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Abstract8

Coral reefs are threatened ecosystems, so it is important to have predictive models of their dynamics.9

Most current models of coral reefs fall into two categories. The first is simple heuristic models which10

provide an abstract understanding of the possible behaviour of reefs in general, but do not describe real11

reefs. The second is complex simulations whose parameters are obtained from a range of sources such12

as literature estimates. We cannot estimate the parameters of these models from a single data set, and13

we have little idea of the uncertainty in their predictions.14

We have developed a compromise between these two extremes, which is complex enough to describe15

real reef data, but simple enough that we can estimate parameters for a specific reef from a time series. In16

previous work, we fitted this model to a long-term data set from Heron Island, Australia, using maximum17

likelihood methods. To evaluate predictions from this model, we need estimates of the uncertainty in our18

parameters. Here, we obtain such estimates using Bayesian Metropolis-Coupled Markov Chain Monte19

Carlo. We do this for versions of the model in which corals are aggregated into a single state variable20

(the three-state model), and in which corals are separated into four state variables (the six-state model),21

in order to determine the appropriate level of aggregation. We also estimate the posterior distribution22

of predicted trajectories in each case.23

In both cases, the fitted trajectories were close to the observed data, but we had doubts about the

biological plausibility of some parameter estimates. We suggest that informative prior distributions

incorporating expert knowledge may resolve this problem. In the six-state model, the posterior dis-

tribution of state frequencies after 40 years contained two divergent community types, one dominated

by free space and soft corals, and one dominated by acroporid, pocilloporid, and massive corals. The

three-state model predicts only a single community type. We conclude that the three-state model hides

too much biological heterogeneity, but we need more data if we are to obtain reliable predictions from

the six-state model. It is likely that there will be similarly large, but currently unevaluated, uncertainty

in the predictions of other coral reef models, many of which are much more complex and harder to fit

to real data.
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1. Introduction26

Coral reefs are one of several major ecosystem types for which models of the dynamics of sessile27

organisms are important (others include forests and rocky shores). Many reefs are thought to be at28

risk of large, perhaps irreversible, changes in composition, due to a combination of overfishing, disease29

and storm damage (Hughes, 1994). This has made the development of models that can make reliable30

long-term predictions of reef dynamics an important goal.31

Many different kinds of models for coral reef ecosystems have been developed. At one extreme are32

generic, highly-simplified models whose value is in helping us to a qualitative understanding of the33

possible behaviour of the system (e.g. Mumby et al., 2007). At first sight, these models are too simple34

to describe particular real systems, and as a result, they are rarely fitted to data. At the other extreme35

are detailed simulation models (e.g. McClanahan, 1995; Langmead and Sheppard, 2004; Mumby et al.,36

2006). These models are mainly useful for numerical experiments. They cannot usually be fitted to37

data from a single system because they have too many parameters, or no rigorous way of comparing38

model output to data. Between these two extremes, it may be possible to produce models that can39

be fitted to real data, while at the same time having enough mechanistic detail to be able to make40

predictions. Early efforts in this direction focussed on linear Markov models (Tanner et al., 1994, 1996),41

which have also seen widespread use in other systems dominated by sessile organisms (e.g. Usher, 1979;42

Wootton, 2001c; Hill et al., 2004). More recently, attempts to add biological realism to this approach43

have resulted in nonlinear models whose mechanistic framework is no more complicated than that of44

the models used for qualitative understanding (Spencer and Tanner, 2008). Many of these studies have45

made use of the Heron Island data set. This long-term study of coral reef dynamics at Heron Island,46

Great Barrier Reef, Australia, provides a unique time series against which to test such models. The47

data consist of observations on the species present at large numbers of fixed points in space, at a series48

of irregularly-spaced times spanning almost thirty years. During this time, there have been dramatic49

changes to the composition of the reef (Connell et al., 1997).50

In a previous study (Spencer and Tanner, 2008), we fitted a number of linear and nonlinear models51

to the Heron Island data using maximum likelihood methods. The best description of the data was a52

nonlinear Lotka-Volterra competition model, in which the intensities of transitions between states (such53

as species groups and free space) depend on the local abundance of the destination state. Linear Markov54

models, in which the intensities of transitions do not depend on local abundances, gave fitted trajectories55

that were much less like the observed data. The dynamics of this reef may therefore be dominated by56

local processes such as colony growth and interaction, rather than external processes such as dispersal.57
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For our model to be useful, we need to know how uncertain we are about parameter estimates, and58

how this uncertainty propagates through to the output of the model. In principle, this is straightforward59

in a maximum likelihood framework. However, for technical reasons (section 2.5) we were not able60

to estimate parameter uncertainty in our previous study. Here, we use Bayesian methods to estimate61

the joint posterior distribution of the parameters of interest around the estimates found by likelihood62

maximization methods. We first describe, in section 2.6, a basic Metropolis-Hastings algorithm which in63

principle allows us to sample from the required posterior distribution. However, this basic algorithm is64

impractically slow. The likelihood surface is multimodal, and the MCMC sampler only rarely moves from65

one mode to another. To solve the problem, we go on in section 2.7 to describe a Metropolis-Coupled66

Markov Chain Monte Carlo (MCMCMC: Geyer, 1991; Gilks and Roberts, 1996) method. MCMCMC67

runs a number of Markov chains in parallel, one of which (the cold chain) has as its stationary distribution68

the required posterior distribution of our parameters, while the others (heated chains) have similar but69

flatter distributions, making it easier to move between modes. Swapping between chains allows the70

cold chain to benefit from the improved mixing of the heated chains. This method allows us to search71

effectively around a number of starting points, which is particularly useful when the log likelihood is72

multimodal. The combination of initializing chains at modes found by a deterministic method, and73

designing the chains to jump between modes, has been suggested previously (Gelman, 1996, pp. 135-74

136).75

We then use the joint posterior distribution of our parameters to estimate the induced posterior on76

the dynamics of the reef system. We also explore the effects of changing the level of aggregation of state77

variables. Models in which organisms are aggregated into too few state variables will be biased because78

of heterogeneity within these aggregated states. On the other hand, models with more state variables79

require more parameters, which increases the uncertainty in our estimates. In order to determine the right80

compromise between bias and uncertainty, we fit versions of our model containing three states (coral,81

algae, and free space) and six states (four different kinds of coral, algae, and free space). In earlier82

work, we used a six-state model. The three-state version requires fewer parameters, which is beneficial83

for estimation, but at the expense of aggregating several kinds of corals with different attributes into a84

single state. Finally, we discuss the implications of parameter uncertainty and model complexity for our85

ability to make predictions about the future dynamics of ecosystems.86

2. Methods87

2.1. Model structure88

We use a model of community dynamics described in detail in Spencer and Tanner (2008). Briefly,89

we assume:90

1. There is a fixed, finite number s of possible states for a point in space, of which one is the empty91

space state e and others are groups of species (e.g. acroporid corals, algae).92
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2. Conditional on its current state, the future state of a point is independent of its past states.93

3. The rate of transitions of a point in state j to a non-empty state i depends on the abundance94

(0 ≤ xi ≤ 1, dimensionless,
∑s

i=1 xi = 1) of state i. These transitions represent colonists produced95

by state i successfully occupying space held by state j.96

4. The rate of transitions from a non-empty state j to empty space e is independent of state abun-97

dances. These transitions represent death of organisms.98

5. The interaction coefficients aij ≥ 0 (dimensions T−1, i 6= j) that determine transition rates from99

state j to state i do not vary over time.100

6. The system is of infinite extent, and local spatial interactions are unimportant.101

Given these assumptions, we derived the ordinary differential equation model102

dxi

dt
=











−
(

aei +
∑

j 6=e,i ajixj

)

xi +
∑

j 6=i aijxixj , i 6= e

−
∑

j 6=e ajexjxe +
∑

j 6=i aejxj , i = e

(1)

where the summations are over the s possible states. This model is analogous to a Lotka-Volterra com-103

petition model. Other attempts to approximate the dynamics of coral reefs using differential equations104

have resulted in similar models (e.g. Mumby et al., 2007).105

The parameters of this model are the s(s − 1) interaction coefficients aij (for each state j, there are106

s− 1 other states to which a transition may occur), and the s initial state probabilities pj(0), j = 1 . . . s107

(the probability that a point is in state j at the first observation time t0). Thus in total there are s2
108

parameters (although only s − 1 of the initial state probabilities are independent, because they must109

sum to 1). Table 1 summarizes the parameters, state variables, and other symbols used in the model.110

Linear Markov models, also with s2 parameters, are often used for sessile organisms such as corals,111

mussels, and trees (Usher, 1979; Tanner et al., 1994; Wootton, 2001a; Hill et al., 2004), but unlike the112

nonlinear model described here, they do not allow density-dependent interactions. Our nonlinear model113

is a much better fit than a linear Markov model (Spencer and Tanner, 2008) to the Heron Island data.114

It is not clear whether this is a general pattern, but there is evidence for density-dependent interactions115

among sessile organisms from a number of other studies (Tanner et al., 2009).116

2.2. Data117

The data to which we apply the model are from a long-term study of the coral reef at Heron Island,118

Great Barrier Reef, Queensland, Australia (Connell et al., 1997, 2004). Photographs of fixed 1m2
119

quadrats at the Protected Crest site were taken at 17 unequally-spaced times between 1963 and 1989.120

We label the observation times t0, t1, . . . , tN . The organisms present in at least 1249 points with fixed121

spatial locations were recorded from each photograph (Tanner et al., 1994). Here, we analyze data in122

which the identities of organisms were aggregated into either s = 6 (acroporid corals, soft corals, algae,123
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massive corals, pocilloporid corals, free space) or s = 3 (corals, algae, free space) states. At time t0, we124

record the initial numbers of points nj(0) in each of the states j = 1, 2, . . . , s. For each adjacent pair of125

observation times tm−1, tm we record the number nij(m,m − 1) of points that were in state j at time126

tm−1 and state i at time tm.127

2.3. Transition probabilities128

In order to fit our model to data, we need to be able to compute each of the transition probabilities129

pij(m,m − 1) (the probability that a point in state j at some specified time tm−1 is in state i at some130

later specified time tm). Using Equation 1, we can write down a corresponding system of differential131

equations satisfied by pij(m,m − 1) which may then be solved numerically for any given values of the132

model parameters aij , pj(0). The details are given in Appendix A2.1 of Spencer and Tanner (2008).133

Note that because Equation 1 is written in continuous time, the interval between tm−1 and tm can be134

any non-negative real number, rather than a fixed time step.135

2.4. Log likelihood calculation136

We have data on the states of a number of fixed points in space at times t0 . . . tN , which are not137

necessarily equally spaced. We assume that these points are independent and have dynamics that can138

be described by the same interaction coefficients. The assumption of independence is unlikely to be139

true in practice, because nearby colonies are more likely to overgrow a point in space than distant140

colonies. Spatially explicit models exist for marine sessile organisms (e.g. Wilson et al., 1996; Burrows141

and Hawkins, 1998; Wootton, 2001b; Robles and Desharnais, 2002; Langmead and Sheppard, 2004;142

Dunstan and Johnson, 2005, 2006), but as yet there has been little progress on fitting them to data. In143

contrast, it is straightforward to calculate the log likelihood l of the data for the model in Equation 1,144

given the assumptions above:145

l =
∑

j

nj(0) log pj(0) +

N
∑

m=1

∑

i,j

nij(m,m − 1) log pij(m,m − 1) (2)

(Spencer and Tanner, 2008). The summations of i and j are over the s possible states.146

2.5. Maximum likelihood estimation147

Maximum likelihood estimation of the initial state probabilities and interaction coefficients for the148

model specified by Equation 1 is simple in principle, but difficult in practice. The log-likelihood surface is149

multimodal and has long, steep-sided ridges, making it difficult to find the global optimum. In addition,150

the optimization algorithms we used in Spencer and Tanner (2008) often terminate at points where the151

Hessian of the negative log likelihood is not positive definite, and therefore its inverse does not give a152

good estimate of the covariance matrix for the estimated parameters. However, the methods described153

in Catchpole and Morgan (1997) and Spencer and Tanner (2008, Appendix A3) show that the model is154
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locally identifiable given suitable data. The difficulties we experienced are therefore due to the relatively155

small number of observation times, and some parameters apparently lacking internal optima.156

A simple Markov Chain Monte Carlo (MCMC) algorithm also fails to perform well, because in the157

absence of gradient information it becomes trapped in local optima that are much worse than those158

found by the gradient-based algorithms used previously. We therefore use the maximum likelihood159

method described in Spencer and Tanner (2008) to find good parameter estimates from which to initialize160

an MCMCMC algorithm, which we will then use to estimate the uncertainty in our parameters. We161

performed 200 replicate optimizations for the 3-state model, and 400 for the 6-state model, started from162

random initial estimates. The number of replicates was a compromise between having a reasonable163

number of starting points for MCMCMC chains, and the time needed for deterministic searches.164

2.6. Basic Metropolis-Hastings MCMC algorithm165

In general terms, Bayesian inference involves making statements about a set of parameters θ, given

relevant data x and a probability distribution π(θ) (the prior) that represents our prior information or

beliefs about θ. In our case, θ is a vector containing all the parameters we want to estimate (the aij and

the pj(0)). The information in the data is contained in the likelihood function L(x|θ), which we have

described above. Using Bayes’ Theorem, the distribution of θ conditional on the data can be written as

π(θ|x) =
π(θ)L(x|θ)

∫

π(θ)L(x|θ) dθ
.

Here, π(θ|x) is known as the posterior distribution of θ, and it contains all the information we166

have about the parameters θ after analyzing the data. We can then use this posterior distribution to167

obtain the posterior distributions of functions of the parameters (such as, for our model, the posterior168

distribution of trajectories of Equation 1). Chapter 1 of Gelman et al. (2003) explains these ideas in169

more detail. In most cases, it is difficult to calculate the posterior distribution directly. MCMC allows us170

to sample from the posterior distribution, by simulating a Markov chain whose stationary distribution is171

the required posterior. At each iteration of the Markov chain, we propose new parameter values, which172

are accepted or rejected using a probabilistic rule which gives the correct stationary distribution.173

Because we have little prior information about parameters, we use vague priors (priors which are

designed to play a minimal role in the posterior distribution: Gelman et al., 2003, p. 61). For the inter-

action coefficients aij , with 0 ≤ aij < ∞ for i, j ∈ {1, 2, . . . , s} , i 6= j, we use independent exponential

priors each having mean 1 × 104. For the initial state proportions, we use a uniform prior on the set of

feasible values

{(p1(0), p2(0), . . . , ps(0)) : p1(0), p2(0), . . . , ps(0) ≥ 0, p1(0) + p2(0) + · · · + ps(0) = 1} .

To simplify the updating procedure for the initial state proportions, we define new parameters A1, A2, . . . , As174
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such that 0 ≤ Ai < ∞ for i = 1, 2, . . . , s, and set175

pi(0) =
Ai

A1 + A2 + · · · + As

for i = 1, 2, . . . , s.

This transformation allows us to update the parameters Ai independently of one another while retaining176

the constraint p1(0) + p2(0) + · · · + ps(0) = 1. To ensure a uniform prior distribution for the initial177

state proportions, we take independent exponential priors for A1, A2, . . . , As, each having mean 1 × 104
178

(Gelman et al., 2003, p. 582).179

We use a proposal in which a single parameter is updated at each iteration. We choose the parameter

to be updated uniformly at random from the full set of s2 parameters (s transformed initial state

probability parameters Ai and s(s − 1) interaction coefficients aij). If an interaction coefficient aij is

chosen, the proposed value is

log a∗
ij(k + 1) = log aij(k) + w(k)

where aij(k) is the interaction coefficient at iteration k and w(k) ∼ N (µij , σ
2
ij) (normal with mean µij180

and variance σ2
ij).181

If the parameter chosen for updating is one of the parameters Ai corresponding to the initial state

probabilities, we use a similar proposal:

log A∗
i (k + 1) = log Ai(k) + w(k)

where w(k) ∼ N (0, τ2
i ).182

The proposal variances σ2
ij , τ

2
i were chosen separately for each parameter by trial and error, to give183

suitable acceptance probabilities. To get good mixing (i.e. reasonably rapid exploration of the posterior184

distribution of the parameters), we aimed for acceptance probabilities in the range (0.2, 0.6) in short trial185

runs. In most cases, we set µij = 0. However, for a few interaction coefficients, the estimates obtained186

by the initial likelihood maximization search were very close to zero, and the likelihood surface for these187

parameters was very flat unless we moved far from zero. As a result, the acceptance probabilities were188

very high (typically > 0.99) even with very large proposal variances, and these log aij spent most of189

their time in random walks through large negative values for which aij is not different from zero when190

represented on a computer. Since it is important to know whether values further from zero are plausible,191

we used biased proposals (µij > 0) for these parameters. This allowed us to explore the space of larger192

values more efficiently, and reduced the acceptance probabilities to the target range. We checked with193

short preliminary runs that the marginal posterior distributions were similar whether or not we used194

biased proposals. The only exception was that for parameters that were very close to zero, the posterior195

means tended to be even smaller when an unbiased proposal was used (e.g. mean 7 × 10−9, standard196

deviation 5×10−7 with an unbiased proposal, mean 5×10−5, standard deviation 6×10−4 with a biased197

proposal, for a31 in the three-state model). However, for these parameters, the 95% credible intervals198

were always relatively wide, and the qualitative result that they were very close to zero was unaltered.199
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Denoting by θ the full set of s2 parameters, the Metropolis-Hastings acceptance probability is com-200

puted as201

α(k) = min

(

1,
π
(

θ
∗
k+1 | x

)

q(θk|θ
∗
k+1)

π (θk | x) q(θ∗
k+1|θk)

)

(3)

(Gilks et al., 1996, p. 7), where x denotes the full set of data, π(θ | x) the posterior density of θ, θk

the parameter values at iteration k, and θ
∗
k+1 the proposed values at iteration k + 1. The density of

proposing θk from parameter θ
∗
k+1 is q(θk|θ

∗
k+1). Denoting the likelihood function for our model as

L(x | θ), and the joint prior density of our parameters as π(θ), then (3) can be written as

α(k) = min

(

1,
π
(

θ
∗
k+1

)

L
(

x | θ
∗
k+1

)

q(θk|θ
∗
k+1)

π (θk) L (x | θk) q(θ∗
k+1|θk)

)

.

Parameters are updated by setting202

θk+1 =







θ
∗
k+1 with probability α(k),

θk otherwise.

2.7. MCMCMC chain swapping algorithm203

Unfortunately, the basic MCMC algorithm outlined in the previous section is impractically slow to

converge to the desired stationary distribution, due to both multimodality and the presence of long, steep-

sided ridges in the log likelihood surface. Metropolis Coupled Markov Chain Monte Carlo (MCMCMC)

improves mixing by running j chains in parallel (Geyer, 1991; Gilks and Roberts, 1996). One chain,

known as the cold chain, has the correct posterior distribution π(θ | x) as its stationary distribution.

The other chains have flatter stationary distributions πi(θ | x) ∝ π(θ | x)βi , with a heat parameter

0 < βi < 1. This helps the heated chains to move between modes. At each iteration k, each chain is

updated using a standard Metropolis-Hastings algorithm. We then pick the indices a, b of two chains

for which to propose a swap from independent discrete uniform (1,j) distributions. We accept the swap

and exchange the states θ
(a)
k , θ

(b)
k of the two chains with probability

R = min

(

1,
πa(θ

(b)
k | x)πb(θ

(a)
k | x)

πa(θ
(a)
k | x)πb(θ

(b)
k | x)

)

.

As a result, the cold chain will sometimes exchange states with one of the heated chains, which are more204

likely to move between modes. We did not exclude swaps where a = b, where the chain exchanges with205

itself, which are always accepted. We used incremental heating, βi = 1/(1 + ∆T (i − 1)). We chose ∆T206

so that chain swaps were accepted 20-60% of the time in short preliminary runs, which should give a207

sufficient amount of mixing (Altekar et al., 2004).208

2.8. Starting points and run length for MCMCMC209

We sorted the parameter sets found by likelihood maximization search in decreasing order of posterior210

density. We want to use all the solutions that we expect to make a non-negligible contribution to the211
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posterior as starting points for MCMCMC chains. Let ρk1 be the ratio of posterior densities in the212

kth and the best solutions. We added the best j solutions to our set of chain starting points, where213

j was chosen to be the largest integer such that ρj1/
∑

k≤j ρk1 ≥ ǫ, where ǫ is some small value. For214

the 3-state model, where there were many solutions with similar log likelihoods, we chose ǫ = 1 × 10−6,215

which gave j = 19 chains. For the 6-state model (where the solutions had relatively large differences in216

log likelihood), we chose ǫ = 1× 10−7, which gave j = 3 chains. We initialized chains with decreasing βi217

with the selected sets of parameters in decreasing order of posterior density.218

We ran the MCMCMC algorithm for long enough to establish that there were no obvious trends in219

any parameters, or in the log likelihood. Due to the slow mixing of this chain, we would not expect220

to achieve convergence to the stationary distribution from arbitrary starting points in a reasonable221

length of time. Because we started close to modes of the log likelihood surface, we would not expect222

parameter estimates to change much. Nevertheless, we discarded all the iterations from an initial burn-in223

period, before sampling parameter values (every 10th iteration) and predicted trajectories (every 100th224

iteration) from the posterior distribution. We calculated predicted trajectories over a 40-year period (up225

to 1 January 2003).226

Figure 1 summarizes the modelling process.227

2.9. Implementation228

We implemented the MCMCMC algorithm in Matlab Release 2008a (The Mathworks, Inc., Natick,229

MA). We used the ode15s stiff differential equation solver in log likelihood calculations. The code230

is available from http://www.liv.ac.uk/~matts/coral_MCMCMC.html. Details of the starting points,231

proposal distributions, and acceptance probabilities are given in the Supplementary Data.232

3. Results233

3.1. Three-state model234

For the three-state model, the marginal posterior distributions of interaction coefficients were not235

strongly bimodal (Figure 2; the means and standard deviations of the posterior distributions for all236

parameters are given in the Supplementary Data, Table 1). The most striking result was that the237

coefficients a21 (transition from coral to algae: Figure 2d), a23 (free space to algae: Figure 2f) and a32238

(algae to free space: Figure 2h) were all very large, with modes at more than 60 years−1 (throughout,239

we report statistics about posterior distributions based on the burn-in times and sampling frequencies240

given in the figure legends). Algae rapidly colonize areas of free space or dead coral, and algal blooms241

have been observed at the study site shortly after cyclones that caused substantial coral mortality (J.H.242

Connell, personal communication). Some algae can overgrow live coral, although overgrowth ability243

varies among algal species (Jompa and McCook, 2003) and the evidence that algal overgrowth is a244

cause, rather than a consequence, of coral mortality is fairly limited (McCook et al., 2001). Algae245
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are also subject to high grazing pressure (e.g. Fox and Bellwood, 2008), leading to rapid turnover.246

The high interaction coefficients between algae and other states are qualitatively consistent with these247

observations. However, due to their short-lived nature, algal blooms were not captured in our data.248

Small, short-lived algal species were not recorded in our surveys, because although they were present,249

they could not be reliably distinguished in photographs. The dominant algal species recorded in our data250

is Chlorodesmis fastigiata (77% of all algae recorded). Patches of C. fastigiata tend to persist long-term251

(J.E. Tanner, personal observation), although they may undergo cycles of die-back and regrowth over252

periods of months (Jompa and McCook, 2003). In contrast, the interaction coefficients in the three-state253

model suggest turnover on a weekly time scale. It is possible that these high estimates of transitions in254

and out of algal states are partly due to the sampling method used. Fronds of C. fastigiata have only255

a small attachment. At high tide, the fronds will float erect. At low tide, when samples were taken,256

they lie flat and may cover live coral or free space. A point where this occurred would be recorded as257

algae. Since the fronds may lie in different directions at different low tides, sample points could switch258

frequently between being recorded as algae and coral or free space. Thus it is not clear whether the259

estimated transition rates in and out of algae are due to sampling artefacts, insufficient data, or model260

misspecification.261

Although much smaller than the coefficient for overgrowth of coral by algae, the posterior distribution262

of the coefficient for overgrowth of algae by coral (a12) has substantial mass far from zero, with a mean263

of 2.0 years−1 (Figure 2b). This is at least qualitatively plausible. Corals are able to overgrow algae in264

some circumstances (McCook et al., 2001), including regeneration of lesions overgrown by algae, on a265

timescale of several weeks (Meesters and Bak, 1993).266

It is also striking that the interaction coefficient for transitions from coral to free space (a31, Figure267

2g) is very small and right-skewed, with posterior mean 5.49 × 10−5 and 95% credible interval [4.40 ×268

10−238,1.48 × 10−6]. This does not match the apparently substantial mortality of corals in this system,269

due to both desiccation and cyclones (J. E. Tanner, personal observation). Peak coral cover during the270

study period was 68% in 1969, and minimum coral cover 19% in 1989 (Connell et al., 2004). Our model271

reproduces much of this variation in coral cover (Figure 3a). However, the dominant pathway of coral272

loss in the model is transitions from coral to short-lived algae, rather than from coral to free space. This273

is the most important disagreement between the posterior rate estimates from the three-state model and274

biological knowledge.275

The posterior distribution of trajectories is similar to the observed temporal pattern for coral (Figure276

3a) and free space (Figure 3c) up to 1989. The agreement is less good for algae (Figure 3b), but this277

is based on few observations, because algae were at low abundance throughout the observation period.278

The uncertainty in the posterior distribution of trajectories remains small throughout the simulation279

period, with all sampled parameter sets resulting in the prediction that by 2003, there will be less than280
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5% coral (Figure 3d), less than 1% algae (Figure 3e), and more than 93% free space (Figure 3f).281

3.2. Six-state model282

The behaviour of the six-state model is rather different. For many parameters, the posterior distribu-283

tion contains a small but distinct secondary mode (Figure 4; the means and standard deviations of the284

posterior distributions are given in the Supplementary Data, Table 2). The largest coefficients are a25285

(pocilloporid corals to soft corals: Figure 4k, which has a very large value for the secondary mode), a31286

(acroporid corals to algae: Figure 4m), a34 (massive corals to algae: Figure 4p), a35 (pocilloporid corals287

to algae: Figure 4q), a36 (free space to algae: Figure 4r), a52 (soft corals to pocilloporid corals: Figure288

4z), and a63 (algae to free space: Figure 4ag). As in the three-state model, many of the large rates289

involve transitions to and from algae, which may not be biologically plausible. However, the mortality290

rates of corals are not negligible (Figure 4ae, af, ah, and ai). This appears more consistent than the291

three-state model with what we know about the biology of the system.292

The parameter estimates are different from those we obtained for the six-state model in our previous293

study (Spencer and Tanner, 2008). In that work, we relied on maximum likelihood with only 10 starting294

points, and the best-fitting parameter estimates had a log likelihood of −1.6208 × 104. Here, the best295

starting point for MCMC had a substantially better log likelihood (−1.6099 × 104), and our previous296

estimate would make only a negligible contribution to the posterior distribution. Although we showed297

that our previous methods were reasonably good at estimating the parameters of simulated data, our298

new approach is likely to be much better (although also much slower), especially on real data.299

The six-state model has the potential to capture some of the major differences in life histories between300

different groups of corals, rather than assuming that all corals (including hard and soft corals) are homo-301

geneous. Corals display a broad range of life histories (e.g. Hughes et al., 1992; Hall and Hughes, 1996).302

Here, we divide them into four somewhat homogeneous groups based on taxonomic and morphological303

grounds. Recruitment rates tend to be high for acroporids (especially when asexual fragmentation is304

taken into account), intermediate for pocilloporids, and low for massives (e.g. Highsmith, 1982; Wallace,305

1985; Wallace et al., 1986). Growth rates show the same pattern (e.g. Buddemeier and Kinzie, 1976;306

Guzmán and Cortés, 1989; Babcock, 1991; Tanner, 1997). Conversely, massive corals have low mortality307

rates and are resistant to mechanical disturbance, acroporids generally have higher mortality and can be308

susceptible to disturbance, while pocilloporids are generally short-lived and vulnerable to disturbance309

(e.g. Harriott, 1985; Marshall, 2000; Baird and Marshall, 2002). Soft corals are in a different order from310

the other corals, and have a mixture of life history strategies. Only one species, Zoanthus vietnamensis,311

became abundant in the late 1980s, when the site became drier. Little is known about its biology, but312

it is apparently a good competitor and tolerant of dry conditions (Connell et al., 2004).313

In our model, growth and recruitment are represented by transitions from free space (state 6) to314

corals. The observations above suggest that the corresponding interaction coefficients should be ordered315
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a16 > a56 > a46: growth and recruitment highest in acroporids (state 1), intermediate in pocilloporids316

(state 5), and lowest in massive corals (state 4). In fact, they are ordered a56 > a46 > a16 (Supplementary317

Data, Table 2). Similarly, mortality is represented by transitions from corals to free space. The obser-318

vations above suggest that the corresponding interaction coefficients should be ordered a65 > a61 > a64:319

mortality highest in pocilloporids, intermediate in acroporids, and lowest in massive corals. In fact,320

they are ordered a61 > a64 > a65 (Supplementary Data, Table 2). Thus, although our model allows321

differences in life histories between types of coral, the estimated parameters do not reflect what we know322

about these life histories. Possible explanations include the model being misspecified in some way, or323

the small amount of data for some states such as pocilloporid corals, which were rare throughout the324

study period (Figure 5e).325

The posterior distribution of trajectories from the six-state model (Figure 5) is tightly constrained326

by the data up until 1989 (the year of the last observation used in this study). From then onwards, un-327

certainty about the predictions of the model rapidly increases. The posterior distribution of trajectories328

has three distinct modes, which are coloured in Figure 5 by the amount of free space x6(40) predicted in329

2003, at the end of the 40-year run (x6(40) < 0.5: black; 0.5 ≤ x6(40) < 0.75: blue, 0.75 ≤ x6(40): red).330

85% of trajectories fall into the blue cluster, which is dominated by free space (mean 68%, Figure 5l) and331

soft corals (mean 22%, Figure 5h). All other states are rare in the blue cluster (means: 4% pocilloporid332

corals, Figure 5k; 3% acroporid corals, Figure 5g; 1% algae, Figure 5i; and 1% massive corals, Figure333

5j). The red cluster (4% of trajectories), while quantitatively distinct, has similar qualitative behaviour334

(means: 79% free space, Figure 5l; 15% soft corals, Figure 5h; 3% algae, Figure 5i; 2% pocilloporid335

corals, Figure 5k; 0.5% acroporid corals, Figure 5g; 0.3% massive corals, Figure 5j). These two clusters336

also show similar qualitative behaviour to the three-state model (Figure 3). However, the black cluster337

(11% of trajectories) has very different behaviour, dominated by acroporid corals (mean 50%, Figure338

5g), pocilloporid corals (mean 33%, Figure 5k), and massive corals (mean 10%, Figure 5j), with mean339

7% free space (Figure 5l) and almost no soft corals (mean 0.1%, Figure 5h) or algae (mean 4×10−11%,340

Figure 5l). We checked by simulation that the differences between clusters persisted over much longer341

time scales, although there were small, sustained oscillations in trajectories from all clusters (results not342

shown).343

The presence of three modes in the posterior distribution of trajectories is a result of there being344

three starting points, close to modes on the log likelihood surface, with large differences in log likelihood345

(the short vertical bars at the top of each panel in Figure 4, and Supplementary Data, Table 2). This346

contrasts with the three-state model, in which the differences in log likelihood among the 19 starting347

points were much smaller (the short vertical bars at the top of each panel in Figure 2, and Supplementary348

Data, Table 1).349
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4. Discussion350

Many kinds of uncertainty affect our ability to predict the natural world (Regan et al., 2002). Here,351

we have dealt with one of them, parameter uncertainty, in a quantitative way. The effect of parameter352

uncertainty on our model is similar to that described in van Nes and Scheffer (2003). In their simulation353

model of competition between two aquatic plant species, moderate uncertainty in parameter values354

resulted in large uncertainty in the biomasses of the two species. This was because there were two355

attractors in their model, one in which both species were present, and another in which only one of the356

two species persisted. Changes in interaction parameter values switched the model from one attractor357

to the other. The effects of parameter uncertainty are likely to be even stronger in cases such as the358

three-state coral model of Mumby et al. (2007), where there is more than one locally stable attractor for359

some sets of parameter values. In such cases, changes in initial conditions can cause switching from one360

attractor to another.361

Our Bayesian analysis has given us much more information than we would have got from a typical362

maximum likelihood method. Inverting the Hessian of the negative log likelihood is (when possible)363

a quick and easy way to estimate standard errors for maximum likelihood estimates of parameters.364

However, in doing this we would have missed the multimodal nature of the posterior distribution of365

many parameters in the six-state model (Figure 4). Consequently, we would have lost all information366

on the small but important probability with which the six-state model predicts high rather than low367

abundance of acroporid corals in 2003 (Figure 5).368

The models we have analyzed here are conceptually simple and based on data from a single long time369

series. Although we cannot be certain, it seems likely that the effects of parameter uncertainty will be of370

a similar order in other reef models, where it has not been quantified. We will consider three examples.371

The model described in Mumby et al. (2006) is spatially explicit, contains two different kinds of corals,372

three different classes of algae, grazing by fish and urchins, varying nutrient levels, and hurricanes. This373

model appears to have 22 parameters, which were estimated from diverse sources and whose uncertainty374

is unknown, in addition to the initial abundance of each of seven states. The complexity of this model375

leads us to expect that parameter uncertainty would have substantial effects. Langmead and Sheppard376

(2004) describe a spatially explicit model with ten species of corals, and 40 parameters estimated from377

diverse sources. They did a sensitivity analysis in which each parameter was altered by what seems to378

be an arbitrary but plausible amount. 20% of such changes resulted in a change in cover of more than379

10%. Again, given the complexity of the model and the limitations of data, we expect the consequences380

of parameter uncertainty to be large. McClanahan (1995) developed an energy-based model of coral381

reef fisheries, including corals, algae, two kinds of herbivores, two kinds of carnivores, human fishing,382

and calcium carbonate accretion. The 27 parameters were estimated from diverse sources. A sensitivity383

analysis was carried out. It is not described in detail in the paper, but calcium carbonate accretion was384
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described as ‘very sensitive’ to changes in two processes, and fisheries yields as ‘sensitive’ to changes in385

another two processes.386

The way the uncertainty in our six-state model increases after the period for which we have data387

(Figure 5) suggests that even with observations at 17 times spread over 26 years, we cannot make388

meaningful predictions more than a very few years into the future. This is because the data do not389

constrain our estimated parameters tightly enough. Furthermore, in both the three-state and the six-390

state models, we had doubts about the biological plausibility of some parameter estimates, especially the391

low mortality of corals in the three state model and the very high coefficients for transitions to and from392

algae in both models. Other coral models such as those discussed above (McClanahan, 1995; Langmead393

and Sheppard, 2004; Mumby et al., 2006) made extensive use of literature data from diverse sources to394

estimate parameters. In principle, we could use such data and expert judgement to provide informative395

priors. This would help ensure that our parameter estimates are biologically plausible, and reduce the396

uncertainty in our posterior distributions. Turning expert knowledge into probability distributions is397

not trivial (Burgman, 2005, section 4.4), although guidelines exist (Garthwaite et al., 2005; O’Hagan,398

2005). One difficulty is that expert knowledge about a particular system, such as the Heron Island reef,399

may be largely shaped by the same observations that provide our data. The result may be posterior400

distributions that are narrower than they should be.401

We are not aware of other published models of coral reef communities that attempt to estimate the402

consequences of parameter uncertainty, although at least one other unpublished study has used MCMC403

for parameter estimation (Żychaluk et al., 2005). A search on the ISI Web of Science for ‘coral parameter404

uncertainty’ on 6 April 2009 gave three results, of which two are relevant. van Nes and Scheffer (2003)405

look at a two-species aquatic plant model, discussed above. Nguyen and de Kok (2007) describe a Monte406

Carlo uncertainty analysis of an integrated systems model for coastal zone management, which included407

the effects of processes such as blast fishing on living coral area. Both studies showed that parameter408

uncertainty is likely to have substantial effects on model predictions, but neither used probabilistic409

methods to estimate this uncertainty based on field data.410

Model uncertainty (uncertainty arising from the choice of processes to include in the model and the411

choice of mathematical construct used to represent them: Regan et al., 2002) is recognized as being412

important in ecological models, but difficult to deal with. We have only considered model uncertainty413

in a qualitative way. First, among a set of candidate six-state models with different mathematical forms414

that have the potential to make predictions about the future, the six-state version of the model we used415

here is the only one with a non-negligible Akaike weight (Spencer and Tanner, 2008). Thus, of the model416

forms we have so far evaluated, we are justified in using only Equation 1. Second, we have considered two417

versions of this model, with three and six states respectively. These two versions of the model behaved418

in substantially different ways. Aggregating state variables reduces parameter uncertainty because there419
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are fewer parameters to estimate. This is done at the expense of increasing bias, because we may be420

aggregating states (for example the four different kinds of corals in the six-state model) that have very421

different dynamics. Our subjective impression is that the six-state model has too many parameters, given422

the amount of data we have (although it does not have any more parameters than other simple models for423

the same type of data and the same number of states, such as a linear Markov model). On the other hand,424

the three-state model is probably over-aggregated, given how different the dynamics of acroporid corals425

(Figure 5a), soft corals (Figure 5b) and massive corals (Figure 5d) appear. A quantitative treatment of426

this kind of model uncertainty would involve giving a probabilistic weight to each level of aggregation.427

This could in principle be done using reversible-jump MCMC (Green, 1995), treating transitions within428

aggregated states as missing data (Susko and Roger, 2007). Reversible-jump MCMC could also be used429

to deal with more general kinds of model uncertainty, encompassing models that do not fit into the430

class defined by Equation 1. However, this would involve specifying what those alternative models are.431

One obvious candidate is a model in which the algal grazing rate per unit area declines as algal cover432

increases (Mumby et al., 2007). It seems likely that considering more models would increase our overall433

estimate of uncertainty.434

We have not attempted to address natural variation (in the sense of Regan et al., 2002). We have435

assumed that the parameters of the model remain constant over time. In reality, changes in the envi-436

ronment, including gradual uplift and storms (Connell et al., 2004) may alter parameters. Stochastic437

models in conservation biology often incorporate temporal variability in parameters. However, the data438

requirements are demanding. Even in the simplest single-species models, reliable estimates of the risk of439

population decline below a specified size may only be possible over time horizons of 10-20% of the length440

of the time series from which parameters were estimated (Fieberg and Ellner, 2000). The situation is441

likely to be worse for a nonlinear, multi-species model. Nevertheless, species do not exist in isolation, so442

ecological risk analyses based on multispecies models may have a place.443

The absence of spatial effects in our model might partly explain why some of the estimated parameters444

are implausible. Cellular automata models are an obvious solution. The parameters of discrete-time445

cellular automata are easy to estimate when the model time steps are the intervals between observations446

(e.g. Balzter et al., 1998). However, our data are observed at irregular time intervals. We would therefore447

need either a discrete-time cellular automata model with a time step chosen so that all observation448

intervals are approximately integer multiples of it, together with a way of integrating over missing data449

between observations (O’Hara et al., 2002), or a continuous-time cellular automata model, together with450

some way of approximating its likelihood function.451
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5. Conclusions452

We showed that Bayesian Markov Chain Monte Carlo methods can be used to quantify the effects of453

parameter uncertainty on predictions about the dynamics of coral reef models. Our approach could be454

extended to incorporate literature data and expert knowledge (which our results suggest are necessary455

to constrain parameter estimates), and to deal with temporal variability. Given the data available to456

us, predictions based on coral reef models are necessarily probabilistic, and it seems likely that the457

uncertainty in these predictions will be large. We think it important to focus on conceptually simple458

models in order to reduce this uncertainty.459
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Tables580

Table 1: Parameters, state variables, and symbols used in the model

Symbol Definition Units
Parameters
aij Interaction coefficient between source state j

and destination state i
years−1

pj(0) Probability of state j at time t0
State variables
pij(m,m − 1) Probability that a point in state j at time tm−1

will be in state i at time tm
xi Abundance of state i
Symbols used to describe data
e Index of the empty space state
nij(m,m − 1) Number of sampled points in state j at time

tm−1 and state i at time tm
nj(0) Number of sampled points in state j at time

t0
s Number of states in the model
t0, t1, . . . , tN Times at which observations were made years
Symbols used in model fitting
Ai Transformed initial state probability
α(k) Acceptance probability at iteration k
βi Heat parameter for chain i
l Log likelihood
L(x|θ) Likelihood of parameters θ

µij Mean of proposal increment for log aij

π(θ) Prior density of parameters θ

π(θ|x) Posterior density of θ given data x
q(θk|θ

∗
k+1) Density of proposing θk from parameter θ

∗
k+1

R Chain swap acceptance probability
σ2

ij Variance of proposal increment for log aij

θ Vector of model parameters (aij and pj(0))
θk Vector of model parameters at iteration k
τ2
i Variance of proposal increment for log Ai

x Data
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Figure captions581

Figure 1. Conceptual diagram summarizing the way in which data, prior distributions, and likelihood582

calculation are used to obtain posterior distributions of parameters and trajectories for our coral model.583

Figure 2. Marginal posterior distributions of initial state proportions pj(0) (diagonal panels, dimen-584

sionless) and interaction coefficients aij (off-diagonal panels, years−1) in the three-state model (states:585

1=coral; 2=algae; 3=free space) for the Heron Island data. The short vertical lines at the top of each586

panel are the starting parameter values. Produced from an MCMCMC run with 19 chains, ∆T = 0.5.587

Run for 112799 iterations (sampling every 10th iteration) after a burn-in of 1 × 105 iterations. All588

panels have a common vertical scale, all diagonal panels have a common horizontal scale [0, 1], but the589

horizontal scales for off-diagonal panels vary.590

Figure 3. Posterior distribution of three-state model trajectories over 40 years, starting from 1963.591

Circles are the observed proportions of each state in the Heron Island data (sampled 1963-1989), and592

lines are a sample of approximately 2000 trajectories from the posterior distribution of the model, for:593

(a) corals; (b) algae; and (c) free space. The vertical scale is different for each of these. Small vertical594

panels are histograms of the predicted proportion of: (d) corals; (e) algae; and (f) free space on 1 January595

2003, with vertical scales that match panels a to c respectively. Produced from an MCMCMC run with596

19 chains, ∆T = 0.5. Run for 112799 iterations (sampling every 100th iteration) after a burn-in of597

1 × 105 iterations.598

Figure 4. Marginal posterior distributions of initial state proportions pj(0) (diagonal panels, dimen-599

sionless) and interaction coefficients aij (off-diagonal panels, years−1) in the six-state model (states:600

1=acroporid corals; 2=soft corals; 3=algae; 4=massive corals; 5=pocilloporid corals; 6=free space) for601

the Heron Island data. The short vertical lines at the top of each panel are the starting parameter values.602

Produced from an MCMCMC run with 3 chains, ∆T = 0.5. Run for 505199 iterations (sampling every603

10th iteration) after a burn-in of 4×105 iterations. All panels have a common vertical scale, all diagonal604

panels have a common horizontal scale [0, 1], but the horizontal scales for off-diagonal panels vary.605

Figure 5. Posterior distribution of six-state model trajectories over 40 years, starting from 1963.606

Circles are the observed proportions of each state in the Heron Island data, and lines are a sample of607

approximately 5000 trajectories from the posterior distribution of the model, for: (a) acroporid corals;608

(b) soft corals; (c) algae; (d) massive corals; (e) pocilloporid corals; and (f) free space. Lines are coloured609

by the proportion of free space x6(40) predicted after 40 years (1 January 2003): x6(40) < 0.5 black;610

0.5 ≤ x6(40) < 0.75 blue; 0.75 ≤ x6(40) red. The vertical scale is different for each panel. Small vertical611

panels are histograms of the predicted proportion of: (g) acroporid corals; (h) soft corals; (i) algae; (j)612

massive corals; (k) pocilloporid corals; and (l) free space on 1 January 2003, with vertical scales that613

match panels a to f respectively. Produced from an MCMCMC run with 3 chains, ∆T = 0.5. Run for614

505199 iterations (sampling every 100th iteration) after a burn-in of 4 × 105 iterations.615
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