible than the birth-death-based tree 
of Gu and Zhang (2004). One possible explanation 
is that we modelled data on the number of members 
of each gene family, while Gu and Zhang (2004) 
modelled only absence, presence of one member, 
or presence of more than one member. It may be 
that the number of members of a gene family is 
not usually known accurately, and that aggregat-
ing into categories reduces the effect of unreliable 
data (Zhang and Gu, 2004). The way in which gene 
families are identifi ed can also affect our ability to 
infer phylogenies. Hughes et al. (2005) showed that 
with presence-absence data, more stringent homol-
ogy criteria for gene family identifi cation gave bet-
ter resolution for closely-related taxa, but retained 
less information about deep divergences. They also 
found that trees inferred from data with different 
homology criteria were not compatible, although 
this might be due to artefacts of parsimony.

In principle, we could use the blocks model for 
full maximum likelihood phylogenetic inference. 
One major benefi t from this is that we might be 
able to allow different rates of evolution for dif-
ferent gene families. Rates-across-sites models 
typically give large improvements in likelihood 
for sequence data (Yang, 1994b), but cannot be 
identifi ed from pairwise data alone. The blocks 
model is not reversible, so we would infer a rooted 
phylogeny. In practice, we expect estimation of 
the root location to be fairly inaccurate, as is usu-
ally the case for irreversible models of nucleotide 
evolution (Yang, 1994a; Huelsenbeck et al. 2002). 
A major diffi culty with phylogeny estimation from 
gene content is that the absence of a family from 
the entire data set is not observable (Gu, 2000; 
Lake and Rivera, 2004). We used imputed counts 
to overcome this diffi culty. Another approach is 
to condition on the probability that a family was 
present in at least three genomes, but calculating 
this probability would be very time-consuming. As 
far as we know, full maximum likelihood methods 
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have only been used for gene content with very 
small sets of taxa (Zhang and Gu, 2004), and under 
a simplifi ed conditional likelihood in which a gene 
family from the COG database was assumed to be 
observable only if present in at least one genome 
from the four under study.

Conclusions
We have demonstrated that multi-gene events are 
an important component of genome evolution.
Our models have the potential to reveal the rela-
tive importance of gene loss and lateral transfer, 
can provide estimates of the rate of turnover in 
genomes, and may lead to improved phylogenetic 
estimation from gene content data.
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Appendix: methods

Data
The COG (Clusters of Orthologous Groups of 
proteins) database (Tatusov et al. 2003) contains 
data on the number of members of each of 4873 
gene families in each of 66 taxa, of which 63 are 
prokaryotes (downloaded 13 May 2004 from
ftp://ftp.ncbi.nih.gov/pub/COG/). Gene family  
recognition is based on patterns in pairwise se-
quence similarity detected using BLAST (Tatusov 
et al. 1997). Because of the way this is done, a 
family will not appear in the database unless it is 
present in at least three taxa. We therefore need to 
make some correction for unobservable families. 
We extrapolated from the relationship between the 
number of observations of each pattern of presence 
and absence of gene families in a pair of genomes 
and the number of genomes in which a gene fam-
ily occurs, using locally-weighted least squares 
(LOWESS) as described below. We then used 
the predicted numbers of unobserved instances to 
form LOWESS imputed counts nt kl for each pat-
tern, where k and l are the number of members of a 
gene family in each of two genomes. We based all 
subsequent calculations on the imputed counts.

To develop the models described here, we 
worked mainly with two pairs of taxa. The two 
E. coli strains K12 and 0157:H7 EDL933 are 
closely related, having different gene content for 
433 out of 4873 families. The non-pathogenic 
K12 has 2131 families present, of which 4 have 
more than 20 members and none has more than 
61 members. The pathogen 0157:H7 EDL933 has 
2190 families present, of which 8 have more than 
20 members and none has more than 62 members. 
Table 5 shows the observed numbers of families 
with i members in K12 and j members in 0157:H7 
EDL933. The largest count is for families that are 
absent in both strains. Most families have small 
and similar numbers of members in each strain. 
Archaeoglobus fulgidus (archaea) and Bacillus 
subtilis (gram positive bacteria) are distantly re-
lated, having different gene content for 2109 out 
of 4873 families. A. fulgidus has 1244 families, 
of which 2 have more than 20 members and none 
has more than 25 members. B. subtilis has 1771 
families, of which 5 have more than 20 members 
and none has more than 58 members. Table 6 shows 
the observed numbers of families with i mem-
bers in A. fulgidus and j members in B. subtilis.
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Compared to the E. coli data, there are fewer fami-
lies with large numbers of members in both taxa, 
and more with several members in one taxon and 
none in the other.

Correcting for unobservable data
In the COG database, gene families that are present 
in fewer than three genomes are not observable. In 
order to compute likelihoods, we need to correct 
for the unobservable data.

One method is to consider only the gene fami-
lies present in some reference genome or set of 
genomes (Lake and Rivera, 2004). We did not use 
this method because it is not clear how we should 
choose a reference genome or set of genomes 
that is suffi ciently independent of the taxa under 
study. For example, we might expect the set of 
all genomes in COG to be a reasonable reference 
choice. Nevertheless, we found strong dependen-
cies between the presence/absence of gene families 
in pairs of taxa and the number of genomes in 
which those families occur in the entire database 
(results not shown). On average, gene families 
absent from a pair of taxa tend to be found in few 
genomes, so conditioning on all COG genomes 
would not be appropriate.

Another approach is to work with likelihoods 
conditional on the family appearing in the database 
(Gu, 2000). Conditional likelihoods are diffi cult to 
apply to pairwise analyses of the COG database. 
A family could be absent from both members of a 
pair, yet still appear in the database if it is present in 
some other taxon. Since absence from both mem-
bers of a pair is by far the most common pattern, 
discarding all double absences (Gu and Zhang, 
2004) does not make good use of the available 
data. Furthermore, a family could be present in 
both members of a pair, yet still be absent from the 
COG database. Conditional likelihoods would be a 
good choice for an analysis of the entire database, 
although this would be time-consuming because 
we would have to calculate the probabilities of a 
family being absent from all genomes, present in 
only one genome (for all choices of one genome), 
and present in only two genomes (for all choices of 
two genomes). These probabilities are dependent 
on the tree structure and the model parameters. 
We could reduce the computing time by extending 
the database to include gene families that occur in 
only one or two genomes (Boussau et al. 2004), 
although it is not possible to avoid an arbitrary 
choice of significance threshold for pairwise

Table 5. E. coli observed pattern counts. Element i, j is the number of gene families having state i in the 
K12 strain and state j in the 0157:H7 EDL933 strain. States (labelled in the fi rst row and column) are 0, 1,… 
19,≥ 20 family members.

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20
 0 2622 79 21 5 3 3 0 0 2 3 1 0 1 1 0 0 0 0 0 0 1
 1 55 1349 41 14 4 0 4 1 0 0 0 1 0 0 0 0 0 0 0 0 0
 2 4 28 260 21 10 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 3 0 2 12 82 16 4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 4 1 1 2 10 40 4 4 0 1 0 0 0 0 1 0 0 0 0 0 0 0
 5 0 0 0 1 5 21 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0
 6 0 0 1 1 3 5 8 1 1 1 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 1 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0
 8 0 0 0 0 0 1 0 2 1 4 1 0 0 0 0 1 0 0 0 0 0
 9 0 0 0 0 0 0 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0
 10 0 0 0 0 0 0 0 1 0 2 0 1 0 1 0 0 0 0 0 0 0
 11 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
 12 0 0 0 0 0 0 0 0 0 0 3 0 2 1 0 0 0 0 0 0 1
 13 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0
 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0
 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 ≥20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
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sequence similarity, which makes it hard to analyze 
closely- and distantly-related genomes at the same 
time (Tatusov et al. 1997).

Instead, we estimated the numbers of unob-
served instances of each pattern of k members of 
a gene family in one genome and l members in the 
other. For each pair of genomes, we extrapolated 
from the relationship between the number of obser-
vations of each presence-absence pattern and the 
number of genomes in which a gene family occurs 
using locally-weighted least-squares (LOWESS). 
We then used the predicted numbers of unobserved 
instances to form LOWESS imputed counts nt kl for 
each pattern of k members of a gene family in one 
genome and l members in the other.

LOWESS extrapolation
The data for the focal pair of taxa are the number 
of observations nkl of each pattern for a pair of 
genomes. Most patterns have few observations, so 
we aggregate patterns into the categories AA, AP, 
PA and PP, where A means absent and P means 
present. We have the number of observations 
nAA(ng), nAP(ng), nPA(ng), nPP (ng) of each category 
in the pair of genomes for families detected in 
ng = 3,4,...,G genomes, where G is the number of 
genomes in the database. A family absent from 
both genomes in the focal pair could be present in 

0, 1 or 2 genomes in the whole database without 
being detected. For the category AA, we therefore 
want to predict the number of occurrences nAA(ng) 
for ng = 0,1,2. For categories AP and PA, the family 
must be present in at least one genome in the da-
tabase (one member of the focal pair), so we want 
to predict the number of occurrences for ng = 1,2. 
For PP, the family must be present in at least two 
genomes in the database (the two genomes in the 
focal pair), so we want to predict the number of 
occurrences for ng = 2.

Figure 6 shows the relationship between ng and 
the number of observations of each category for 
the pairs E. coli strains K12 and 0157:H7 EDL933 
(Figure 6a, c, e, g) and Archaeoglobus fulgidus 
and Bacillus subtilis (Figure 6b, d, f, h). For the 
AA pattern (Figure 6a and b), there is a strong 
curvilinear relationship. For the other categories, 
the relationships do not suggest any simple para-
metric form, and differ between the two pairs. 
For example, the E. coli pair has nPP(ng) (Figure 
6g) increasing rapidly as ng increases from 3 to 8, 
then decreasing slowly. There is a large outlier at 
ng = 66 (many gene families present in both E. coli 
strains are also present in every other genome in 
the database). For A. fulgidus and B. subtilis, there 
is a much more gradual increase in nPP (ng) (Figure 
6h) with ng, again with a large outlier at ng = 66. We 

Table 6. Archaeoglobus fulgidus and Bacillus subtilis observed pattern counts. Element i, j is the number of 
gene families having state i in A. fulgidus and state j in B. subtilis. States (labelled in the fi rst row and column) 
are 0, 1,...19, ≥ 20 family members.

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ≥20
 0 2448 857 180 66 28 12 11 8 5 6 2 1 1 1 1 0 1 0 0 0 1
 1 509 284 87 29 12 3 1 0 2 0 0 1 0 0 0 0 0 0 0 1 3
 2 86 43 26 13 4 2 1 2 1 1 1 0 0 0 1 0 0 0 0 0 0
 3 22 12 1 3 1 0 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0
 4 18 7 4 2 2 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1
 5 6 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 7 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
 8 0 0 2 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
 9 1 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 11 3 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 12 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 13 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 14 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ≥20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
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have no theory to guide the choice of model. We 
therefore used LOWESS with linear local models, 
tricube weights, and the span (proportion of data 
to include in local regressions) chosen by leave-
one-out cross-validation (Cleveland, 1979). We set 
negative predicted values to zero. The fi tted models 
generally behave well (Figure 6). The nPP (ng) case 
for E. coli (Figure 6g) is not very smooth, which 
makes extrapolation to ng = 2 potentially unreliable, 
but in this case the number of occurrences of PP 
will be small for any reasonable model. In both 
cases, by far the largest number of unobserved 
events are AA.

We examined plots of the LOWESS fi ts for all 
pairs of taxa. The only cases where the LOWESS 
predictions did not closely match the observed 
counts for small ng were where the fi rst member 
of the pair was one of the three eukaryotes in 
the database (Saccharomyces cerevisiae, Schizo-
saccharomyces pombe and Encephalitozoon 
cuniculi), and the other member of the pair was 
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Figure 6. Relationship between number of genomes in which a gene family is found (horizontal axis, ng) and number of observations of a 
category in the focal pair of genomes (vertical axis, n..(ng)), where n.. is one of the categories AA (a, b), AP (c, d), PA (e, f) and PP (g, h). 
A indicates absent and P present in each member of the focal pair. Focal pairs are E. coli strains K12 and 0157:H7 EDL933 (a, c, e, g);
Archaeoglobus fulgidus and Bacillus subtilis (b, d, f, h). Dots are observations, and solid lines are LOWESS curves with span (proportion of points 
used in each local regression) indicated on each panel. The vertical axis scale is fi fteen times larger in a and b than in the other panels.

not a eukaryote. For these cases, nPA(3) was 
always much larger than expected, because there 
are many genes present in all three eukaryotes and 
no other genomes. The optimal spans for these 
cases were large, because the other data were 
smooth, so the LOWESS curves did not pick up 
the outliers.

Imputed counts
Given models for each category, we obtain the 
predicted counts nt AA(ng), nt AP (ng), nt PA(ng), nt PP 
(ng) at all values of ng. The predicted proportions 
of each category are

 /p n n( ) ( )g kl g kl

ng

=t t t! !  (4)

where Σnt  is the sum of predicted counts over all 
categories and values of ng and



Evolutionary Bioinformatics Online 2006: 2184

Spencer et al

 ( )

, ,

, , >

, > ,

, > , >

g kl

AA k l

AP k l

PA k l

PP k l

0 0

0 0

0 0

0 0

=

= =

=

=

Z

[

\

]
]

]]

  (5) 

The imputed count nt kl including unobserved fami-
lies, is then 

 /n p Nn n( )
| ( ) ( )

kl g kl kl
ij g ij g kl

ij=
=

t t !   (6) 

where N = Σij nij is the sum of observed counts 
(the total number of gene families in the data-
base). The (0, 0) pattern is the only one in the 
AA category, so the imputed count is just the
predicted proportion of the category times the total 
number of observed gene families. The other cat-
egories each contain many patterns. We therefore 
estimate the imputed count nt kl for a pattern in 
one of these categories as the predicted propor-
tion of the category times the total number of 
observed gene families times the proportion of 
the original data for the category contributed by 
the pattern.

The (0,0) pattern is higher in the imputed counts 
than in the original data for both pairs of taxa
(Figure 7, upper right-hand point). All other pat-
terns have their counts decreased by roughly the 
same proportion.

Parameter estimation
and  model comparison
For each model, we found the maximum likeli-
hood parameter estimates numerically using 
Matlab Release 14 (The Mathworks, Inc, Natick, 
MA). For both models, we estimate all Q matrix 
parameters relative to the rate e of transitions from 
state 0 to state 1. A legitimate Q matrix has strictly 
nonnegative off-diagonal entries. For elements of 
the form ( )| |j i

i
-  x + x2 (where x and x2 are the linear 

and constant components of some process such 
as duplication or deletion) we require the linear 
component to be non-negative because we expect 
the rate of events not to decrease with the number 
of units on which the events can operate. Then
x2 > – x will always ensure the entries are non-
negative. We constrained all parameters to be 
non-negative (using a log transformation) unless 
the x2 estimates were very close to zero. If this 
occurred, we iteratively re-estimated parameters, 
setting the lower bound for the relevant x2 to – x 
and re-fi tting until the estimate was no longer on 
the boundary. For the more complex models, we 
obtained different log likelihoods for different 
initial conditions due to local minima in the like-
lihood function. We therefore used the best of 10 
estimates from random initial conditions for each 
of the two pairs of taxa.

Including edge lengths, the blocks model has 
13 free parameters and the birth-death model 
has fi ve. Although there are 14 parameters in the 
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Figure 7. Double logarithmic plots of observed (nkl) versus imputed counts (nt kl) for (a) E. coli strains K12 and 0157:H7 EDL933, and 
(b) Archaeoglobus fulgidus and Bacillus subtilis. The line indicates equality. The upper right-hand point is the (0, 0) pattern (absent from both 
members of the pair) for both pairs of taxa.
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blocks model, one is fi xed because we scale the 
Q matrix so the expected number of events per 
unit time is one. In the birth-death model, the two 
edge lengths count as a single parameter because 
the likelihood is affected only by their sum. We 
can obtain the birth-death model from the blocks 
model by setting a, b, b2, c, c2 and d to zero, and 
h to f +f2. We can therefore use a likelihood ratio 
test to compare these models. In standard cases, 
the asymptotic distribution of twice the log like-
lihood ratio (–2Δlog L) when the simpler model 
is true is n

2|  for nested models, where n is the 
difference in number of parameters between the 
two models (in this case 8). This does not hold 
for the comparison between the birth-death and 
blocks models, because the parameters a, b, b2, 
c, c2 and d are being set to boundary values (Self 
and Liang, 1987). Nevertheless, the standard 8

2|  
test will usually be conservative (Ota et al. 2000) 
(and appeared to be so in test cases where we ran 
simulations). Similarly, we used a conservative 

3

2|  test to evaluate blocks models with no multiple 
gene losses (a, b and b2 set to zero) or no multiple 
gene gains (c, c2 and d set to zero).

Each model is associated with a set of predicted 
relative pattern frequencies f ( )ij model

t , the proportion 
of gene families that will be in state i in species 1 
and state j in species 2. These are

 ( ) ( )e eSF TQ Qt t1 2=  (7)

where F is the matrix of pattern frequencies, 
S is a matrix with the stationary probabilities 
πi along the diagonal, and T indicates transpose. 
The log likelihood of a model can be written as 
Σij nt ij (log f ( )ij model

t , where nt ij is the LOWESS 
imputed count of state i in species 1 and state j 
in species 2. The best possible model is one that 
reproduces the LOWESS imputed frequencies
nt ij / n exactly. A natural way to determine where 
the model fi ts well and where it fi ts badly is to 
plot the contribution to the log likelihood ra-
tio for the comparison between a given model 
and the best possible model from each pattern,
nt ij(log f ( )ij model

t  –  log(nt ij – n)). This is positive when 
the model predicts a higher frequency than ob-
served, negative when the model predicts a lower 
frequency than observed, and sums over all i and 
j to the log likelihood ratio. We will do this for the 
blocks and birth-death models.

We also want to test whether the rates of lateral 
transfer are greater than zero. Rejecting the hypoth-
esis that d is zero is evidence for a non-zero rate 
of lateral transfer rate of multiple genes from the 
same family. Because d = 0 is a boundary value, the 
asymptotic distribution of –2Δ log L for this test is 
2
1

0

2
2
1

1

2|+|  (Self and Liang, 1987) when compared 
to a blocks model with unrestricted d. Although 
other transitions may involve lateral transfer, we 
cannot use them to estimate lateral transfer rates. 
The transition from state 0 to state 1 may occur 
either by innovation or by lateral transfer. We might 
expect innovation (evolution of a new member of 
a gene family from some other sequence) to be a 
very rare event, in which case the rate e will be 
almost entirely due to lateral transfers. Neverthe-
less, we cannot separate the two components of e. 
Furthermore, testing whether e is greater than zero 
is not sensible, because if e is zero, the stationary 
distribution has all its mass in state zero, and any 
pattern other than the absence of a family in every 
taxon has likelihood zero. We have no way to sepa-
rate the lateral transfer, innovation and duplication 
components of transitions from state i to states i 
< j ≤2i. Thus, we cannot say anything about the 
importance of lateral transfer in these transitions.

Expected residence times for genes
Given a Q matrix, we can calculate the expected 
residence time E(r) for a gene. This is the time in-
terval from the appearance of a gene in a genome 
(by duplication, lateral transfer or innovation) to 
the deletion of this gene:

 ( )E r ri i

i

k

0

b=
=

!  (8)

where βi is the probability that we enter state i as a 
gene appears in the genome, and ri is the expected 
time until a gene is deleted, given that we were in 
state i when it appeared in the genome. At steady 
state,

 ( )/ ( )q i j q i j
<<

i ji j ji j

j iij i

b r r= - -!!!  (9) 

The numerator is the sum of steady-state rates of 
fl ow into state i that add new genes, weighted by 
the number of genes i – j each fl ow adds. The de-
nominator normalizes the βi to probabilities.
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To calculate the ri, we construct a new Markov 
chain with one extra state X, that represents loss 
of a given gene. We assume that all members of a 
family are equally likely to be deleted. Then dur-
ing the transition from having i to j members of a 
family where j < i, the probability that a focal gene 
will not be among those deleted is αij = j /i. If the 
given gene is deleted, with probability 1 – αij , we 
enter state X. The ri are then the expected hitting 
times for state X, starting from state i. These are 
the solutions to the linear equations

 – QI r = 1 (10)

(Norris, 1997, p. 113), where QI is rows and 
columns i = 0,1...k of the rate matrix QX for the 
new Markov chain (ie all rows and columns except 
those for state X), r is a column vector of residence 
times ri, and 1 is a column vector of k + 1 ones. 
Table 7 shows an example of QX and QI . 

We calculated expected residence time 
(measured in expected numbers of events) un-
der the blocks model. We also ran Monte Carlo 
simulations to determine the distribution of resi-
dence times. We initialized a simulated genome in 
a state i sampled from the stationary probability for 
the Q matrix. We sampled the time to the next event 
from the exponential distribution with parameter –qii 
(the rate of leaving the current state), and sampled 
the new state of the genome from the multinomial 
with parameters given by the off-diagonal entries in 
the ith column of Q. If the transition involved a dele-
tion of some genes, we deleted each gene with equal 
probability. We recorded the time at which each gene 
was created and deleted, and ran the simulation until 
we had obtained the residence times of 10000 genes, 
after allowing 10000 simulated residence times to 
reach stationarity.

Phylogeny for genomes in the 
COG database
Full maximum likelihood estimation of model 
parameters and a tree topology with edge lengths 
is not feasible in our current implementation. We 
therefore fi tted the blocks model and the birthdeath 
model to all 2145 pairs of taxa from the COG 
database, and used the resulting estimates of evo-
lutionary distance to construct a phylogeny based 
on gene content. Some pairs were much more dif-
fi cult to optimize than the E. coli and A. fulgidus/ 
B. subtilis pairs we examined in detail, having 
many local minima in the likelihood surface for the 
blocks model. We therefore selected the best from 
30 sets of random initial conditions for each pair. 
If the best fi tting blocks model had a lower likeli-
hood than the best birth-death model, we know 
that the blocks model optimization failed, because 
the birth-death model is nested within the blocks 
model and should always have lower likelihood. 
In these cases, we re-optimized the blocks model, 
starting close to the birth-death parameter esti-
mates. Such problems occurred in 38 out of 2145 
pairs, all but one of which involved an archaeon 
or a eukaryote being compared with a bacterium. 
The fi tting took around 3 weeks on an Intel Xeon 
3.06 ghz processor with 4 gigabytes of RAM (this 
time requirement meant that bootstrapping was not 
feasible). We then used the sums of edge lengths 
(t1 +t2) for each pair from each model as maximum 
likelihood estimates of evolutionary distance. We 
used PAUP* version 4b10 for UNIX (Swofford, 
2003) to perform heuristic tree-bisection-reconnec-
tion searches for the best weighted least-squares 
trees, starting from initial neighbor-joining trees. 
The weights were the reciprocals of squared dis-
tances, and edge lengths were constrained to be 
non-negative.

Table 7. Rate matrix QX for the Markov chain used in calculating expected residence time of a gene 
(Section ). Here, k = 3. The qij are from the original Markov chain, and QI is rows and columns 0 to ≥ 3 of QX. 
Diagonal elements (not shown) are –1 times the row sums of off-diagonal elements in QX.

 0 1 2 3 χ

0 - q01 q02 q03 0 
1 q10α10 - q12 q13 q10(1 – α10)
2 q20α20 q21α21 - q23 q20(1 – α20) + q21(1 – α21)
3 q30α30 q31α31 q32α32 - q30(1 – α30) + q31(1 – α31) + q32(1 – α32) 
χ 0 0 0 0 - 
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