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A1. Derivation of the LV model11

Let Ω be the extent of the system, which we assume here is infinite. Consider a point

w ∈ Ω whose state is Xw. Let v ∈ Ω be another point in the system, and let λij(v, w)

(dimensions T−1) be the finite rate at which dispersal or growth from the colony at v

causes transitions from state j to state i at w, if Xv = i, i 6= e, and Xw = j. We assume

that λij(v, w) is constant over time and does not depend on the states of any other points.

Integrating over all pairs of points in the system, the total rate at which transitions occur

from j to i is

µij ≡

∫

w∈Ω

∫

v∈Ω

λij(v, w)I{v, i}I{w, j}dvdw (A.1)

where I{v, i} is an indicator variable with value 1 if Xv = i and 0 otherwise. We assume that

this integral converges to a finite value, which will be true if the probability of dispersal or

growth from v to w decays sufficiently fast with distance. However, we have no information

on the relevant dispersal and growth distributions, so we make a mean-field approximation.

Let the expectations over Ω of λij(v, w), I{v, i} and I{w, j} be aij (dimensions T−1), xi

(dimensionless) and xj (dimensionless) respectively, at a given moment in time. We assume

that the only relevant information about a pair of points is their states, ignoring any spatial

effects. Then

µij ≈ aijxixj (A.2)

If there are spatial effects, we can justify Eq. A.2 as the first term in a Taylor series12

approximation. Our approximation is very similar to the mean-field version of an interacting13

particle system (Durrett and Levin 1998). The technical conditions under which we can14

make the connection between a stochastic, mechanistic model and a system of deterministic15

ordinary differential equations at the community level are given in Kurtz (1970, 1971).16

The proportion of points in state j at any time is xj. We refer to aijxi as the17

instantaneous rate of transitions per unit time from j to non-empty state i in this model,18
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per unit frequency of the source state j. The relationship between instantaneous rates19

and transition probabilities is the same as that between the instantaneous growth rate of20

a population (defined by a differential equation) and the ratio of population sizes at two21

times t + 1 and t (defined by a difference equation). As we show in Appendix A2.1, the22

rates of change can be integrated numerically to obtain the probabilities of transitions from23

state j to state i over a finite interval of time. We refer to aij as an interaction coefficient.24

For a point w in the system that is in a non-empty state j, we assume that the rate of

transitions λej(w) (dimensions T−1) to the empty state e is independent of the states of all

other points. Then under a similar mean-field assumption the rate of transitions from j to

e is

µej =

∫

w∈Ω

λej(w)I{w, j}dw ≈ aejxj (A.3)

We refer to aej as the rate of transitions from non-empty state j to empty state e in this25

model. Again, this rate is per unit frequency of the source state j.26

A2. Transition probabilities27

A2.1. Transition probabilities in the LV model28

We now need to calculate pij(m,m − 1) for the model specified by Equation 1. For

simplicity, we will set tm−1 = 0 and write pij(t) for the probability that a sample point in

state j at time 0 is in state i at time t ≥ 0. The initial condition is pij(0) = 0 if i 6= j and

pjj(0) = 1, because at time 0 there is no possibility of any change of state. The probability

pij will undergo losses due to transitions to states other than i, and gains due to transitions

into state i from points now in some other state k that were in state j at time 0. The rate
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of change of pij thus has the same form as the rate of change of xi (Equation 1):

dpij

dt
=















−
(

aei +
∑

k 6=e,i akixk

)

pij +
∑

k 6=i aikxipkj i 6= e

−
∑

k 6=e akexkpej +
∑

k 6=e aekpkj, i = e

(A.4)

Let pj be a column vector of probabilities of each state conditional on being in state j

at time 0. Then we can write Equation A.4 in matrix form by substituting pj for x (the

unconditional probabilities of each state) in Equation 2:

dpj

dt
= (XA − C)pj

= R(x)pj

(A.5)

We can integrate Equations 2 and A.5 numerically to get the transition probabilities for29

any time interval, and insert these into Equation 10 to get the log likelihood for any given30

parameters. This model has s2 − 1 parameters: s(s − 1) interaction rates and s − 1 initial31

state probabilities. The initial probability of the last state is determined by the sum of the32

probabilities of the other states, so there are only s − 1 independent probabilities.33

A2.2. Transition probabilities in the linear model34

For a homogeneous continuous-time linear Markov model (Equation 5), the transition35

probabilities are given by the exponential of the Q matrix. Again, this model has s2 − 136

parameters (including the initial state probabilities, although these do not affect transition37

probabilities).38
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A2.3. Transition probabilities in the saturated discrete-time Markov model39

The best possible model fits a separate transition probability matrix to each time

interval. The maximum likelihood estimates of transition probabilities are given by

p̂ij(m,m − 1) =
nij(m,m − 1)

∑

k nkj(m,m − 1)
(A.6)

(Caswell 2001, page 135). This model has (ks + 1)(s − 1) parameters including initial40

state probabilities. There is one parameter for every category of observation, so this is a41

saturated model.42

A2.4. Transition probabilities in the time-averaged discrete Markov model43

If samples are taken at equal intervals (or under the hypothesis that transition

probabilities do not depend on the time interval), we could force the transition probabilities

to be the same for all intervals. This gives time-averaged maximum likelihood estimates

p̂ij =

∑

m nij(m,m − 1)
∑

m

∑

k nkj(m,m − 1)
(A.7)

This model has s2 − 1 parameters, including initial state probabilities.44

A3. Identifiability45

An identifiable model is one for which θ 6= θ0 =⇒ l(θ) 6= l(θ0), for two parameter46

vectors θ, θ0, where θ0 is a parameter vector at which the likelihood is maximized. In47

particular, a model will not be identifiable if some of its parameters are redundant, so that48

the model can be rewritten with a smaller number of parameters without changing the49

likelihood. For example, the linear model y = θ0 + (θ1 + θ2)x with θ = [θ0, θ1, θ2]
T is not50

identifiable, because we could obtain the same likelihood from θ = [θ0, θ1 + α, θ2 − α]T51
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for any α. Identifiability depends on the structure of the model, not just the number of52

parameters. For example, y = θ0 + θ1x + θ2x
2 has the same number of parameters as the53

previous example, but may be identifiable, because θ1 and θ2 now affect the likelihood in54

different ways.55

For more complex models, it is often not obvious whether there are redundant56

parameters. One way to determine this is to calculate the rank of the Jacobian matrix D,57

where dij =
∂µj

∂θi
and µj is the expected value of the jth class of observations. Each row of58

this matrix gives the effects of changing one parameter on all the expected values. The rank59

of a matrix is the number of linearly independent rows, and a matrix is of full rank if all its60

rows are linearly independent. If D is not of full rank, then there is a nonzero vector α(θ)61

such that α(θ)TD(θ) = 0. If we take θ = θ0, then ∇lα(θ) = 0 (Catchpole and Morgan62

1997, theorem 2). In other words, moving in the direction given by α(θ) does not change63

the likelihood. Intuitively, this means that there is a ridge of parameter values all having64

the same likelihood, and the model is not identifiable. However, there are cases where a65

model is not identifiable even though the Jacobian is of full rank (Catchpole and Morgan66

1997).67

We illustrate the relationship between the rank of the Jacobian and identifiability

by returning to the linear models above. Consider the parameter-redundant case

y = θ0 + (θ1 + θ2)x, treating x = [x1 < x2 < . . . xn] as fixed. The Jacobian is

D =











∂y1/∂θ0 ∂y2/∂θ0 . . . ∂yn/∂θ0

∂y1/∂θ1 ∂y2/∂θ1 . . . ∂yn/∂θ1

∂y1/∂θ2 ∂y2/∂θ2 . . . ∂yn/∂θ2











=











1 1 . . . 1

x1 x2 . . . xn

x1 x2 . . . xn











(A.8)

This has rank 2, because the second and third rows are identical. Solving α(θ)TD(θ) = 068

gives α(θ)T = [0, α,−α], as expected.69

The time-averaged discrete and saturated models are known to be identifiable. For70
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the LV and linear models, we do not have closed-form expressions for the Jacobian (or for71

the Fisher information matrix, which has the same rank as the Jacobian) so they must be72

evaluated numerically for particular parameter values, and we will not be able to prove that73

the models are always identifiable. In the absence of numerical errors, the rank of a matrix74

is equal to the number of non-zero singular values it possesses (Horn and Johnson 1985,75

p. 414), so in practice we estimate the rank as the number of singular values greater than76

some small positive constant. We treated the observation times as fixed, and estimated77

the rank of the Jacobian at the estimated parameter values from the data sets described78

below for the LV and linear models. We did not find any problems with identifiability of79

the LV model. However, there were potential problems with identifiability of linear models80

for some estimated parameters, which we discuss below. Continuous-time linear Markov81

models are not always identifiable from discrete-time data (Singer and Spilerman 1976).82

This does not affect comparisons between models, but may make it difficult to interpret83

parameter estimates from the linear models.84

A4. Model comparison85

For comparing the saturated with a simpler model, the test statistic 2(lsaturated − l)86

has an asymptotic χ2

∆p distribution if the simpler model is correct, where lsaturated is the87

log likelihood of the saturated model, l is the log likelihood of the simpler model, and ∆p88

is the difference in the number of parameters between the saturated model and the simpler89

model (Bickel and Doksum 2001, section 6.3.1). However, our non-saturated models are not90

nested and all have the same number of parameters, so the preferred model is the one with91

the largest log likelihood. We can also compare all four models using Akaike’s Information92

Criterion AICk = −2l + 2p, where p is the number of parameters for model k (Akaike93

1992; Bozdogan 1987). The preferred model is the one with the smallest AIC (Hilborn and94
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Mangel 1997, pages 159-160). The relative likelihood of a model k can be asymptotically95

approximated by lk = exp((AIC0 − AICk)/2), where AIC0 is the AIC of the best model96

(Burnham and Anderson 2004). The Akaike weight wk = lk/
∑

j∈M lj can be interpreted97

as an estimate of the probability that model k is the best in the set M of models under98

consideration according to the AIC criterion (Burnham and Anderson 2004), although this99

interpretation is not without controversy (Link and Barker 2006).100

A5. Optimization methods101

Here, we describe the optimization methods used to find maximum likelihood parameter102

estimates for the LV and linear models.103

A5.1. Parameter transformations and initial guesses104

Finding the maximum likelihood estimate θ̂ = arg max
θ

l(θ) is much easier if θ ∈ R
p for105

a p-dimensional parameter, because we can then use an unconstrained optimization method.106

The original parameters are constrained. For example 0 < pi < 1 and
∑

i pi = 1 for the107

initial conditions, and aij > 0 for interaction coefficients in the LV model. In the LV model108

we therefore transform to the unconstrained parameters ηi = log(pi(0)/ps(0)), 1 ≤ i ≤ s− 1109

(Bickel and Doksum 2001, p. 55) for the initial conditions, and log aij for the interaction110

coefficients. Optimization is an iterative process requiring initial guesses at parameter111

values. We set the initial state frequency guesses to pi(0) = (ni(0) + 1)/
∑

i(ni(0) + 1),112

rather than the obvious ni(0)/
∑

i ni(0). This is because if any initial frequencies are zero in113

the LV model, these states will never appear at subsequent time intervals. We used uniform114

(0, 1) pseudorandom numbers for initial guesses at aij.115

For the linear model, the initial state probabilities have no effect on the estimates of116



– 9 –

transition rates. We therefore know that the maximum likelihood estimates for this model117

are p̂i(0) = ni(0)/
∑

i ni(0), and we can treat them as fixed when estimating the qij. We118

used uniform (0, 1) pseudorandom numbers for initial guesses at qij (as above, we used a119

log transform to ensure qij > 0).120

A5.2. Implementation121

For the linear model, we used the BFGS quasi-Newton optimization algorithm with122

mixed cubic and quadratic line search implemented as function fminunc in the Matlab123

Optimization Toolbox version 3.1, with Matlab R2006b (The Mathworks, Inc., Natick, MA).124

This algorithm is not guaranteed to find a global optimum, so we ran the optimization ten125

times from different random initial guesses, and chose the result with the best likelihood.126

We also experimented with a genetic algorithm to find good initial guesses for optimization127

(Matlab Genetic Algorithm and Direct Search Toolbox version 2.0.2), but did not get128

better results. For the LV model, the initial Matlab implementation was too slow, so129

we wrote C code to call the NAG FORTRAN library version 21 for Linux (Numerical130

Algorithms Group, Oxford). We used the quasi-Newton optimizer E04JYF, and the stiff131

ordinary differential equation solver D02EJF. Again, we chose the best of ten optimizations132

from random initial guesses. Optimizations were done on a Linux workstation with an133

Intel Xeon 3 GHz processor and 1G RAM. Ten replicate optimizations of the linear model134

took less than 10 minutes for the data analyzed below, while ten replicate optimizations135

of the LV model took one to four hours. In most cases, convergence of the optimization136

was not entirely successful. For the linear model, the line search step often failed before the137

optimizer had converged, although usually the gradient at the final estimate was quite small.138

For the LV model, we often encountered numerical problems with solving the differential139

equations, forcing us to abandon the optimization while the gradient was still fairly large.140
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This was probably because some transition probabilities pj (Equation A.5) were extremely141

small. Thus, although we know that we can estimate parameters with reasonable accuracy142

(see below), we cannot use the inverse of the Fisher information matrix as an estimate of143

the covariance matrix.144

Code for both models is available at http://www.liv.ac.uk/~matts/.145

A5.3. Performance146

We carried out initial experiments to determine whether to aggregate states. We147

estimated parameters for the LV model as above, simulated using the best estimates and148

the number of points present in the first real sample, and re-estimated parameters from149

the simulated data. The Pearson correlation between true and estimated parameters150

was 0.98. However, the slope of the least-squares regression between true and estimated151

parameters (which should be 1) was significantly less than 1 (0.86, 95% confidence interval152

[0.81, 0.90]). The intercept should be 0, and had a wide confidence interval but was not153

significantly different from 0 (0.55, 95% confidence interval [-0.24, 1.34]). High coefficients154

were consistently underestimated, perhaps because the likelihood surface becomes quite flat155

when some coefficients are very large. Since these coefficients are likely to be of interest, we156

aggregated all the acroporid corals into a single state, reducing the number of parameters157

from 80 to 35 and making the optimization problem easier. Repeating the estimation test,158

we obtained a regression slope that did not differ significantly from 1 (0.96, 95% confidence159

interval [0.91, 1.00]) and an intercept that did not differ significantly from 0 (0.23, 95%160

confidence interval [-0.51, 0.96]). Furthermore, the true parameters were within the 95%161

confidence interval (likelihood ratio for comparison between true and estimated parameters,162

∆l = 17.88, df = 35, p = 0.43).163
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We carried out further simulations using data generated from the estimated LV,164

linear and time-averaged discrete models to check the performance of the estimation. We165

generated 20 data sets under each model, and estimated parameters for all models for166

each data set as above (in each case, selecting the best of ten optimization replicates for167

each simulation replicate, as was done with the real data). Linear optimizations were168

done using Matlab R2006a on a Sun Fire V880 with eight UltraSPARC III processors. LV169

optimizations were done on 20 AMD Opteron 2.2 GHz processors in the NW-GRID cluster.170

Table A1 shows the performance of AIC in selecting the correct model in each case. The171

totals do not sum to 20 because only data sets for which all models produced an estimate172

are included. The LV optimization failed completely in one case when linear was the true173

model and one case when time-averaged discrete was the true model. When LV was the true174

model, we excluded five data sets for which the best optimization replicate terminated in175

less than 120 seconds without finding a minimum, compared to an average of 3792 seconds176

in the other replicates. Such cases produced very poor results but are easy to detect and177

were not observed for the real data. The only potential problem with model identification178

was when the linear model was the true model. In this case, the LV model was selected in179

4/19 cases. This is probably because for the linear parameters estimated here, the system180

quickly approaches an equilibrium (figure 1). As discussed in ‘linear Markov models’, if181

there is an LV model with the same equilibrium, it will be difficult to distinguish from the182

linear model. This is unlikely to be a problem for the real data, which do not appear to be183

close to equilibrium (figure 1).184

Table A2 shows the Pearson correlations between true and estimated transition185

coefficients or probabilities, and the slopes and intercepts of the corresponding regressions.186

For all models, there is a high correlation between true and estimated parameters. For the187

LV and time-averaged discrete models, the mean regression slope and intercept were close188

to one and zero respectively, showing that estimated parameters were close to their true189
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values. However, in the linear model, the mean slope and intercept were very different from190

one and zero, because of a few very large rate estimates in some replicates. This is probably191

due to the potential identifiability problems for the linear model parameters mentioned192

in the Results. We carried out likelihood ratio tests comparing the true parameters with193

the maximum likelihood estimates from each set of simulations. When the true model194

was LV (35 degrees of freedom), the true parameters were not rejected at the 5% level195

in any of the 15 replicates that completed. When the true model was linear (30 degrees196

of freedom, considering the rate estimates only, with initial frequencies fixed at the ML197

values), the true parameters were not rejected in any of the 20 replicates. When the true198

model was time-averaged discrete (30 degrees of freedom, transition probabilities only), the199

true parameters were rejected in 1 of 20 replicates.200

In summary, we are reasonably confident that we can get good parameter estimates201

and correct model identification for these data.202
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Table A1: Model selection using Akaike’s Information Criterion from replicate data sets

simulated using the parameter estimates for the Protected Crest site.

True model Selected model

saturated LV linear time-averaged discrete

LV 0 15 0 0

linear 0 4 15 0

time-averaged discrete 0 0 0 19

Table A2: Quality of transition parameter estimation from n replicate data sets simulated

using the parameter estimates for the Protected Crest site.

True model n correlation slope intercept

LV 15 0.95 (0.06) 1.10 (0.36) −0.12 (1.41)

linear 20 0.98 (0.03) 1.14 × 103 (4.86 × 103) −937 (4.00 × 103)

time-averaged discrete 20 0.997 (0.003) 1.01 (0.03) 3.89 × 10−4 (0.002)

Note: numbers are means, with standard deviations in parentheses. Correlation, slope and

intercept are for the relationship between true and estimated parameters.
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Table A3: Estimated Q matrix (years−1) for linear model, Protected Crest.

1 2 3 4 5 6

1: acroporid corals -0.6156 2.42e-06 23.8709 1.40e-07 0.1930 5.96e-04

2: soft corals 8.14e-08 -0.1613 8.52e-04 0.0077 4.34e-07 0.0119

3: algae 0.6130 0.1613 -172.8283 0.7583 0.0013 1.7828

4: massive corals 7.42e-08 1.58e-05 1.4256 -0.7662 2.29e-06 0.0292

5: pocilloporid corals 2.68e-06 6.08e-07 0.0040 2.63e-08 -0.9342 0.0057

6: free space 0.0026 2.79e-06 147.5269 1.37e-04 0.7399 -1.8302

Note: Estimated initial state frequencies were [0.4664, 0, 0.0443, 0.0103, 0.0032, 0.4759]T.
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Table A4: Estimated P matrix (transition probabilities ignoring variation in time interval)

for time-averaged discrete model, Protected Crest.

1 2 3 4 5 6

1: acroporid corals 0.5314 0.0280 0.2322 0.1321 0.1974 0.2025

2: soft corals 0.0038 0.8349 0.0047 0.0111 0 0.0144

3: algae 0.0081 0 0.0332 0.0153 0 0.0068

4: massive corals 0.0133 0.0062 0.0521 0.3408 0 0.0318

5: pocilloporid corals 0.0013 0 0 0 0.2237 0.0038

6: free space 0.4420 0.1308 0.6777 0.5007 0.5789 0.7407

Note: Estimated initial state frequencies were [0.4664, 0, 0.0443, 0.0103, 0.0032, 0.4759]T.


