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Abstract.

Discrete-time Markov chains are widely used to study communities of com-

peting sessile species. Their parameters are transition probabilities between states (species
found at points in space), estimated from repeated observations. The proportion of nonzero
entries in the transition matrix has been suggested as a measure of the complexity of
interspecific interactions. This is not accurate if more than one transition can occur per
time interval. In such cases, continuous-time Markov chains may be better, and discrete-
time models may overestimate the complexity of species interactions. We reanalyze data
from a marine community. A continuous-time model with homogeneous rates is not sig-
nificantly worse than the maximum-likelihood discrete-time model. Compared to the con-
tinuous-time model, the discrete-time model overestimates the complexity of interspecific
interactions. We also discuss the entropy of a continuous-time Markov chain, another

measure of complexity.
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INTRODUCTION

Discrete-time Markov chain models of community
dynamics are increasingly common for competing ses-
sile species (e.g., Tanner et al. 1994, Wootton 2001,
Hill et al. 2004). These models assume that the set of
possible states for a given point in space is finite (typ-
ically the set of species observed in the community,
plus empty space). A transition matrix P contains the
conditional probabilities p; that apoint in statej at time
k will be in state i at time k + 1 (in other fields, it is
often p; that has this meaning). Given a column vector
x(K) of state probabilities at time k,

x(k + 1) = Px(K) (1)

(Hill et al. 2004). Most communities modeled by Eg.
1 asymptotically approach a stationary probability dis-
tribution ™ = Pr.

An appealing feature of these models is that the pa-
rameters p; have simple interpretations as probabilities
of colonization, disturbance, replacement, and persis-
tence (Hill et al. 2004). In principle, the P matrix can
give us a great deal of information about interactions
among species. For example, a community with hier-
archical interactions is one in which if species A out-
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competes species B, and B outcompetes C, then A also
outcompetes C for all sets of species {A,B,C}. In a
nonhierarchical community, there may be competitive
networks such that A outcompetes B, B outcompetes
C, C outcompetes A (Buss and Jackson 1979). A com-
munity with strictly hierarchical interactions will have
no cycles in the directed graph corresponding the P
matrix, other than cycles that pass through the empty
space state. Along the same lines, the proportion of
nonzero elements in the P matrix (the proportion of
transitions that occur) has been suggested as a measure
of the complexity of species interactions (Tanner et al.
1994), analogous to the connectance of a food web
matrix (e.g., Warren 1994). Using this measure, amore
complex community is one in which a greater propor-
tion of possible replacements of one species by another
are observed. This has an intuitive interpretation. If
there are more possible transitions out of a given state,
we will beless certain of the state one step in the future,
other things being equal.

Unfortunately, these simple interpretations break
down if more than one transition can occur between
time k and time k + 1 (Wootton 2001). In such cases,
it may be better to model community dynamics as a
continuous-time Markov chain. Here, we illustrate the
difference between continuous- and discrete-time Mar-
kov chain models. Using a hypothetical example, we
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show that if the underlying dynamics occur in contin-
uous time, we may not be able to infer which inter-
actions are possible using a discrete-time model. We
can make these inferences from a continuous-time
model if the transition rates are constant over time (the
model is time-homogeneous). Furthermore, observing
that p; is larger than p, does not necessarily allow us
to infer that the rate of transitions from j to i is higher
than the rate of transitions from | to k, especially if
there is a high probability of more than one event per
unit time. To illustrate this, we reanalyze data from one
of the sites studied by Tanner et al. (1994). We fit
discrete-time and homogeneous continuous-time mod-
els, and show using a likelihood ratio test that we can-
not reject the hypothesis of time homogeneity, although
in reality there is likely to be some variation in rates
over time. The homogeneous continuous-time model
predicts alower complexity of speciesinteractionsthan
the discrete-time model. We also discuss a measure of
entropy for continuous-time models, analogous to the
relative entropy used by Hill et al. (2004) for discrete-
time models.

ConNTINUOUS-TIME MARKOV CHAINS

The discrete-time system of Eqg. 1 has the continu-
ous-time analogue

X' (K) = Qx(K) )

where x’(K) is vector of first derivatives with respect
to time and Q is the matrix of instantaneous rates. The
off-diagonal elements of Q can take any nonnegative
real values. The rate of leaving state j is —q; = 3
g;. We assume throughout that the Markov chain is
irreducible (every state can be reached from any other
state), which implies, among other things, that ; # O.
This ensures that the stationary distribution is unique.
Irreducibility is areasonable assumption if disturbance
can return the community to empty space from any
state.

Thereis one discrete-time transition matrix P(t) with
a time step of t corresponding to every instantaneous
rate matrix Q. We can find this transition matrix using
the matrix exponential

Py - e = 3 &8 @

(e.g., Norris 1997:62—63). This means that if we are
interested only in making predictions at evenly-spaced
pointsin time, aP matrix corresponding to the Q matrix
of a continuous-time Markov chain is a perfectly good
representation. The stationary distributions of the dis-
crete- and continuous-time models are identical. The
possibility of equivalent discrete- and continuous-time
Markov models is well known (e.g., Logofet and Les-
naya 2000), but continuous-time models arelesswidely
used in ecology. The matrix exponential is not straight-
forward to compute (Moler and Van Loan 1978), but
isimplemented in software such as Matlab (M athworks,
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Fic. 1. Hypothetical example of a continuous-time Mar-
kov chain for three species A, B, and C, and empty space S.
Transitions that may occur are shown as arrows, |abeled with
their instantaneous rates.

Natick, Massachusetts, USA; we used releases 13 and
14 for all calculations). Throughout, we will refer to the
one-time-unit matrix P(1) simply as P.

INFERRING SPECIES INTERACTIONS

Consider the hypothetical three-species plus empty
space system shown in Fig. 1, where A, B, and C are
species and S is empty space. In this system, A is a
superior competitor to both B and C, and B isasuperior
competitor to C. All three species are affected by dis-
turbance (the transition to S) at an equal rate. C is the
fastest and A the slowest colonizer of empty space. The
instantaneous rate matrix is

A B C s
ATU2 1 34 U3
Q=8B0O0 -32 V4 12 ()
c%o 0 -32 1
SOU2 12 12 —116.

There are three zero elements (Qga, Jea, @Nd gcg). Using
Eq. 3, the corresponding discrete-time transition matrix
for atime interval of one unit is
A B C S
A @.6828 0.4596 0.4039 0.3372
P = B [0.0452 0.2683 0.1010 0.1424 (5)
C %).0785 0.0785 0.3017 0.2299
S [9.1935 0.1935 0.1935 0.2905.

There are no zero entries in the P matrix, because
the Markov chain is irreducible. From examining the
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P matrix alone, we would conclude that the competitive
interactions in this community are nonhierarchical, be-
cause we would sometimes observe transitions such as
A to C. The underlying dynamics are hierarchical, be-
cause we can only reach C from A in two transitions.
Q gives the direct interactions between species, while
P is the net result of direct and indirect interactions
over afinite time interval.

The elements corresponding to the three zeros in Q
arethethree smallest elementsin P. We might therefore
hope that the rank order of elementsin P tells us about
the relative rates of transitionsin Q. For example, Tan-
ner et al. (1994) suggest that *‘the interaction strength
is given directly by the transition probabilities.” This
is not necessarily so if the rates of change are high.
For example, g,s (the rate at which A colonizes empty
space), is 1/3 and qcs (the rate at which C colonizes
empty space) is 1. The corresponding transition prob-
abilities per unit time are py,s = 0.3372, pcs = 0.2299.
Although C colonizes empty space more rapidly than
A, therate —qc at which Cisreplaced by other species
is large. A point colonized by a C individual is often
replaced by an individual of another species before the
next observation is taken. The rate of leaving state A
is much smaller, so an A individual colonizing empty
space is likely to persist long enough to be sampled.

ExPECTED NUMBER OF EVENTS AND PROBABILITY
oF More THAN ONE EVENT PER UNIT TIME

The example above showed that we do not expect
the rank order of elements in P to tell us much about
the relative rates of transitions in Q when the rates of
change are high. The mean number r of events per unit
time at steady state is —1 times the sum of the diagonal
elements, weighted by the stationary probability of
each state:

r= _]Z ;0 (6)

where m; is the stationary probability of state j. The
waiting time A, to the next event when we are in state
j is exponentially distributed with parameter —qj;, so

P(>1 event per unit time)

=S S mlp@a A=, (D)
iAo T

Here, g;/(—q;) is the probability that a transition
from state j takes us to state i, and P(A; + A; = 1) is
the probability that the sum of waiting times to leave
the first state j and the second state i is no more than
one unit. The summation is over states i # j because
we have to enter a different state on leaving the first
state j. A; and A; are independent, so
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P, + A = 1)

f fy (P4 =1 - x) dx

Oa.. — a%) — q.. — @i

- g e

H Qi — 0 @)
pedi(g; — 1) +1 g; = G
where f; (X) is the probability density of A; at x. For
the hypothetical case given by Eq. 4, the mean number
of events per unit time is 1.0238 and the probability

of more than one event per unit time at stationarity is
0.2957.

ENTROPY OF CONTINUOUS-TIME MARKOV CHAINS

The proportion of zerosin amatrix gives the same
weight to rare and common transitions. Hill et al.
(2004) suggest using the entropy of a discrete-time
transition matrix as an index of successional com-
plexity that takes account of differencesin transition
probabilities. As with the proportion of zeros, the
entropy of the P matrix does not necessarily reflect
the interactions that actually occur. One analogous
entropy for a continuous-time rate matrix is the en-
tropy of the jump matrix S. The jump matrix is a
transition matrix whose entries s; are the conditional
probabilities of the new state at a point being i when
a change of state occurs, given that the current state
at the location is j:

s - —0q;/0; j#iandq; #* 0
"o j#iandq; =0
q; = 0

_]o
K 1 q; =0
(Norris 1997:87). Then the entropy H(S) of the jump
matrix is

€)

H(S) = —]E o Z s;log s; (10)
(Hill et al. 2004), where (9 is the stationary prob-
ability of state j in the jump matrix. This entropy
measures how uncertain we are about the next new
state of a point. By convention, sjlog s; = 0if s; =
0, but this will not happen for an irreducible model.
Because the diagonals of the jump matrix are zero
for nonabsorbing states, the maximum possible en-
tropy is H,(S) = log (s — 1), where sis the number
of states. The relative entropy H,(S) for the jump
matrix is then

H.(S = . (12)

For the hypothetical matrix in Eq. 4, H(S) = 0.6823,
H,o(S) = 1.0986, and H,(S) = 0.6210.

The jump matrix entropy takes no account of the
waiting times between changes of state. Kesidis and
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Walrand (1993) derive a relative entropy between
two rate matrices that does account for the waiting
times. However, this measure can be infinite when
one of the two matrices has a zero rate where the
other does not (Baldi and Piccioni 1999). Absolute
measures of entropy that include waiting times can
also be infinite, because increasing all the rates in
the same proportion always increases the uncertainty
about future states. Since an entropy that includes
waiting times confounds measures of uncertainty
about transitions with measures of uncertainty about
waiting times, we will use only the jump chain en-
tropy here.

FITTING HOMOGENEOUS CONTINUOUS-TIME MODELS
TO REAL DATA

We estimated the time-homogeneous Q matrix cor-
responding to a real transition matrix. Tanner et al.
(1994, Exposed Crest site, their Table 2) estimated tran-
sition matrices among eight species groups and empty
space on a coral reef, from observations at approxi-
mately two-year intervals. It seems possible that more
than one event might occur per timeinterval at agiven
point. For example, an organism might die at any time
of year, and subsequently be replaced during the breed-
ing season of another species. Although settlement may
only occur at some times of the year, the breeding sea-
sons of opportunist species that colonize empty space
tend to be long (Connell 1975:477). Furthermore, the
observation interval is long enough to contain two
breeding seasons.

Given ny, the number of times each transition was
observed, we first need to estimate P. The original data
are observations at a number of sites of the states i at
approximately equally spaced time points. At a single
site, we observe a sequence of states iq, i;, .. .,ir at
timesO, 1, ... ,T. Assuming astationary Markov chain,
the probability of this sequence of observations given
a set of transition probabilities P(i,. |i,) and stationary
probabilities m; is

P(ig, iy, ..., i7)

= P(iTl iT—l)P(iT—ll inz) T P(ill io)"Tiu (12

where m; is the stationary probability of the state ob-
served at time 0. Summing over a number of indepen-
dent and identically distributed sites and all time points
and taking logs, we get the full log likelihood

lw = c+ > nglogp; + X nlogm  (13)
L) ]

where n; is the observed number of transitions from
state j to state i, p; is the predicted probability of a
transition from j to i, and n; is the observed number of
sites having initial state j. We ignore c, which is the
log of a multinomial coefficient and is constant for
given data. We cannot obtain the initial states from
aggregated data giving the number of observations of
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each transition, as presented in Tanner et al. (1994).
We therefore ignore the contribution from initial states
and maximize

I = > nylog p; (14)
L)

This will usually be a good approximation to maxi-
mizing the full log likelihood, because the n; sum to
the number of sites n, while the n; sum to n,T, where
T is the number of sample intervals. Furthermore, the
a; are only indirectly related to the transition proba-
bilities, and there may be many transition matrices con-
sistent with a given set of ;. Eq. 14 can also be con-
sidered as a likelihood conditional upon the initial
states. If the processis not assumed to be at equilibrium
at time 0O, the initial states are ancillary statistics, and
inference should be conditional upon them (Lehmann
1986: section 10.2).

Using Eq. 14, we obtain the usual maximum-like-
lihood estimate P of the transition matrix P

>

A _ 1)

pij = n, (15)
where n; is the total number of transitions observed
out of state j (Caswell 2001:135).

Eq. 3 suggests log P as an estimate of the instanta-
neous rate matrix, where log is the matrix logarithm,
defined such that €% ® = P. We used the matrix log
algorithm implemented in Matlab releases 13 and 14
(Mathworks), described in Davies and Higham (2003).
For the Exposed Crest coral reef site in Tanner et al.
(1994, their Table 2), 13 out of 72 off-diagonal ele-
mentsin log P were negative. Q matrices with negative
off-diagonal elements are not biologically meaningful,
but could result from either sampling error or temporal
variability.

Given observations at fixed time intervals, a ho-
mogeneous continuous-time Markov chain is a special
case of a discrete-time Markov chain, but there are
discrete-time models that do not correspond to any val-
id homogeneous continuous-time model. Thusthe class
of homogeneous continuous-time models is nested
within the class of discrete-time models, and we can
use a likelihood ratio test of homogeneity. There is
almost certainly some temporal variability in the com-
munity studied by Tanner et al., since events such as
storm damage and settlement may be more frequent at
sometimes of year than others. Furthermore, the Tanner
et al. (1994) data average over years with and without
major cyclones. Nevertheless, if we cannot reject time
homogeneity, the estimated Q matrix may be a good
source of information about interspecific interactions.

We used maximum likelihood to find the best-fitting
Q matrix with nonnegative off-diagonal elements. We
used log P as a starting point, setting any negative off-
diagonals to 2 X 10-'6. We then used nonlinear opti-
mization of al the q; to minimize the negative log-
likelihood, constraining all parameters to be nonneg-
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TABLE 1. The estimated instantaneous rate matrix Q+ for the data in Tanner et al. (1994, their Table 2).

0-0.482 T 0.014 0.00929 0 0.117 0.0563 0.0601 0.0278 O
0.0121 -0.574 0.00342 0.0255 0.0231 0.0125 0.0269 0.0305 0.0102

H 0.0443 T —0.555 0.0148 0.0784 0.139 0.15 0.059 0.0634 H
0.0245 T 0.00704 —0.767 0.0727 0.235 0.0342 0.0833 0.0369

0 0.000669 0.0131 0 T -13 0 0 0.00291 0.0071 O
0.0154 0.0255 0.0194 0.0679 0.0295 —204 0.0302 0.0302 0.0256

H t 0 0.00501 T 0 0.0343 —0.861 0.00681 0.00916 H
0.00828 0 0.00778 0.0203 0.0583 0.00557 0.0206 —-1.04 0.0216

g 0.376 0.535 0.499 0.629 1.04 15 0.543 0.768 —-0.202 [

Note: The states are ordered encrusting acroporid corals, tabular Acropora, bushy Acropora, staghorn Acropora, soft corals,

algae, massive corals, pocilloporid corals, free space.

t Elements that were nonzero in the discrete-time transition matrix P but not in Q*.

ative. Once the optimization was finished, we set any
parameters that were less than 4 X 1016 to zero (with
undetectable effect on the log likelihood). Using the
resulting estimate Q*, we calculated —2Al (twice the
difference in log likelihoods) for the comparison be-
tween e?* and the maximum-likelihood estimate P.

The distribution of —2Al is complicated because
some parameters are on the boundaries of their ranges
(Self and Liang 1987), so we estimated it using a para-
metric bootstrap (Efron and Tibshirani 1993: section
6.5). For each bootstrap replicate, we simulated data
by stochastic iteration of Eq. 1, assuming Q* was the
true model and fixing the total number of transitions
at the observed value. We took an initial multinomial
sample n(0) of size ny from the stationary distribution
of Q*, where n, is 2122 (J. Tanner, personal commu-
nication). We then took a multinomial sample of n,(0)
transitions out of each state j from the jth column of
e+, where n;(0) is the jth entry in n(0). Summing the
destination states over all j gives the new state vector
n(1). We repeated this process for T steps. A total of
22 352 transitions were observed (Tanner et al. 1994;
the number of observations of free space should be
14 255, not 1425 as printed; J. Tanner, personal com-
munication). There were 12 sample times (T = 11),
with some missing data due to unidentifiable or very
rare species. We deleted transitions at random, assum-
ing each was equally likely to be missing, to obtain
exactly the observed number of transitions. For the kth
bootstrap replicate, we then estimated the bootstrap
value of the test statistic (—2Al)f exactly as for the
observed data. Finally, we estimated the probability of
a —2Al at least as large as observed if Q* was the true
model as p = #{(—2Al)f = —2AI}/B, where B is the
number of bootstrap replicates (1000). A large p value
indicates that we cannot reject the null hypothesis of
time homogeneity.

Q* had partial log likelihood —1.7350 X 104 and
the maximum-likelihood model P had partial log like-
lihood —1.7340 X 10* (—2Al = 18.6, p = 0.096, max-
imum (—2Al)f = 29.0, median = 11.8). We therefore
cannot reject the hypothesis of rate homogeneity in
continuous time for the Tanner et al. (1994) data. Sam-
pling error alone could explain the negative entries in

log P. Furthermore, log P was very similar to Q+ (least-
squares regression of off-diagonals with Q* as predic-
tor: intercept, —0.001; se, 0.0007; slope, 1.016; sk,
0.003).

There was a strong Spearman correlation (0.95) be-
tween the off-diagonal elements of P and Q+. Because
the mean number of events per unit time (0.33, from
Eq. 6) and the probability of more than one event per
unit time (0.06, from Eq. 7) arefairly low, the relative
magnitudes of the transition probabilities are areliable
guide to the relative magnitudes of the instantaneous
transition rates. Despite this strong correlation, the
number of zero off-diagonal entries in P is very dif-
ferent from the number of zero off-diagonal entriesin
Q. P had seven off-diagonal zeros, while Q+ had 13
(Table 1: the same 13 that were negativein log P). This
implies that even though the probability of more than
one event per unit time is quite small, P may substan-
tially overestimate the complexity of species interac-
tions.

The jump matrix entropy was 1.24, and the relative
entropy was 0.59, for the jump matrix corresponding
to Q*. The relative entropy uses the maximum possible
jump matrix entropy given the number of states as a
frame of reference, and has a maximum possible value
of 1. Thus, although 90% of the entries in P were
nonzero, we are not particularly uncertain about the
next new state at a given point. Because the number
of events per unit time was small, the relative jump
matrix entropy for the continuous-time model was close
to that for the discrete-time model (0.58: the definition
of the jump matrix for the discrete-time model is sim-
ilar to Eq. 9, except that off-diagonal elements are nor-
malized by 1 — p;, the probability of a different state
after one time unit). In general, we will not know
whether thisis the case unless we fit both discrete- and
continuous-time models.

To show that we can accurately recover community
structure even with fewer data, we treated the estimated
Q* matrix as the true matrix, and simulated sampling
from this with 10, 15, or 20 sample times (two-thirds,
three-thirds, or four-thirds of the actual number of ob-
servations). The mean jump matrix entropy and mean
proportion of nonzero off-diagonal elements were not
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significantly different from the true values (approxi-
mate P values from distributions of absolute deviations
from the mean of the simulated distributions >0.39 in
all cases, with 1000 replicates). Standard deviations of
the simulated distributions were <0.022 for jump ma-
trix entropy and <0.035 for proportion of nonzero off-
diagonal entries, even with two-thirds of the actual
number of observations.

DiscussioN

For the system we analyzed, Tanner et al. (1994)
commented that ‘‘the most remarkable aspect of the
[discrete-time] matrices is the marked paucity of zeros,
i.e,, amost every conceivable transition took place,
abeit at markedly different rates.” Our analysis sug-
gests that some of these transitions only took place
indirectly. The difference between discrete- and con-
tinuous-time matrices is somewhat analogous to the
difference between competitive interactions considered
in isolation and the net effects of interactions within a
community (Stone and Roberts 1991).

The proportion of nonzero elements in the instan-
taneous rate matrix is more appropriate than the pro-
portion of nonzero elements in the discrete-time tran-
sition matrix as a measure of the complexity of direct
competitive interactions between species. However,
thismeasureishighly sensitiveto sampling variability
(because rare events will often be missed completely
in small samples) and to observation errors (e.g., oc-
casional misidentified species). The entropy of the
jump chain is another possible measure of complexity,
and isless sensitive to sampling errors. Both measures
are summary statistics, and cannot tell us about the
detailed topology of interactions. If the true process
occurs in continuous time but the expected number of
events per unit time is small enough, the transition
probabilities from a discrete-time model are approx-
imately the probabilities of direct interactions be-
tween species. However, we would still have to fit a
continuous-time model in order to estimate the ex-
pected number of events. We therefore think that, if
there are biological grounds for believing that inter-
actions happen in continuous time, there is little rea-
son to make inferences about interactions from a dis-
crete-time model.

Temporal variability complicates the estimation of
instantaneous transition rates from observations at dis-
crete times. In many communities, some events (such
as breeding) may happen during a short time interval,
while other events (such as death and overgrowth) may
occur during most of the year. Furthermore, the sam-
pling interval for the data we analyzed (Tanner et al.
1994) was longer than a year, and there is good evi-
dencefor temporal variability in transition probabilities
at annual or longer time scales (e.g., Usher 1979, Hill
et al. 2002). There are some kinds of historical events
that cannot be accurately represented by any first-order
Markov model (Tanner et al. 1996). Thus, neither dis-
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crete-time models nor homogeneous continuous-time
models are entirely realistic. Nevertheless, in the case
we analyzed, a homogeneous continuous-time model
was a reasonable fit to the data. This suggests that
athough temporal variability is ubiquitous in nature,
ignoring it will not necessarily lead to very inaccurate
results.

CONCLUSIONS

If competitive interactions between species occur in
continuous time, then estimates of transition rates from
a continuous-time model have a simple biological in-
terpretation, while estimates from a corresponding dis-
crete-time model do not. In such cases, the graph of
nonzero interactions in the discrete-time model may
give a misleading picture of the direct competitive in-
teractions between species. The proportion of nonzero
instantaneous rates observed is a measure of the com-
plexity of interspecific interactions, although this sta-
tistic takes no account of the sizes of rates and is sen-
sitive to rare events. Entropy measures such as the
relative entropy of the jump chain do not have these
problems, but neither measure can tell us about detailed
interaction structure.
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SUPPLEMENT
Matlab code for testing the hypothesis of time homogeneity by parametric bootstrap is available in ESA’s Electronic Data

Archive: Ecological Archives E086-179-S1.



