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The covarion hypothesis of molecular evolution proposes that selective pressures on an amino acid or nucleotide site
change through time, thus causing changes of evolutionary rate along the edges of a phylogenetic tree. Several kinds
of Markov models for the covarion process have been proposed. One model, proposed by Huelsenbeck (2002), has 2
substitution rate classes: the substitution process at a site can switch between a single variable rate, drawn from a discrete
gamma distribution, and a zero invariable rate. A second model, suggested by Galtier (2001), assumes rate switches among
an arbitrary number of rate classes but switching to and from the invariable rate class is not allowed. The latter model allows
for some sites that do not participate in the rate-switching process. Here we propose a general covarion model that com-
bines features of both models, allowing evolutionary rates not only to switch between variable and invariable classes but
also to switch among different rates when they are in a variable state. We have implemented all 3 covarion models in
a maximum likelihood framework for amino acid sequences and tested them on 23 protein data sets. We found significant
likelihood increases for all data sets for the 3 models, compared with a model that does not allow site-specific rate switches
along the tree. Furthermore, we found that the general model fit the data better than the simpler covarion models in the
majority of the cases, highlighting the complexity in modeling the covarion process. The general covarion model can be
used for comparing tree topologies, molecular dating studies, and the investigation of protein adaptation.

Introduction

The covarion hypothesis of molecular evolution pro-
poses that selective pressures on a given amino acid or nu-
cleotide site are dependent on the identity of other sites in
the molecule that change throughout time, resulting in
changes of evolutionary rates of sites along the edges of
a phylogenetic tree (Fitch and Markowitz 1970). Covarion-
like evolution is recognized as an important mode of mo-
lecular evolution in proteins, structural RNA genes, and
protein-coding genes (Miyamoto and Fitch 1995; Simon
et al. 1996; Lockhart et al. 2000; Galtier 2001; Huelsenbeck
2002; Misof et al. 2002; Pupko and Galtier 2002; Ané et al.
2005). The standard covarion process may be seen as a form
of heterotachy, which is a general term for within-site rate
variation over time (Lopez et al. 2002; Lockhart and Steel
2005). In protein sequences, the heterotachy/covarion
process may relate to shifts in protein function (Naylor
and Gerstein 2000; Gaucher et al. 2001; Knudsen and
Miyamoto 2001; Gaucher et al. 2002; Lopez et al. 2002;
Blouin et al. 2003; Inagaki et al. 2003), but for a contrasting
view see Philippe et al. (2003). Failure to accommodate cer-
tain forms of heterotachy may also lead to biased tree es-
timation (Lockhart et al. 1998; Inagaki et al. 2004; Susko
et al. 2004; Spencer et al. 2005; Lockhart et al. 2006).

The first mathematical models for a covarion process
had 2 substitution rate classes: the substitution process at
a site could switch between ‘‘ON’’ (variable) and ‘‘OFF’’
(invariable) (Tuffley and Steel 1998; Penny et al. 2001).
Huelsenbeck (2002) implemented a version of this model,
with the addition of among-site rate variation, in the phy-
logenetic package MrBayes (Huelsenbeck and Ronquist
2001). Huelsenbeck (2002) found that for 9 of 11 genes,
this model provided a better explanation of the data than

a model that does not allow rates at sites to change over
time. Galtier (2001) developed a different covarion model
with an arbitrary number of rate classes. In his model, the
switching rates are defined by a discrete gamma distribu-
tion, similar to models of rate variation across sites (RAS)
(Yang 1994). However, it does not allow rate switching
to and from an invariable OFF state. Galtier’s model has
been implemented in the software NHML (Galtier and
Gouy 1998) for nucleotide sequences.

The Huelsenbeck and Galtier models make different
assumptions about the ways evolutionary rates change over
time. For example, in the Huelsenbeck model, RAS is in-
dependent of the covarion process, and all sites experience
a covarion process in which evolutionary rates switch be-
tween zero and a value that is fixed for the site. In the Galtier
model, a variable proportion of sites have fixed rates over
time, and the remaining sites switch between a set of non-
zero evolutionary rates. The performance of these 2 models
has not previously been compared. Furthermore, we do not
know how accurately the covarion parameters can be esti-
mated from sequence data.

In this study, we propose a general model that not only
allows site rates to switch from ON to OFF and OFF to ON
but also allows switching between different rates among the
ON states. A different generalization was considered in Xu
(2002) in a more restrictive setting. The general model con-
tains the Galtier and Huelsenbeck models as special cases.
This nesting of models allows for likelihood ratio tests
(LRTs) to assess if the Galtier or Huelsenbeck models pro-
vide a sufficient fit to the data. We have implemented all 3
covarion models for amino acid sequences in a maximum
likelihood framework in the software package PROCOV.
We used PROCOV to test the covarion models on simu-
lated protein sequence data and 23 empirical data sets.

Methods
Models of Covarion Evolution

One of the first models of covarion evolution was pro-
posed by Tuffley and Steel (1998). In addition to the usual
Markov model for character state changes, they assume
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a Markov model for the rates. Rates along an edge switch
from OFF to ON and from ON to OFF. When a site is OFF,
no substitutions occur and when it is ON, substitutions oc-
cur at a constant rate. The model has 2 additional param-
eters: s01 and s10, the rate of transition from the OFF
state to the ON state and the corresponding rate for ON
to OFF. In this model (and in all models discussed here),
switches between classes are not allowed to occur simulta-
neously with substitutions. The stationary probability of
being ON is s01/(s01 1 s10). Huelsenbeck (2002) added
among-site rate variation to this model. He allowed each
site i to have a fixed substitution rate multiplier ri drawn
from a discrete gamma distribution with g classes, shape
parameter a, and mean 1, such that the expected substitu-
tion rate per unit time at site i is ri when the site is ON and
0 when OFF. The Huelsenbeck model is implemented in
MrBayes (Huelsenbeck and Ronquist 2001) for both nucle-
otide and amino acid sequences. Figure 1A shows one way
of visualizing the Huelsenbeck model.

An alternative covarion model was developed by
Galtier (2001). In Galtier’s model, a proportion p of sites
evolves under the covarion model. The remaining propor-
tion, 1 � p, of sites has a site-specific rate drawn from a dis-
crete gamma distribution with shape parameter a and mean
1. For sites evolving under a covarion model, rates are al-
ways elements of the set of rates in this gamma distribution.
However, there is a constant rate of switching from any rate
class to any other. Each rate class is equiprobable. A pos-
sible justification for using the same discrete gamma distri-
bution for covarion and noncovarion sites is that
substitution rates are being determined by the same kinds
of functional constraints in both cases, even though these
constraints are allowed to change over time at covarion
sites. The Galtier model is implemented in NHML for
nucleotides (Galtier and Gouy 1998; Galtier 2001). Figure
1B shows rate switching in the Galtier model.

The Huelsenbeck and Galtier covarion models are
not nested, and each requires 3 parameters in addition to
the usual edge length and substitution model parameters
(s01, s10, and a in Huelsenbeck, and s11, p, and a in Galtier).
To help understand differences in performance between
these models, we developed a general covarion model of
which both the Huelsenbeck and Galtier models are special
cases. We allow a covarion site to switch between an ON
state with rate drawn from a discrete gamma distribution
and a corresponding OFF state (with rates s01 and s10, as
in the Huelsenbeck model). The stationary probability
of being ON is s01/(s01 1 s10). We also allow a covarion
site to switch between ON states (with rate s11/g, as in
the Galtier model). The stationary probability of each of
the ON states is the same. We also allow a proportion
1 � p of noncovarion sites at which site-specific rates
are drawn from the discrete gamma distribution and do
not change over time. The general model is shown in figure
1C. We can obtain the Huelsenbeck model by setting p5 1,
s11 5 0, and we can obtain the Galtier model by setting
s10 5 0, s01 . 0 (so the stationary probability of any
OFF state is 0). Thus, both the Huelsenbeck and Galtier
models are nested within the general model, which needs
2 more parameters than either. We can then use LRTs to
compare the Huelsenbeck and Galtier models with the

general model. The relationships between these and other
rate variation models are depicted in figure 2.

A full covarion model description consists of 2
Markov processes: a substitution process with rate matrix
M and the rate-switching process with instantaneous rates
of switching given by a rate matrix G. Considered jointly
(r, x), where r is the rate and x is the character state, gives
a Markov process with 2-dimensional state space, also re-
ferred to as a Markov-modulated Markov process (Galtier
and Jean-Marie 2004). The full rate matrix, Q, is then of
dimension m(2g) 3 m(2g), where m is the number of
observable states (4 for nucleotides, 20 for amino acids).
Qðri; xkÞ;ðrj ; xlÞ is the rate at which rate ri and character state
xk is substituted by rj and xl. Because 2 events in a small
period of time are unlikely under a Markov model,
Qðri; xkÞ;ðrj ; xlÞ is 0 unless one of ri 5 rj or xk 5 xl holds. Label

FIG. 1.—Rate switching in the covarion models. (A) the Huelsenbeck
model. First, an overall rate is drawn for the site from a discrete gamma
distribution. In the figure, these are one of the ON states labeled 1–3 with 3
rate classes. Given this overall rate, switching of rate along edges from ON
to OFF occurs at rate s10 and from OFF to ON at rate s01. Sites change only
between ON states and corresponding OFF states (labeled 01–03). (B) The
Galtier model. Each site may be in one of g rate classes (here shown with
g5 3 and labeled 1–3) determined by a discrete gamma distribution. Each
class has the same stationary probability, and switching occurs to any other
class with rate s11/g. (C) The general model. ON states have rates drawn
from a discrete gamma distribution (shown here with g5 3 classes, labeled
1–3). Switching occurs between ON states and corresponding OFF states
(labeled 01–03) with rates s10 and s01. Switching also occurs between ON
states with rate s11/g. For both the Galtier and general models, there is also
a proportion 1 � p of noncovarion sites, at which no rate switching occurs.
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the rate classes 1 . g for ON classes and 01 . 0g for corre-
sponding OFF classes, then Q can be expressed as follows:

Qðri; xkÞ;ðri ; xlÞ 5 riðs01 1 s10Þ=s01Mxk ;xl i 2 1.g; k; l 2 1.m
ðamino acid changeÞ

Qðri; xkÞ;ðri ; xlÞ 5 0 i 2 01.0g ðno amino acid change in off

classesÞ
Qðri; xkÞ;ðrj ; xkÞ 5Gri ; rj i; j 2 1.g; k 2 1.m ðrate changeÞ
Qðri; xkÞ;ðrj ; xlÞ 5 0 i 6¼ j; k 6¼ l ðsimultaneous changes not

allowedÞ:
ð1Þ

For the general model,
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where diagonal entries are determined by the constraint that
rows sum to 0.

Ordering the entries of Q as (r1, x1) . (r1, xm), (r2, x1)
. (0g, xm), the rate matrix Q can be expressed succinctly
(Galtier and Jean-Marie 2004) as follows:

Q5DR5M1G5Im; ð2Þ

where 5 is the Kronecker product and Im is an m3m iden-
tity matrix. DR is a 2g 3 2g diagonal matrix whose (i, i)th
entry is the substitution rate for class i:

drði; iÞ5
riðs01 1 s10Þ=s01 i 2 1.g
0 i 2 01.0g

:

�
ð3Þ

In equations (1) and (3), the rates for the ON classes
are rescaled by (s01 1 s10)/s01, which is required to ensure
that edge lengths have the correct interpretation (i.e., the
expected number of amino acid substitutions per site), as
we now indicate. Similarly, as for usual Markov models
of amino acid substitution, the expected number of amino
acid substitutions can be shown to beX

i; k

X
ðj; lÞjk 6¼l

pipkQði; kÞ;ðj; lÞt;

where pi is the equilibrium frequency of the substitution rate
class i and pk is the equilibrium frequency of residue k. As-
suming the rate matrix M has been rescaled so that the edge
lengths have the correct interpretation under a noncovarion
model, for the Q given by (2), we obtainX

i; k

X
ðj; lÞjk 6¼l

pipkQði; kÞ;ðj; lÞ 5 1; ð4Þ

so that the expected number of substitutions is indeed t.
The computation of the likelihoods involves 2 steps.

First, computing the transition probability for an edge
length t by taking the matrix exponential of Q:

PðtÞ5 e
Qt
; ð5Þ

where the entry of P(t) corresponding to row (ri, xi) and
column (rj, xj) is the probability of transition from (ri, xi)
to (rj, xj) in time t. Second, computing site likelihoods
by summing over states and rate classes at internal nodes,
and rate classes at leaves, using the pruning algorithm
(Felsenstein 1981). For example, for a 3-taxon tree (1:t1,
2:t2, 3:t3), the site likelihood for a site pattern AAC is cal-
culated as follows:

PðAACjt;QÞ5
X

x0 ;r0;r#1 ;r#2 ;r#3

PfðR0;X0Þ5 ðr0; x0Þg

3Pfðr0; x0Þ/ðr#1; x1Þjt1g
3Pfðr0; x0Þ/ðr#2; x2Þjt2g
3Pfðr0; x0Þ/ðr#3; x3Þjt3g; ð6Þ

where t is a vector of edge lengths, R0 and X0 are the rate
and amino acid at the internal node, respectively, and x1 5
A, x2 5 A, and x3 5 C. The unobservable rate classes r#1 ; r#2 ;
and r#3 at the leaves are summed independently over all pos-
sible values.

Finally, the likelihood of a sequence on a tree is the
product of site likelihoods, assuming independence among
sites:

PðYjsÞ5
Y
j

Pðyjjs;QÞ; ð7Þ

where Y is the sequence data, s is the given tree with edge
lengths, and yj is site likelihood for site j.

FIG. 2.—Models of amino acid substitution rate evolution imple-
mented in PROCOV and the relationship between the models. The
equal rates model assumes no variation in rates of change among sequence
sites. For each model, rate variation parameters that can be estimated are
shown.
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Calculating likelihoods for covarion models are ex-
pensive compared with noncovarion models because of
the large number of states, even with a fast algorithm for
diagonalizing the rate matrix (Galtier and Jean-Marie
2004). All of these covarion models can be expressed as
special cases of a general Markov model with more states
at internal nodes of the tree than at the leaves. Tree iden-
tifiability has been proved for some situations under the
general Markov model (Allman and Rhodes 2006).

Implementation

The implementation of the Galtier model for pro-
tein sequences in a maximum likelihood framework
(Felsenstein 1981) was based on the NHML package that
implemented the covarion model for nucleotide sequences
(Galtier and Gouy 1998; Galtier 2001). This together with
the codes for the Huelsenbeck model and the general model
form a package called PROCOV (available at http://
www.mathstat.dal.ca/;hcwang/Procov) to optimize the
parameters and evaluate the maximum likelihood of a given
tree and protein alignment. Figure 2 illustrates the rate sub-
stitution models implemented in PROCOV and their rela-
tionships. PROCOV may be adapted to evaluate the tree
topology under the covarion models. For simulation stud-
ies, we wrote a sequence simulator, adapted from seq-gen
(Rambaut and Grassly 1997; Ané et al. 2005), to simulate
amino acid data under a given tree using the 3 covarion
models. The code (seq-gen-aminocov) is available at
http://www.liv.ac.uk/;matts/.

Model Testing

Both Huelsenbeck and Galtier models have 2 more
parameters than the RAS model. The general model has
4 more parameters than the latter. As the RAS model
is nested within the 3 covarion models, and both the
Huelsenbeck and Galtier models are nested within the gen-
eral model, LRTs may be used to compare the covarion
models with the RAS model and the general model with
the other covarion models. The likelihood ratio statistic
2logK, which is twice the difference in log likelihoods
between a model and its nested simpler model, is usually
asymptotically v2 distributed with d.f. degrees of freedom.
The appropriate d.f. is typically the difference in the number
of free parameters between the 2 models in comparison.
For instance, Galtier (2001) used the LRT with 2 d.f.
to compare his covarion model and the RAS model. For
comparing the Huelsenbeck and RAS models, however,
Huelsenbeck (2002) noticed that because, under the sim-
pler model, the parameters are on the boundary of the pa-
rameter space, the v2 approximation does not hold. For
the same reason, the definition of d.f. described above is
not appropriate for comparing the general model with
the Huelsenbeck or Galtier models. In these cases, the
appropriate distribution for the test statistic is a mixture
of v2

0; v
2
1; and v2

2 (Self and Liang 1987).
For the case of the general versus Galtier models, there

is 1 parameter (s10) on the boundary of the parameter space,
which corresponds to ‘‘Case 6’’ in Self and Liang (1987).
The limiting distribution is a mixture with equal weights of

v2
1 and v2

2 distributions. The p value for a likelihood ratio
statistic is calculated as

pGaltier 5Pðv2

1.2KÞ=21Pðv2

2.2KÞ=2: ð8Þ

For the case of the general versus Huelsenbeck mod-
els, there are 2 parameters (s11 and p) on the boundary of the
parameter space, which matches ‘‘Case 7’’ in Self and Liang
(1987). The limiting distribution is a mixture of a point
mass at v2

0; v
2
1; and v2

2 distributions with weights 1/2 � p,
1/2, and p, respectively, where

p5
cos

�1ðI12=
ffiffiffiffiffiffiffiffiffiffi
I11I12

p
Þ

2p
; ð9Þ

where I12 is the entry of the Fisher information matrix corre-
spondingtos11andp,and I11and I22aretheentriescorrespond-
ing to s11 alone and p alone, respectively. There is a positive
probability that if the likelihoods for the Huelsenbeck and
general models be the same, then the p value is simply 1/2
1 p. When they are not, the p value can be calculated as:

pHuelsenbeck 5Pðv2

1.2KÞ=21 pPðv2

2.2KÞ: ð10Þ

Similarly, the case of the Huelsenbeck versus RAS
models also matches ‘‘Case 7’’ (Huelsenbeck 2002), and
the p value can be computed as equation (10), where I12

is the entry of the Fisher information matrix corresponding
to s01 and s10, and I11 and I22 are the entries corresponding
to s01 alone and s10 alone.

For comparison between the general and RAS models,
either s01 5 s10 5 s11 5 0 or p5 0 will give the RAS model.
A closed form expression for the limiting distribution is
not available. We, therefore, calculated a conservative p
value as Pðv2

4.2KÞ; the real p value would be smaller.
For comparison between the Huelsenbeck and Galtier

models, both have equal numbers of parameters and are not
nested. Thus, information criteria like Akaike and Bayesian
information criteria (AIC and BIC) favor the model with the
larger likelihood.

Data Analysis

We examined 23 amino acid data sets with the 3
covarion models. Twenty-one of these were selected for
analysis from online (Pfam Release 14.0) and in-house
alignment databases. In order to have sufficient sequence
length and taxonomic sampling, data sets were only
retained if they had 30–100 taxa and .200 sites after
alignment trimming. Alignment trimming was performed
using the program GBlocks version 0.91b (Castresana
2000) with a maximum number of contiguous noncon-
served positions of 16 and minimum block length of 5.
The sequence alignments are available from one of us
(A.J.R.) upon request.

The data sets used include 48 eukaryotic actin protein
sequences, 36 acetyl-CoA carboxylase (Carboxyl_trans)
sequences, 41 60-kDa chaperonin (CPN60) sequences,
65 CTP synthase sequences, 49 DNA topoisomerase IV
subunit A (GyrA) sequences, 38 elongation factor 1a
(EF-1a) sequences, 37 elongation factor 2 (EF-2) se-
quences, 36 intermediate filament protein (Filament)
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sequences, 40 glutamate synthase aminotransferase (Glu_
synth_NTN) sequences, 34 70-kDa heat shock protein
(HSP70) sequences, 54 90-kDa heat shock protein (HSP90)
sequences, 51 ILVD_EDD dehydratase family sequences,
41NADHdehydrogenaseIchainF(NuoF)sequences,40min-
ichromosome maintenance protein (MCM) sequences, 43 mi-
tochondrial processing peptidase (MPP) sequences, 32 MreB/
Mb1 sequences,34potyvirus coatprotein sequences,70SecA
sequences, 54 a-tubulin sequences, 46 b-tubulin sequences,
and 36 fimbrial usher protein (Usher) sequences. Two multi-
gene data sets corresponding to a published analysis of meta-
zoa (Peterson and Butterfield 2005) and the chloroplast
genomes of land plants (Leebens-Mack et al. 2005) were used
to assess the impact of accounting for covarion-like evolution
in multigene data sets. The Peterson and Butterfield data set
(PB2005) consisted of 32 taxa with 8 concatenated proteins:
mitochondrial cytochrome oxidase I, mitochondrial atpB,
aldolase, methionine adenosyltransferase, triosephosphate
isomerase, EF-1a, phosphofructokinase, and catalase. The
chloroplast data set consisted of 24 taxa with 61 concatenated
chloroplast-encoded proteins. Each data set consisted ofa pro-
tein sequence alignment and an initial tree with edge lengths
precomputedwithPHYMLwiththeJTT1Cmodel(Guindon
and Gascuel 2003).

For each data set, we ran PROCOV with 4 gamma rate
categories, JTT substitution model (Jones et al. 1992), and
the 3 covarion models. To compare with the RAS model,
we also ran PROCOV for JTT 1 4 gamma rate categories
and set proportion of covarion sites (p) to 0 under the gen-
eral model. The covariance matrices for the parameters
were estimated from the inverse of the Fisher information
matrix for all parameters other than edge lengths. They
were also used to compute the Taylor series approximation
to the likelihood surface around the estimated parameters.

For simulation studies, we used seq-gen-aminocov to
simulate 3 data sets for the 3 covarion models based on a tree
from a subset of the CPN60 data (17 taxa). For each data
set, the simulated sequences were 1,000 amino acids long,
using 4 gamma rates with shape parameter a 5 0.46. The
covarion parameters were set according to the models. We
then used PROCOV to estimate the parameters by fixing the

topology and edge lengths at true values. The covariance
matrices for the parameters were computed to obtain var-
iances of the parameter estimates.

Results
Simulation Studies

We used seq-gen-aminocov to simulate a data set
(data set I in table 1) based on the CPN60 tree under the
Huelsenbeck model and fitted parameters (17 taxa, 1,000
sites, JTT substitution model, and 4 gamma rates with shape
parameter a 5 0.46, s01 5 1.875, and s10 5 1.25). The log
likelihood (LnL) of the tree for the true parameters is
�15,241.17. Fixing edge lengths at their true values, we
ran PROCOV on this data set under the Huelsenbeck model
to estimate a, s01, and s10 and their variances (table 1). We
got a 5 0.52, s01 5 1.71, and s10 5 1.12. The estimated
maximum LnL 5 �15,239.58, which is slightly better
than the likelihood under the true values of the parameters.
Figure 3A is a contour plot of the confidence regions com-
puted by interpolating on a grid of values for s01 and s10 and
based on the covariance matrix obtained with PROCOV af-
ter the optimization process is finished. The true values of
s01 and s10 are located within the 50% confidence intervals
(CIs) of the estimated parameters. The figure also shows
that s01 and s10 are positively correlated. The correlation
coefficient for the 2 switching rates calculated from the co-
variance matrix is 0.73. Furthermore, we used MrBayes
(Huelsenbeck and Ronquist 2001) for this simulated data
set to estimate s01 and s10 by fixing a, the tree topology,
and edge lengths, using JTT and 4 gamma rates. The mean
posterior s01 is 2.06 (posterior standard deviation 0.26),
the mean posterior s10 is 1.30 (0.25), and mean posterior
LnL 5 �15,241.50. The true values of the parameters are
also within the 50% CIs of the estimates.

To test the performance of PROCOV on the Galtier
model, we simulated a data set (data set II in table 1) based
on the CPN60 tree under this model (a 5 0.46, s11 5 1.5,
and p 5 0.6). The LnL for the true parameter values is
�17,574.67. Fixing edge lengths at their true values, we
ran PROCOV under the Galtier model and obtained the

Table 1
Performance of PROCOV on 3 Simulated Data Sets Based on a CPN60 Tree and the 3 Covarion Models

Dataa Modelb a s01 s10 s11 p LnL

I 0.46 1.875 1.25 0 1 �15,241.17
Huelsenbeck 0.52 (0.04) 1.71 (0.27) 1.12 (0.22) 0 1 �15,239.58
Galtier 0.21 (0.03) — 0 3.48 (0.78) 0.46 (0.04) �15,253.0
General 0.52 (0.05) 1.73 (0.27) 1.13 (0.22) 0 (0.03) 1 (0.02) �15,239.58

II 0.46 — 0 1.5 0.6 �17,574.67
Galtier 0.52 (0.05) — 0 1.41 (0.66) 0.55 (0.15) �17,573.71
Huelsenbeck 1.50 (0.30) 0.73 (0.16) 0.30 (0.08) 0 1 �17,579.82
General 0.6 (0.07) 0.004 (0.00) 0.0004 (0.00) 1.25 (0.49) 0.68 (0.17) �17,571.96

III 0.46 1.5 2 2.5 0.6 �15,656.85
General 0.57 (0.08) 0.94 (0.31) 1.87 (0.61) 2.0 (1.11) 0.50 (0.06) �15,653.12
Huelsenbeck 1.24 (0.31) 1.24 (0.15) 0.78 (0.12) 0 1 �15,665.57
Galtier 0.28 (0.03) — 0 1.89 (0.57) 0.66 (0.10) �15,668.15

a Data set I, II, and III were simulated under the Huelsenbeck, Galtier, and general models, respectively. For each data set, the first line lists the true values for the fitted

parameters and the log likelihood computed by PROCOV with the corresponding model that was used in the simulation; the second line lists parameters estimated by the model

used in the simulation. The third and fourth lines are estimates by the models other than the one that was used for simulating the data. Values in brackets are standard errors.
b For the Huelsenbeck model, the s11 and p are defined as 0 and 1, respectively. For the Galtier model s01 is not relevant (can be any value greater than 0) and indicated by

‘‘—.’’ The s10 for the Galtier model is defined as 0. These 3 parameters were not optimized for the 2 models.
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following estimates: a 5 0.52, s11 5 1.41, and p 5 0.55.
The true values of the parameters are within the 50% CIs of
the estimates (table 1). The maximum LnL is �17,573.71,
very close to the true value.

Finally, to evaluate the performance of PROCOV
on the general model, we simulated a data set (data set
III in table 1) based on the CPN60 tree under this model
(a 5 0.46, s01 5 1.5, s10 5 2.0, s11 5 2.5, and p 5 0.6).
The LnL for the true parameter value is �15,656.85. Fixing
edge lengths at their true values, we ran PROCOV under the
general model and obtained the following estimates: a 5
0.57, s01 5 0.94, s10 5 1.87, s11 5 2.0, and p 5 0.5. The
true parameter values are within the 50% (for s10 and s11)
or 95% (fora, s01, andp) confidence regions of the estimates.
The CIs are rather large for the general model (table 1).
Therefore, it might be hard to get accurate parameter esti-
mates under the general model from single-gene data
sets. The maximum LnL (�15,653.12) is still better than
the true value.

To test whether the general model can converge to the
Huelsenbeck or Galtier models when the data set is simu-
lated under these models, we applied PROCOV under the
general model to the data sets I and II. For the data set I
(simulated under the Huelsenbeck model), the general
model got the following estimates: a 5 0.52, s01 5
1.73, s10 5 1.13, s11 5 0.0, p 5 1.0, and LnL 5
�15,239.58. This result shows the general model can per-

fectly converge to the Huelsenbeck model when the data is
constructed under the Huelsenbeck model. For the data set
II (simulated under the Galtier model), the general model
got the following estimates: a 5 0.60, s01 5 0.0038,
s10 5 0.0004, s11 5 1.25, p 5 0.68, and LnL 5
�17,571.96. Here, p and s11 are close to the true values
(0.6 and 1.5, respectively), but the estimated a is a little
higher than the true value. For s01 and s10, the general
model was close to the Galtier model, that is, s01 can be
any positive value and s10 should be 0 or very small. There-
fore, the general model also recovered the right covarion
parameters when the data set was simulated under the
Galtier model.

In contrast, the Galtier model did not perform well for
the data sets simulated under the Huelsenbeck or general
models (table 1). For data set I, the maximum LnL from
the Galtier model is 13.42 less than that under the right
model (i.e., the Huelsenbeck model). For data set III, the
maximum LnL from the Galtier model is 15.03 less than
that under the right model (i.e., the general model). Simi-
larly, the Huelsenbeck model did not perform well for
the data sets simulated under the Galtier or general models
(table 1). For data set II, the maximum LnL from the
Huelsenbeck model is 6.11 less than that under the right
model (i.e., the Galtier model). For data set III, the maxi-
mum LnL from the Huelsenbeck model is 12.45 less than
that under the right model (i.e., the general model).

FIG. 3.—Contour plots for likelihood surfaces, computed by Taylor series approximation to the likelihood surface around the estimated parameters.
The contours from inner to outer represents 50%, 90%, 95%, and 99% of the CIs of the estimated parameters. The points on the same contour line have the
same likelihood, and points in the inner contour have higher likelihood than in the outer contour. The dot at the center represents the estimated values for
the corresponding parameters. (A) Likelihood surface with respect to s01 and s10 for a simulated data set under the Huelsenbeck model (CPN60, 17 taxa,
1,000 sites, JTT 1 4 gamma rates, a 5 0.46, s01 5 1.875, s10 5 1.25) and computed under the Huelsenbeck model. The smaller dot represents the true
values of s01 and s10 used for the simulation. (B) Likelihood surface with respect to s01 and s10 for the HSP70 data set computed under the Huelsenbeck
model. (C) Likelihood surface with respect to a and s11 for the MPP data set computed under the Galtier model. (D) Likelihood surface with respect to a
and p for the MPP data set computed under the Galtier model.

Modeling Covarion-like Evolution of Proteins 299



These simulation studies indicate that PROCOV can
obtain good parameter estimates from data simulated under
the Huelsenbeck or Galtier models. The general model has
the advantage that can recover either model; however, be-
cause it has more parameters, we expect the standard errors
to be larger.

Although the simulation studies were primarily
designed to examine the performance of the 3 covarion
models, we also wanted to evaluate the influence of the dif-
ferent covarion processes on the RAS measured by a esti-
mated under the RAS model. For the 3 data sets simulated
under the Huelsenbeck, Galtier, and general models (a was
fixed at 0.46 for the simulations), the estimated a under the
RAS model is 0.46 6 0.024, 0.77 6 0.044, and 0.57 6
0.032, respectively. These suggest the RAS model would
underestimate the rate variation among sites if the data
set is constructed under Galtier-style covarion process,
whereas it is less affected by the general process and vir-
tually not affected by the Huelsenbeck process. The latter
case is probably due to the fact that the rate multiplier from
the Huelsenbeck process is equal for all sites, and thus the
covarion process does not give much additional overall rate
variation and hence a is not reduced. For the Galtier pro-
cess, however, there is no overall rate multiplier and thus
not as much overall variation in the data as in the data sim-
ulated under the Huelsenbeck process, and therefore a larger
a was estimated.

In the above simulation studies, the edge lengths were
fixed, as we wanted to specifically investigate the identifi-
ability of the covarion parameters under the different mod-
els. We further did simulations where edge lengths were
also optimized in addition to the covarion parameters.
The estimated covarion parameters were not quantitatively

different from that estimated by fixing edge length, and the
likelihoods were better, as expected, than those obtained by
using the true parameters in each case (data not shown). The
original tree length is 3.92. The estimated tree lengths under
the Huelsenbeck, Galtier, and general models were 3.76,
3.81, and 3.87, respectively.

Testing on 23 Protein Data Sets

Table 2 lists the maximum log likelihoods (LnL) es-
timated under the RAS model and the difference in log like-
lihoods between the 3 covarion models and the RAS model
for 23 empirical data sets. The range of the increase in LnL
is from 20.33 to 420.78 in the Huelsenbeck model. The like-
lihood ratio statistic is twice as big. Using equation (10), the
p value is less than 10�9 for all cases. This is very signif-
icant, even considering the Bonferroni correction for the
multiple tests with an overall a 5 0.01 being 0.01/23
(0.0004). The range of the increase in LnL is from 17.27
to 224.75 in the Galtier model. Simply using the LRT with
2 d.f., the p value for the test statistics is less than 0.0005 in
all cases, which is also very significant. The range of the
increase in LnL is from 30.53 to 499.23 in the general
model. This is also very significant for a LRT with 4 d.f.
Not surprisingly, for all 3 covarion models, the biggest in-
creases in LnL over the RAS model is in the chloroplast
data set that concatenates 61 protein sequences. Another
multigene data set, PB2005, also shows second biggest in-
creases in LnL for the Huelsenbeck and general models. For
the Galtier model, the second biggest LnL increase is in the
ILVD_EDD data set. It is also the third largest LnL increase
for the general model and the fourth largest increase for
the Huelsenbeck model. HSP70 shows the third largest

Table 2
Increase of Maximum Log Likelihoods in Covarion Models Compared with the RAS Model

Data Set Taxa Sites LnL RASa KHuelsenbeckb KGaltierb KGeneralb

Actin 48 363 �6,877.04 21.24 23.07 34.46
Carboxyl_trans 36 212 �9,648.41 92.15 85.97 93.32

CPN60 41 466 �17,233.67 47.7 37.46 51.83
CTP synthetase 65 212 �13,644.81 51.77 45.21 66.27

EF-1a 38 361 �9,543.94 63.22 45.68 69.09
EF-2 37 669 �20,559.4 67.73 36.66 72.63
Filament 36 210 �10,244.22 69.13 70.08 76.22

Glu_synth_NTN 40 253 �11,954.52 30.69 24.77 30.53
GyrA 49 228 �12,872.32 106.69 108.32 119.65
HSP70 34 432 �16,201.13 135.8 119.61 136.26
HSP90 54 459 �15,135.61 85.91 44.53 92.5

ILVD_EDD 51 310 �18,655.35 131.8 143.7 149.48
MCM 40 220 �9,046.91 65.85 71.39 78.6
MPP 43 203 �10,962.9 51.18 56.83 58.85

MreB/Mbl 32 275 �10,769.36 30.15 17.27 35.22
NuoF 41 405 �10,266.97 76.65 63.09 85.1

Potyvirus coat 34 212 �8,000.31 62.19 44.27 63.6
SecA/DEAD 70 203 �13,263.09 121.07 90.6 127.15

a Tubulin 54 375 �7,669.76 20.33 29.68 34.73
b Tubulin 46 382 �7,110.85 35.49 27.6 42.4
Usher 36 317 �17,936.73 41.33 37.16 45.38
PB2005 32 2,051 �44,774.16 165.94 48.34 176.82

Chloroplast 24 15,546 �175,920.8 420.78 224.75 499.23

a LnL RAS is the maximum log likelihood obtained from the RAS model.
b KHuelsenbeck, KGaltier, and Kgeneral are the log-likelihood difference between the Huelsenbeck and RAS models, between the Galtier and RAS models, and between

the general and RAS models, respectively. The likelihood ratio statistic 2KHuelsenbeck, 2KGaltier, and 2Kgeneral are all very significant for each data set, see main text.
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LnL increase for the Huelsenbeck and Galtier models and
the fourth largest increase for the general model.

Table 3 shows the differences in LnL among the 3
covarion models and the significance of the test statistics.
Of the 23 data sets, 16 data sets have LnL greater for the
Huelsenbeck model than for the Galtier model; the Galtier
model has better likelihoods in the remaining 7 data sets.
Because both models are not nested and have the same
number of parameters in optimization, larger LnL means
the model is favored according to the AIC or BIC criterion.
Except for 1 data set (Glu_synth_NTN), the general model
has higher likelihoods in the other 22 data sets compared
with Huelsenbeck model, of which 19 are significant.
The general model has higher likelihoods in all 23 data sets
compared with the Galtier model. Except for 1 data set, the
differences for the other 22 data sets are all significant.

Supplementary table S1, Supplementary Material
online lists the parameter estimations for RAS and the 3
covarion models. Six data sets have estimated s11 for the

general model equal to 0 (Carboxyl_trans, Glu_synth_NTN,
HSP70, MreB/Mbl, and b-tubulin) or very small (0.05
in SecA/DEAD), which implies that a Huelsenbeck-style
covarion process is favored. Indeed, the maximum LnL
are greater for the Huelsenbeck model than for the
Galtier model in these 6 data sets (see table 3). Of the 4
data sets that have nonsignificant likelihood difference
between the Huelsenbeck and general models (Carboxyl_
trans, Glu_synth_NTN, HSP70, and Potyvirus coat pro-
tein), 3 have s11 in the general model equal to 0, suggesting
a Huelsenbeck-style model. For the fourth data set, the
Potyvirus coat protein, the general model got the same
s01 and s10 estimates as the Huelsenbeck model. The pro-
portion of covarion sites (p), estimated at 0.95, is also very
close to the Huelsenbeck p, which is defined as 1.0. For
these data, the estimated general model was similar to
a Huelsenbeck model, and therefore, no significant differ-
ence in the likelihoods was obtained between the 2 models.
Across the 23 data sets for the Huelsenbeck model, the
Pearson correlation coefficient (R) for s01 and s10 is 0.67;
whereas the R for s01 and s10 with a are both very small.
A contour plot for the likelihood surface for HSP70, which
fits the Huelsenbeck model well, shows a positive correla-
tion between s01 and s10 (fig. 3B). Huelsenbeck (2002) also
found that s01 and s10 are positively correlated for each of
the 11 genes he tested.

Only 1 data set (MPP) shows nonsignificant likelihood
difference (2.02) between the Galtier and general models
(table 3). The parameter estimates for the 2 models were
similar and for the general model s01 was very small
(0.09). Thus, for this data set, the general model behaved
more like the Galtier model than the Huelsenbeck model.
For the a-tubulin data set, the parameter estimates for the 3
models also suggest that a Galtier-style model is favored
over the Huelsenbeck model. Indeed, the log-likelihood dif-
ference between the general and Galtier models (5.05) is
second smallest among the differences for the 23 data sets,
and the likelihood for the Galtier model is much better than
that for the Huelsenbeck model.

Supplementary table S1, Supplementary Material
online also shows that the estimated a values are smallest
in all data sets for Galtier model and largest in 18 data sets
for the Huelsenbeck model among the 4 models (RAS and
3 covarion models). Part of the reason probably has to do
with the restriction that all sites undergo a covarion process
under the Huelsenbeck model. The differences in residence
times in ON states across sites provide a partial explanation
for sites with unusually large or small numbers of amino acid
differences without requiring highly variable rates. For the
Galtier model, some proportions of sites are noncovarion
and for these, the only explanation for unusually large or
small numbers of amino acid differences is large or small
site-specific rates. Consistent with this notion, we see a weak
positive correlation between a and p across the 23 data sets
for the Galtier model (R 5 0.24, p 5 0.078). There is also
a weak negative correlation between a and s11 (R5 �0.26).
Figure 3C and D shows contour plots of likelihood surface
with regard to a and s11 and to a and p, respectively, for
MPP, which fits the Galtier model well. The figures show
within this data set that there is also a negative correlation
between a and s11 but no correlation between a and p. Galtier

Table 3
Difference of Maximum Log Likelihood among 3 Covarion
Models

Data Set K1a K2b K3b

Actin �1.83 13.22*** 11.39***
Carboxyl_trans 6.18 1.17 7.35**
CPN60 10.24 4.13* 14.37***
CTP synthetase 6.56 14.50*** 21.06***
EF-1a 17.54 5.87** 23.41***
EF-2 31.07 4.9* 35.97***
Filament �0.95 7.09** 6.14**
Glu_synth_NTN 5.92 �0.16c 5.76**
GyrA �1.63 12.96*** 11.33***
HSP70 16.19 0.46 16.65***
HSP90 41.38 6.59** 47.97***
ILVD_EDD �11.9 17.68*** 5.78**
MCM �5.54 12.75*** 7.21**
MPP �5.65 7.67** 2.02
MreB/Mbl 12.88 5.07* 17.95***
NuoF 13.56 8.45*** 22.01***
Potyvirus coat 17.92 1.41 19.33***
SecA/DEAD 30.47 6.08** 36.55***
a Tubulin �9.35 14.4*** 5.05*
b Tubulin 7.89 6.91** 14.8***
Usher 4.17 4.05* 8.22**
PB2005 117.6 10.88*** 128.48***
Chloroplast 196.04 78.44*** 274.48***

a K1 is the log-likelihood difference between the Huelsenbeck and Galtier

models; if it is positive, then the Huelsenbeck model is favored; the Galtier model

is favored otherwise.
b K2 andK3are the log-likelihooddifferencebetween thegeneral and Huelsenbeck

models and between the general and Galtier models, respectively. The likelihood

ratio statistic 2K is a mixture of v2
0; v

2
1; and v2

2 distribution. The Bonferroni correc-

tion for multiple tests with an overall a 5 0.05 is 0.00217. ***p value , 0.0001

(very highly significant); **p value , 0.00217 (very significant); *p value , 0.05

(significant).
c The slightly lower log likelihood of the general model than the Huelsenbeck

model arose from the precision that PROCOV used to terminate the Newton–

Raphson iterations in the algorithm. The precision was set to 10�4 in this case so

that when the likelihood difference between any 2 successive Newton–Raphson

cycles is less than 10�4, then the program assumes that convergence is reached

and stops further parameter optimization. However, if the precision is set to 10�8,

which requires a longer time to reach convergence, the general model obtains a higher

likelihood than the Huelsenbeck model with a difference of 0.03.
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(2001) noticed that a values are larger in the RAS model
than in the covarion model for ribosomal RNA genes.

The general model estimated 5 parameters from each
of the 23 data sets (supplementary table S1, Supplementary
Material online). Among the data sets, there is a strong cor-
relation between s01 and s10 (R 5 0.7) and weak correla-
tions between some other parameter pairs, such as s01

and a (R 5 �0.46), s11 and a (R 5 �0.34), etc. We also
computed the correlations between the parameters within
each of the 23 data sets from the covariance matrices ob-
tained from the inverse of Fisher information matrices. Sig-
nificant correlations for the 23 within data set correlations
include s01 and s10 (mean R 5 0.61 6 0.048), s11 and a
(R 5 �0.38 6 0.042), and s11 and p (R 5 �0.22 6
0.048). The correlations between the other parameter pairs
are not significant.

Table 4 lists the original tree lengths (the sum of edge
lengths of all internal and terminal nodes) and the difference
between the estimated tree lengths under the 4 models and
the original tree lengths for the 23 data sets. All models
have tree lengths greater than the original tree lengths in
some data sets but shorter in the other sets. The RAS model
has closest tree lengths to the original lengths. This is not
surprising as the original trees were also evaluated under
a RAS model with PHYML. The Huelsenbeck model tends
to estimate shorter tree lengths, and the Galtier model es-
timated longer tree lengths than the original lengths. Galtier
(2001) also noticed that tree lengths are longer in the cova-
rion model than in the RAS model for the 16S and 23S
ribosomal RNA genes. For the general model, the tree
length estimates tend to be between the estimates by the
Huelsenbeck and the Galtier models (in 15 out of the 23
data sets).

Estimating a Tree Topology

One application of the general model would be to es-
timate tree topology. Although the current version of the
PROCOV program cannot be directly used for tree topol-
ogy search as extensive computations are required for the
large number of amino acid states and switching rates, it can
be used in comparing several competing tree topologies un-
der the (general) covarion model. For instance, the place of
Amborella within the radiation of angiosperms has evoked
a debate about the basal node in angiosperm phylogeny
(Goremykin et al. 2003, 2004; Soltis et al. 2004; Lockhart
and Penny 2005; Martin et al. 2005). Using the chloroplast
genome data (61 protein-coding genes from 24 plant taxa),
Leebens-Mack et al. (2005) recently compared 4 hypothe-
sized resolutions of the angiosperm phylogeny: 1) Ambor-
ella sister to all other angiosperms, 2) Amborella plus water
lilies clade sister to all other angiosperms, 3) water lilies
alone at the base of the tree, and 4) monocot at the base.
Their study found weak support for Amborella and water
lilies at the base of the angiosperms, that is, trees A and
B are weakly supported in their RAS plus I (invariant sites)
analyses of the amino acid and nucleotide alignments, re-
spectively. Specifically, they found tree A is weakly sup-
ported by the amino acid sequence data and tree B is
weakly preferred by the nucleotide data, whereas trees C
and D are poorly supported by both. This result argued
against some earlier studies (Goremykin et al. 2003,
2004) that put monocots at the basal node (i.e., tree D).
As shown above, the covarion models applied to the chlo-
roplast genome data based on tree A and the covarion mod-
els and especially the general model give better fits to the
data than the RAS model (tables 2 and 3). It is interesting to
see whether the general model can distinguish between the
4 tree topologies.

Table 5 shows that for the amino acid data, the general
model prefers tree B marginally over tree A, whereas both
trees C and D have significantly smaller log likelihoods.
Furthermore, both the Huelsenbeck and Galtier models
obtained qualitatively same results as the general model
(data not shown). Thus, although the amino acid covarion
models reject the same trees as the RAS model, the optimal
topology is different (although the differences in the likeli-
hood for these topologies are small and not significant in
either case).

Table 4
Original Tree Lengths and the Differences of Estimate Tree
Lengths from the Original Tree Lengths

Data Set Original DRASa DHuelsenbecka DGaltiera DGenerala

Actin 4.33 �0.01 �0.33 �0.01 �0.2
Carboxyl_trans 21.27 �0.17 �0.34 �0.52 �0.44
CPN60 9.76 �0.02 0.06 0.35 �0.1
CTP synthetase 21.84 �0.08 �2.17 0.57 �0.45
EF-1a 8.26 �0.02 �1.14 �0.79 �1.14
EF-2 7.75 �0.03 0 0.12 0.08
Filament 15.09 �0.12 0.71 0.86 1.26
Glu_synth_NTN 15.69 �0.12 �0.67 0.42 �0.34
GyrA 19.79 �0.1 �0.27 1.84 1.39
HSP70 13.4 �0.08 �0.17 �0.33 �0.2
HSP90 7.8 �0.02 �0.4 �0.31 �0.78
ILVD_EDD 19.61 �0.09 �0.06 2.13 2.18
MCM 15.77 �0.11 �1.26 2.03 0.34
MPP 17.39 �0.05 1.37 1.6 1.55
MreB/Mbl 13.53 �0.03 �0.07 0.72 �0.74
NuoF 5.97 0 �0.45 0.02 �0.3
Potyvirus coat 15.9 0 �2.07 �2.41 �2.21
SecA/DEAD 25.65 0.02 �3 1.47 �2.08
a Tubulin 4.39 0 �0.03 0.17 0.09
b Tubulin 3.73 �0.02 0.04 0.01 0.06
Usher 18.87 �0.1 2.03 2.34 2.2
PB2005 6.17 0.08 �0.28 �0.06 �0.37
Chloroplast 1.82 0.57 0.53 0.56 0.53

a DRAS, DHuelsenbeck, DGaltier, and Dgeneral are the differences by the re-

spective models from the original tree lengths.

Table 5
Maximum Log Likelihoods for 4 Trees of Angiosperm
Chloroplast Genomes Computed under the General Model
and the RAS Model

Treea General RAS

A �175,421.41 �175,920.80
B �175,417.99 �175,922.94
C �175,441.63** �175,944.71*
D �175,515.31*** �176,028.59***

a The chloroplast genome trees were taken from Leebens-Mack et al. (2005),

Fig. 1. Trees A, B, C, and D put Amborella, Amborella plus water lilies, water lilies,

and monocots at the base of the angiosperms, respectively. The p values of the ap-

proximately unbiased tests for the 4 trees were computed with consel (Shimodaira

and Hasegawa 2001). *p , 0.05; **p , 0.01; ***p , 0.001.
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Discussion

We have developed a new covarion model that com-
bines both Huelsenbeck and Galtier models, allowing evo-
lutionary rates of sequence sites not only to switch from ON
to OFF and OFF to ON, as in the Tuffley–Steel/Huelsenbeck
model but also to switch among different ON states, as in
the Galtier model. We have implemented these models in
a maximum likelihood framework for amino acid sequence
alignments in PROCOV. Simulation studies indicated that
PROCOV can find the right parameter values (gamma shape
parameter a and switching rates) for data sets simulated
under the Huelsenbeck, Galtier, or general models, although
the latter has bigger standard errors because of more pa-
rameters to be estimated. The behavior of the general
model in PROCOV converges to the Huelsenbeck model
or Galtier model, when the data set is simulated under
either model.

Covarion processes are not directly observable. One
can only infer them indirectly from the manner in which
amino acids differ across sites throughout the tree. One
might expect, therefore, that parameter estimates under
a covarion process may not be reliable. The standard errors
obtained in our simulations (table 1), although not small,
were never so large as to render estimation meaningless.
Estimation under a wrong model, however, did tend to give
misleading parameter estimates, a point that is further illus-
tratedby the largea estimates obtainedunder the Huelsenbeck
models in the data analyses.

We tested the 3 covarion models on 23 empirical pro-
tein data sets and found significant likelihood increases in
all data sets for the 3 models, compared with the RAS
model. The increases in likelihoods by comparison with
the RAS model were the largest regardless of the cova-
rion models. This suggests that a substantial proportion of
covarion-like rate variation can be explained by simple
covarion models. Galtier (2001) found his model signifi-
cantly increased the fit of the data for the 16S and 18S rRNA
genes. Huelsenbeck (2002) showed his model gave a better
fit of the data for 9 out of 11 genes. More recently, Ané
et al. (2005) found covarion effects in 26 out of 57 plastid
genes. Ignoring the nature of the data sets used by these
authors and current studies, it seems that the method of
Ané et al. is a little more conservative. Comparing the 3 cova-
rion models implemented in PROCOV, the Huelsenbeck
model gave better explanations than the Galtier model in
16 of the 23 data sets, whereas the Galtier model performed
better in 7 data sets. This suggests that both models have
advantages and disadvantages for different proteins, high-
lighting the usefulness of a general model. Indeed, the gen-
eral model gave a significantly better fit to the data than either
Galtier or Huelsenbeck model in the majority of the cases
studied. The few data sets for which the general model
did not perform significantly better than the other models
(4 for the Huelsenbeck model and 1 for the Galtier model)
either follow Huelsenbeck- or Galtier-style rate variation, so
the general model simply converged to the simpler models,
as indicated in the parameter estimations and also demon-
strated in the simulation studies.

The covarion models considered here differ from mod-
els that have been previously shown to result in inconsistent

topological estimation (Kolaczkowski and Thornton 2004;
Susko et al. 2004) in that they are stationary processes
throughout the tree. It is not clear that failing to account
for covarion-like evolution will generally result in topolog-
ical misestimation. The estimation of the basal node in
the angiosperm phylogeny based on the chloroplast ge-
nome data that we considered here is only one of a few real
data examples that we know of where incorporating cova-
rion models of heterotachy results in different estimated to-
pology. The others are a 3-gene analysis of opisthokont
phylogeny (Ruiz-Trillo et al. 2004) and an analysis of
plastid-derived genes in dinoflagellates (Schalchian-Tabrizi
et al. 2006). In both of these cases, Bayesian analyses with
a Huelsenbeck covarion model yielded different and more
credible phylogenies than corresponding analyses using
standard RAS models. The extent to which covarion mod-
els more generally impact on phylogenetic estimation there-
fore deserves further investigation.

Another application is in molecular dating. Even if tree
topology estimated under the covarion model is same as
a noncovarion model, the estimated edge lengths are differ-
ent (see table 4), which can be used in computing diver-
gence times among the lineages (Peterson and Butterfield
2005; Roger and Hug 2006). Finally, the covarion models
implemented in PROCOV can be used to study functional
shifts in protein families. It would be interesting to compare
the distributions of site likelihoods between the RAS mod-
els and covarion models and between the Huelsenbeck and
Galtier models. These differences may be combined with 3-
dimensional structures of the proteins to study the coevolv-
ing amino acid residues, which could aid in understanding
the molecular adaptation of the proteins.

Supplementary Material

Supplementary table S1 is available at Molecular Biol-
ogy and Evolution online (http://www.mbe.oxfordjournals.
org/).
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