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ABSTRACT10

11 Markov models are widely used to describe the dynamics of communities of

sessile organisms, because they are easily fitted to field data and provide a rich

set of analytical tools. In typical ecological applications, at any point in time,

each point in space is in one of a finite set of states (e.g. species, empty space).

The models aim to describe the probabilities of transitions between states. In

most Markov models for communities, these transition probabilities are assumed

to be independent of state abundances. This assumption is often suspected to

be false, and is rarely justified explicitly. Here, we start with simple assumptions

about the interactions among sessile organisms, and derive a model in which tran-

sition probabilities depend on the abundance of destination states. This model

is formulated in continuous time and is equivalent to a Lotka-Volterra competi-

tion model. We fit this model and a variety of alternatives in which transition

probabilities do not depend on state abundances to a long-term coral reef data

set. The Lotka-Volterra model describes the data much better than all models

we consider other than a saturated model (a model with a separate parameter for

each transition at each time interval, which by definition fits the data perfectly).

Our approach provides a basis for further development of stochastic models of

sessile communities, and many of the methods we use are relevant to other types

of community. We discuss possible extensions to spatially explicit models.

Subject headings: Markov models, coral reefs, Lotka-Volterra competition, maximum12

likelihood, statistical modelling13
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1. Introduction14

Markov models have been applied to data on a wide range of sessile communities,15

containing organisms such as trees, mussels and corals (Usher 1979; Tanner et al. 1994;16

Wootton 2001a; Hill et al. 2004), with the aim of understanding the structure and function17

of these communities. The influential Roughgarden et al. (1985) model of an open18

population with space-limited recruitment is also a linear Markov model in its original form,19

although this not immediately obvious.20

The popularity of Markov models stems from their relatively simple structure, and21

the ease with which they can be parameterized from data obtained by repeat surveys of22

permanent quadrats, which are a mainstay in marine ecology. There are also a wide range23

of tools that have been developed for analysis of matrix population models (Caswell 2001),24

many which can equally be applied to Markov models of communities. While Markov25

models are very simple, in at least some cases they have proven to have surprisingly good26

predictive ability (Wootton 2004).27

In the Markov models considered here, a fixed point in space can be in one of a finite28

set of possible states (e.g. species or groups of species) at any given time (although Markov29

models with an infinite set of possible states also exist). Conditional on the current state,30

future states are independent of the past. In most cases, Markov models of communities31

are formulated in discrete time, with model time intervals based on the census intervals in32

the observed data. The relevant data are the frequencies of transitions from each state to33

each other state over a given time interval, and the parameters are the probabilities of these34

transitions.35

Several elaborations of the basic first order discrete time Markov models generally36

used in ecology have been proposed and demonstrated. These include second-order models,37

where transitions depend on the state over the previous two time intervals, and semi-Markov38
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models, where transitions depend on the length of time that a point has remained in its39

current state (Tanner et al. 1996), as well as a continuous time version (Spencer and Susko40

2005). It has often been suggested that the probabilities of transitions between states in41

Markov models of sessile communities might depend on densities (Usher 1979; Tanner42

et al. 1994, 1996; Hill et al. 2002). However, there have been few attempts to incorporate43

density-dependence into these models. Acevedo (1981) studied the effects of density44

dependence on simple models of forest dynamics. Nonlinear open-population models have45

been developed, in which either mortality (Roughgarden et al. 1985) or growth (Muko et al.46

2001a) depend on the amount of free space. There is empirical evidence for such effects in47

some but not all populations to which they have been applied (Gaines and Roughgarden48

1985; Hyder et al. 2001; Muko et al. 2001b; Svensson et al. 2004). Caswell and Cohen49

have developed a number of nonlinear metapopulation models for two-species competition50

(e.g. Caswell and Cohen 1995). More recently, J. E. Tanner et al. (in preparation) have51

examined a more comprehensive density-dependent model of coral community dynamics,52

and found that it increased coral cover at equilibrium, compared to a model without density53

dependence.54

Most of these density-dependent models are formulated in discrete time (exceptions55

include Muko et al. 2001a,b). However, if transitions from one state to another may happen56

at any time, the transition probabilities over a finite time interval are the net outcome of57

all possible sequences of events in that interval. In most cases, a change in the rate of58

any single transition will then affect all transition probabilities (Spencer 2006). We would59

therefore expect every transition probability to be affected by the abundance of every state,60

which leads to complicated models unless the number of states is very small. It is simpler61

to construct continuous-time density-dependent models if the biological interactions occur62

in continuous time. Here, we develop a continuous-time density-dependent model, based on63

a simple probabilistic view of interspecific interactions among sessile organisms. It turns64
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out that this is a Lotka-Volterra competition model. Using maximum likelihood methods,65

we compare the fit of continuous-time models with and without density dependence to66

time series from a coral reef. In addition, we compare these models to time-averaged and67

saturated discrete-time models (a saturated model is one with a separate parameter for each68

transition probability at each time interval, which by definition fits the data perfectly). We69

show that the density-dependent model performs much better than all but the saturated70

model. Furthermore, this improved performance is achieved by changing the form of the71

model, not by adding more parameters.72

The models we evaluate are not fundamentally novel. However, in theoretical ecology,73

the effort expended on developing new models far exceeds that expended on evaluating74

how well these models describe real data. We agree with the idea that “the confrontation75

between more than one model arbitrated by the data underlies science” (Hilborn and Mangel76

1997, p. xv). As far as we are aware, this is the first attempt to formally compare the fit of77

linear Markov models and nonlinear models to a field data set, although comparisons have78

been made between the results of different linear models (e.g. Tanner et al. 1996).79

2. The model80

2.1. Assumptions81

We describe most of the features of the model in terms of colonial organisms such as82

corals, but the same approach can be applied to other kinds of sessile organisms such as83

trees. We make several important assumptions:84

1. That there is a fixed and finite number of possible states for a point in space. Let s85

be the number of such states. One of these, e, is empty space, and the others may be86

either species or groups of species that we choose not to distinguish (either because87
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this is too difficult or because they are of secondary interest).88

2. That conditional on the current state, future states are independent of the past (the89

Markov assumption). This is not strictly true. For example: in some species, larger90

colonies are more likely to be dislodged by storms (Tanner et al. 1996; Madin and91

Connolly 2006); reproduction depends on colony size in many corals (Harrison and92

Wallace 1990); and competition between adjacent colonies may be size-dependent93

(Lang and Chornesky 1990). Nevertheless, including historical effects in an empirical94

model of a reef system had little effect on community dynamics (Tanner et al. 1996),95

so violations of the Markov assumption may not be very important.96

3. That the rate at which transitions occur from state j into some non-empty state i97

depends on the availability of propagules or colonies of i to colonize or overgrow j, and98

that this availability depends on the proportion of i in the system. This assumption99

distinguishes our model from the usual homogeneous Markov chain, in which the100

rates of transitions are defined by a constant generator matrix (e.g. Norris 1997,101

section 2.1). This assumption can be tested by fitting models in which transition102

rates are either dependent on or independent of the proportion of i, and using model103

comparison methods to select the better model, as described in Appendix A4. Our104

treatment of density dependence seems natural for situations where colony growth is105

the main mechanism by which transitions to a non-empty state occur. In support106

of this view, J. E. Tanner et al. (in preparation) show that for the same data set,107

transition probabilities from j to i in discrete time depend on the proportion of i108

much more frequently than on the proportion of j.109

4. That the rate of clearance of points occupied by some species j is independent of110

the proportion of empty space in the system. Clearance might occur by external111

disturbances or because colonies of j die, and results in a transition to empty space.112
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Although J. E. Tanner et al. (in preparation) found that discrete-time transition113

probabilities to empty space did depend on the proportion of empty space for some114

species groups, these relationships were relatively weak. We assume that organisms do115

not interact such that a colony of i kills a colony of j but does not occupy the resulting116

space. Such interactions are biologically plausible, for example by allelopathy, but117

require more complex models.118

5. That interaction coefficients are constant over time. In particular, we are ignoring119

seasonal effects. Seasonality may be important in some systems, and can in principle120

be incorporated into models of the kind we develop. This might be useful because121

some aspects of coral demography, such as annual mass-spawning (Harrison and122

Wallace 1990), can be strongly seasonal. However, colonization of free space in123

this system is overwhelmingly dominated by growth of existing colonies rather than124

recruitment, and the transition rates do not separate recruitment from colony growth.125

Mortality due to cyclones is also likely to be seasonal. However, cyclones are rare,126

and except for extreme catastrophic events, it is difficult to distinguish cyclone effects127

from routine mortality that occurs throughout the year (Tanner et al. 1994). From a128

pragmatic perspective, it might be difficult to estimate seasonally varying parameters129

because our data were collected at intervals greater than one year. Our aim here is130

to produce a simple model which can be tested using field data, with which we can131

evaluate the influence of state frequencies on interaction rates. However, seasonal132

effects may be very important in other sessile assemblages, such as temperate mussel133

communities (Wootton 2001c).134

6. That the system is of infinite spatial extent and that local spatial effects are135

unimportant. These assumptions allow us to develop a deterministic mean-field136

differential equation model for the dynamics of the whole system, which governs the137
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transition rates in a Markov process representing the states of a finite number of138

sampled points in space. In reality, local spatial effects are likely to be important. In139

the Conclusions, we consider some ways in which they could be modelled.140

We formulate the resulting model at the community level as a mean-field system of141

constant-coefficient nonlinear differential equations. Transitions between states may occur142

at any time. There is no reason to assume organisms only interact at fixed moments in143

time, unlike models of organisms with annual lifecycles, where discrete time is a natural144

choice. However, the properties of the system are likely to be sampled at discrete points in145

space and time. We therefore base our likelihood function on discrete sampling.146

2.2. Derivation147

In Appendix A1, we describe a stochastic model for the rate of transitions from state j

to state i at a point in space, as a function of the number of points in state i. In the absence

of detailed information on the spatial arrangement of points and dispersal distances, we

then use a mean-field approximation in which the rate of transitions from j to i per unit

frequency of state j is aijxi, where the coefficient aij has dimensions T−1, and xi is the

dimensionless frequency of state i. For transitions to empty space, we assume that there is

no dependence on the frequency of empty space, and model the rate per unit frequency of j

as aej (dimensions T−1). We can now write an equation for the rate of change of frequency

of each state, by summing the loss and gain terms over all destination and source states:

dxi

dt
=















−
(

aei +
∑

k 6=e,i akixk

)

xi +
∑

k 6=i aikxixk, i 6= e

−
∑

k 6=e akexkxe +
∑

k 6=i aekxk, i = e

(1)

with xi ≥ 0 and
∑s

i=1 xi = 1.148

For simplicity, we do not discuss facilitation in detail here, but it could be included149



– 9 –

in such models. For example, if species i is better able to colonize empty space when the150

abundance of another species j is greater, we might include terms like aie,jxixexj, where aie,j151

(dimensions T−1) is the coefficient of colonization of empty space by i per unit frequency152

of j. If such terms were present, comparing aji with aie,j would tell us about the relative153

importance of direct negative effects of j on i versus enhancement of colonization by i in154

the presence of j.155

We can rewrite Eq. 1 in matrix form. Let A be a matrix whose off-diagonal elements

are the interaction coefficients aij and whose diagonal elements are zero. Let X be a

diagonal matrix with entries xi if i 6= e, and 1 if i = e. Let C be a diagonal matrix of

column sums of XA. Let x be a column vector of probabilities of each state. Then

dx

dt
= (XA − C)x

= R(x)x

(2)

where R(x) is a density-dependent rate matrix.156

3. Relationships to other models157

In this section, we show how the model of Section 2 is related to two well-known158

ecological models. First, it is a Lotka-Volterra competition model. Second, it is159

indistinguishable from a homogeneous continuous-time linear model (or its discrete-time160

equivalent) if it is at equilibrium, but will behave differently away from equilibrium and will161

respond differently to changes in parameters.162

The general Lotka-Volterra competition model is

dxi

dt
= rixi −

ri

Ki

x2
i −

∑

k 6=i

ri

Ki

αikxixk (3)

(MacArthur and Levins 1967), where ri (dimensions T−1) is a per-capita population growth163

rate, Ki (dimensionless) is a carrying capacity, and αik (dimensionless) is an interspecific164
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competition coefficient measuring the effect of species k on the growth rate of species i.165

Note that as in Eq. 1, the xi are proportions.166

Because every point in the system is in one of the possible states, the proportion of

points that are empty can be written as xe = 1 −
∑

k 6=e xk. Substituting this into Eq. 1

with i 6= e and rearranging, we obtain

dxi

dt
= (aie − aei)xi − aiex

2
i −

∑

k 6=e,i

(aki + aie − aik)xixk (4)

which is identical to Eq. 3 with ri = aie − aei, Ki = (aie − aei)/aie, and αik =167

(aki + aie − aik)/aie. We therefore refer to the model of Section 2 as the LV model from168

now on. The Lotka-Volterra competition model can also arise from completely different169

mechanistic assumptions, or simply as an approximation to a more complex model close to170

equilibrium (Schoener 1986).171

If Eq. 2 is at equilibrium, R(x) does not vary over time. Let x∗ be an equilibrium

state of Eq. 2, and set Q = R(x∗). Eq. 2 is therefore indistinguishable at equilibrium from

the homogeneous continuous-time linear model with transition rates

dx

dt
= Qx (5)

where Q is a matrix whose off-diagonal elements qij (dimensions T−1) are non-negative

instantaneous transition rates, and whose diagonal elements qjj are −1 times the column

sums of off-diagonal elements. We refer to this model from now on as the linear model.

Note that if the system is not at equilibrium, Eq. 2 and Eq. 5 will behave differently.

Elsewhere (Spencer and Susko 2005), we discuss the relationship between this linear model

and the usual discrete-time Markov models for communities of sessile organisms. Briefly,

the usual formulation of a discrete-time Markov model is

x(T + t) = P(t)x(T ) (6)
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where x(T ) is a vector of state probabilities at time T , and P(t) is a transition probability

matrix whose ijth entry pij(t) is the conditional probability of observing state i at time

T + t given that we observed state j at time T . If there is a homogeneous continuous-time

process with generator Q, then

P(t) =
∞

∑

m=0

(Qt)m

m!

= eQt

(7)

where eQt is a matrix exponential. P(t) is a stochastic matrix, and its largest eigenvalue is172

1. Most models of this kind have a globally stable stationary distribution (Hill et al. 2004):173

the condition for this is that P is regular (Kijima 1997, p. 52).174

In many ecological analyses, the P matrix is estimated by recording the identities of175

species at fixed points in space at a series of evenly-spaced time intervals, and aggregating176

the transition counts over space and time (e.g. Tanner et al. 1994; Wootton 2001c; Hill177

et al. 2004). To do so, we must assume either that the P matrix is independent of state178

frequencies, or that the frequencies are close to equilibrium.179

4. Likelihood, parameter estimation and model selection180

One appealing feature of models for sessile organisms observed at discrete time intervals

is that we can easily derive the likelihood of a model given the data. We can then make

formal comparisons between models. Suppose we have a sequence of states y0, y1, . . . yk at

a point in space observed at times t0, t1, . . . tk, where the time intervals are not necessarily

equal. Under the Markov assumption, the probability of this sequence is

P (y0, y1, . . . yk) = P (yk|yk−1)P (yk−1|yk−2) . . . P (y1|y0)P (y0)

= P (y0)
k

∏

m=1

P (ym|ym−1)
(8)
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where P (ym|ym−1) is the probability of observing state ym at time tm given state ym−1 at181

time tm−1 and P (y0) is the probability of the initial state.182

If we have a sample of sequences from a set of v independent and identically distributed

(iid) points, then the likelihood L for the sequences at all the points is the product

multinomial

L =
v

∏

h=1

P (y0,h)
k

∏

m=1

P (ym,h|ym−1,h)

= [
∏

j

pj(0)nj(0)]
k

∏

m=1

∏

ij

pij(m,m − 1)nij(m,m−1)

(9)

where ym,h is the state at point h at time tm, pj(0) is the probability of state j at time 0,

pij(m,m − 1) is the probability of state i at time tm given state j at time tm−1, nj(0) is the

number of points in state j at time 0 and nij(m,m − 1) is the number of points in state j

at time tm−1 and state i at time tm. The product
∏

j is over all states and the product
∏

ij

is over all combinations of states. In practice, it is easier to work with the log likelihood

l =
∑

j

nj(0) log pj(0) +
k

∑

m=1

∑

ij

nij(m,m − 1) log pij(m,m − 1) (10)

In a homogeneous Markov model, initial states do not affect transition probabilities183

over subsequent time intervals, so the initial state is an ancillary statistic if the interaction184

rates or probabilities are the parameters of interest and we do not assume the process is at185

equilibrium. It is then usual to consider only the likelihood of the sequence conditional on186

the initial state (Lehmann 1986, section 10.2). However, in an LV model, initial states do187

affect subsequent transition probabilities, so we will use full likelihoods in all cases.188

In deriving Eq. 10, we assumed that the sample points have negligible effects on the189

dynamics of the entire system. This is reasonable if the spatial extent of the system is190

infinite. We also assumed that the sample points are independent of each other. This191

is more problematic, unless sample points are far apart relative to the scale of spatial192
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interactions (which is unlikely to be strictly true for our data). However, even if the iid193

assumption is incorrect, the model may still be useful. Since the model describes the194

behaviour of a single point in space, parameter estimates from the marginal distribution195

of states at a point will be asymptotically correct. If there are dependencies, it will be as196

though there were fewer independent observations than sample points, so hypothesis tests197

should be interpreted cautiously. In the Conclusions, we suggest some possible solutions to198

the problem of spatial dependencies.199

In Appendix A2, we give the transition probabilities for the LV model, the linear200

homogeneous continuous-time model,a saturated discrete-time model with one parameter for201

every combination of time interval, source state and destination state, and a time-averaged202

discrete-time model with the same transition probabilities for every time interval.203

If a model is going to help us understand the workings of a community, we have to204

be able to estimate its parameters. A model is identifiable if all its parameters can be205

estimated from the data. In Appendix A3, we illustrate how small singular values of the206

Jacobian matrix of partial derivatives of expected values of each category of observations207

with respect to each parameter can indicate identifiability problems (Catchpole and Morgan208

1997). We apply this criterion to all the models we consider.209

Parameter estimation requires maximizing the log likelihood as a function of the210

parameters. For a discrete-time model, the maximum likelihood estimates of transition211

probabilities are given in Appendix A2, Eqs. A.6 or A.7. We do not have closed-form212

estimates for the other models, so we use numerical optimization as described in Appendix213

A5.214

Appendix A4 describes the methods we used to compare models. Briefly, the LV, linear,215

and time-averaged discrete models (and all other possible models) are nested within the216

saturated model, so we can use likelihood ratio statistics to compare each to the saturated217
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model (Hilborn and Mangel 1997, pages 153-154). We can also use Akaike’s Information218

Criterion (AIC) to compare all four models with each other (Akaike 1992). The Akaike219

weight for each model can be treated as an estimate of the probability that it is the best in220

the set under consideration (Burnham and Anderson 2004).221

5. Data222

We fitted the models to data from a long-term study of coral community dynamics223

at Heron Island, Great Barrier Reef, Queensland, Australia (Connell et al. 1997, 2004).224

Data from this study have previously been analyzed using both discrete-time (Tanner et al.225

1994, 1996; Hill et al. 2004) and continuous-time (Spencer and Susko 2005; Spencer 2006)226

Markov models, and are available on request from JT. In parallel with the current study,227

a discrete-time density-dependent model is also being developed, although it is not in a228

format that allows direct comparison to the models presented here. Data were collected229

from photographs of fixed 1m2 quadrats taken at unequal intervals over 27 years, from 1962230

to 1989. Grids of points, referenced to fixed stakes, were placed over the photographs and231

the species present at each point recorded as described in Tanner et al. (1994). Because the232

locations of grid points were fixed, it was possible to determine how the species present at233

points in space changed over time, giving counts of transitions for each time interval.234

72 species of corals and 9 species of algae were observed in the quadrats over the235

27-year study period. In previous studies, these were grouped into eight categories based236

on taxonomy and morphology, plus a free space state (Tanner et al. 1994, 1996). Free237

space was usually occupied by organisms such as crustose coralline and turfing algae, but238

is available for colonization by corals and macroalgae (J. E. Tanner et al., in preparation).239

Initial analyses (Appendix A5) showed that the reliability of parameter estimation was240

improved by aggregating the four original acroporid coral states into a single state, reducing241
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the number of parameters from 80 to 35. All the models presented here, including the242

saturated model, are therefore based on six categories: three hard coral groups (acroporids,243

massives, and pocilloporids); soft corals; algae; and free space. Aggregation is reasonable244

because all the acroporids showed similar trends in frequency over time. Analyses of the245

unaggregated data led to qualitatively similar conclusions. Simulation studies (Appendix246

A5) showed that we could correctly identify the true model and obtain good parameter247

estimates in most cases. We report results from only one intertidal site, the Protected Crest.248

Data were also available for one other intertidal site (Exposed Crest) and one subtidal249

site (Exposed Pools). However, these had fewer sample points in time and/or space, and250

simulation studies like those described in Appendix A5 showed that there were too few251

data for reliable parameter estimation. There were small numbers of missing observations252

(< 1%), which we ignore. We analyzed data from all 17 sample dates used by Tanner et al.253

(1994). There were at least 1249 points observed per time interval.254

6. Results and discussion255

6.1. Model selection256

Table 1 shows the log likelihoods l, number of parameters p, and Akaike’s Information257

Criterion for all the models. The saturated model is much better than the LV model, which258

in turn is much better than the linear model. The time-averaged discrete model is worst of259

all.260

Likelihood ratio tests reject the LV, linear and time-averaged discrete models with261

p < 1× 10−16. The small p-value is not surprising because there are 450 degrees of freedom.262

The Akaike weight of the saturated model is > 0.9999, indicating overwhelming support for263

this model compared to the others.264
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The saturated model is not of much biological interest. Although it is the best265

possible description of the data, it tells us nothing about mechanisms, and it cannot be266

used to predict future events. Its main value is to provide a standard against which other267

models are measured. Thus, even though our other models can be rejected as a complete268

explanation of the data, it is still worth comparing them to each other in order to choose the269

most promising framework for further development. Similar situations arise in modelling270

molecular evolution: early models could often be rejected (e.g. Huelsenbeck and Crandall271

1997, page 454), but have provided a basis for the development of more sophisticated272

models (Sullivan and Joyce 2005, page 459).273

The LV model has a much smaller AIC than the linear model. If the saturated model274

is excluded from the comparison, the Akaike weight of the LV model is > 0.9999. Thus,275

the LV model is much better than any other non-saturated model we considered. This276

indicates that transition probabilities are likely to depend on state frequencies, although277

comparison with the saturated model shows that other factors must also be important.278

J. E. Tanner et al. (in preparation) also show that discrete-time transition probabilities279

can be strongly density-dependent in this system, with up to 74% of the variance in some280

transition probabilities being explained by density.281

Both continuous-time models are better than the time-averaged discrete model. It282

is not surprising that transition probabilities depend on the length of the time interval,283

although most previous models have not taken account of this (e.g. Tanner et al. 1994,284

1996; Spencer and Susko 2005). However, there are plausible situations in which simple285

continuous-time models would not work well, for example if temporal variability in286

environmental conditions mattered more than the length of the time interval.287

Figure 1 shows the predicted and observed frequencies of each state at each sample288

date. Parameters are estimated from transition frequency data, but time series of abundance289
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are a good visual representation of the behaviour of each model. Predicted frequencies are290

given by Eq. 2 for the LV model, and Eq. 5 for the linear model. For the time-averaged291

discrete model we generated expected frequencies using Eq. 6, ignoring the variation in292

sample intervals. The LV model generates predicted frequencies that look much more like293

the observed data than those from the linear model. The time-averaged discrete model294

generates frequencies similar to the linear model.295

In the linear model, the smallest singular value of the Jacobian was 1 × 10−9, which296

may indicate potential identifiability problems (Appendix A3). The largest transition rate297

was from algae to free space (q63 = 147.53), an order of magnitude larger than any other.298

The predicted proportion of algae is low and rapidly approaches an equilibrium. Small299

changes in other transition rates involving algae are unlikely to have much effect on this300

behaviour. There may not be very well-defined optimal parameter estimates for the linear301

model. However, since the linear model performs much worse than the LV model, these302

estimates are not of much interest. Although there were some large rates in the LV model,303

the rate matrix was not dominated by a single large rate and no singular values were less304

than 1× 10−5. We can therefore be more confident that the parameter estimates for the LV305

model have biological meaning.306

6.2. Interaction coefficient estimates in the LV model307

Parameter estimates for all the non-saturated models are given in Table 2 (LV model)308

and Appendix: Tables A3 and A4 (linear and time-averaged discrete models). Here, we309

briefly discuss the biological significance of the interaction coefficient estimates in the LV310

model.311

High coefficients for transitions into a state are not necessarily associated with high312
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abundance. For example, there are high coefficients for transitions from acroporids, massive313

corals and free space to algae. However, there are also high coefficients for transitions from314

algae to pocilloporid corals and free space. Algae therefore show rapid turnover but do not315

become abundant (Figure 1). This is in accordance with the idea that algae are transient,316

fast-colonizing species on this reef (Connell 1987).317

There are a number of very low coefficients (< 1 × 10−9: 5/30 rates = 17%). In earlier318

analyses with four separate acroporid states, almost every possible transition occurred at319

some point during the observation period (Tanner et al. 1994), although a continuous-time320

linear model suggested that some transitions may only have occurred indirectly (Spencer321

and Susko 2005). When acroporids were aggregated into a single state, the proportion of322

possible transitions that were never observed (7/36 = 19%) was not dramatically different323

from the proportion of very low coefficients in the LV model, although only three of these324

unobserved transitions also had coefficients less than 1 × 10−9 in the LV model. When325

some states are very transient, others persist for much longer, and the sampling intervals326

are moderately long, the pattern of transitions that are observed may not accurately reflect327

the events that actually occur (J.E. Tanner et al., in preparation).328

We also investigated the long-term dynamics of the LV model. Using the estimated329

interaction coefficients and initial conditions from Table 2, we solved the system numerically330

for 10000 years. The state frequencies approached an equilibrium with 46% acroporids, 35%331

free space, 11% soft corals, 8% massive corals, and no pocilloporid corals or algae. There332

were transient oscillations, which were negligible after about 1000 years. We analyzed the333

local stability of this equilibrium by examining the eigenvalues of the Jacobian (e.g. May334

1971). These eigenvalues all had negative real parts. This confirms that the equilibrium335

is locally stable (and that at this equilibrium, we could find a linear model that would be336

indistinguishable from the LV model).337
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7. Conclusions338

For the data set we studied, the Lotka-Volterra model performed much better than339

two density-independent alternatives, even though all these non-saturated models had the340

same number of parameters. Density-independent colonization is the distinguishing feature341

of open population models (Roughgarden et al. 1985), and is typically associated with342

long-distance larval dispersal. It is implausible that the system we studied is completely343

closed, but it does seem likely that local abundances are important in determining transition344

rates. This reflects the fact that colonization by recruitment of new individuals is rare345

compared to colonization by lateral growth of existing individuals.346

We also analyzed data from two other sites, the Exposed Crest and Exposed Pools, but347

do not report these results here. The other two sites had shorter time series and/or fewer348

points in space, and simulations showed that parameter estimation was less reliable at these349

sites than at the Protected Crest. Analyses of both these sites strongly favoured the LV350

model over the linear model, as at the Protected Crest. However, simulations showed that351

the frequency of wrongly selecting the LV model when the linear model was the true model352

was much higher than at the Protected Crest. As mentioned previously, a linear model353

close to equilibrium may be difficult to distinguish from an LV model close to equilibrium,354

and the linear models quickly approached equilibrium for parameters estimated from the355

field data. Although this may not be a problem for the field data, because the systems were356

not particularly close to equilibrium, we are reluctant to draw any strong conclusions from357

these other sites. This highlights the need for long time series as a foundation for statistical358

ecology. We hope that further studies on other long-term ecological data sets will lead to a359

more general understanding of the situations in which linear and LV models are suitable for360

communities of sessile organisms.361

One of the other sites we analyzed, the Exposed Pools, was also strongly affected362
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by storm damage on several occasions (Connell et al. 1997). The LV model was able to363

reproduce some of the observed large fluctuations in abundance of corals and free space364

following these storms. However, in reality these fluctuations were likely to have been a365

consequence of fluctuations in rates of transitions to free space, which were treated as366

constant in the model. Mortality rates are likely to vary considerably over time, to depend367

on the time since the last storm (because larger colonies may be more vulnerable to storm368

damage), and to covary among points in space and states in the system. It therefore seems369

unlikely that the estimated parameters from the LV model are biologically meaningful370

when occasional major storm damage is important. It should be possible to explicitly371

include storm damage in the models described here, by using data on storm intensities as a372

predictor of transitions to free space (Madin and Connolly 2006).373

Other factors may also be changing over time. At the Protected Crest site, acroporids374

were initially abundant but showed a gradual decline, free space increased over time,375

massive corals were moderately abundant and soft corals showed a rapid increase at the376

end of the time series (Figure 1). These trends may be partly due to upward growth of the377

reef and partial diversion of water flow (Connell et al. 2004).378

Another possible improvement is making the model spatially explicit. It is likely that379

transition rates at a point depend more strongly on the states of the immediate neighbours380

of the point than on the average state of the system. Gratzer et al. (2004, p. 9) provide381

an interesting discussion of the consequences of non-random distributions of individuals for382

models of spatial interaction in forest systems, phrased in terms similar to those we used in383

deriving the LV model (Section 2.2). Although there are spatially explicit models of sessile384

marine communities (e.g. Wilson et al. 1996; Burrows and Hawkins 1998; Wootton 2001b;385

Robles and Desharnais 2002; Langmead and Sheppard 2004; Dunstan and Johnson 2005,386

2006), little effort has yet been expended on fitting to time series, or performance relative387
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to non-spatial models. Instead, most models have focussed on qualitative patterns. One388

way to reduce the complexity of these models is to use moment approximations to obtain389

more accurate differential equation models than the mean-field system we considered (e.g.390

Bolker and Pacala 1997; Pascual and Levin 1999). Alternatively, spatially explicit models391

are often formulated as stochastic cellular automata, which are linear Markov models with392

a very large state space. The likelihood for a discrete-time cellular automaton is easy to393

calculate, because the states of cells at time t + 1 are conditionally independent given the394

states of their neighbourhoods at time t (Balzter et al. 1998; Craiu and Lee 2006). The395

problem is more difficult in continuous time, because events outside the neighbourhood of396

a cell may affect its future state through a sequence of changes to intervening cells. The397

full generator matrix for such a model will usually be too large to store or exponentiate.398

Possible approaches include Monte Carlo estimation of likelihoods by importance sampling399

(Juneja and Shahabuddin 2001), pseudolikelihood methods (Besag 1975), and approximate400

Bayesian computation (Sisson et al. 2007). Perhaps the most closely related problem is401

that of estimating parameters for a presence-absence metapopulation from time series data.402

If the metapopulation is not observed every year, Bayesian data augmentation methods403

can be used to integrate over sample paths for unobserved intervals (O’Hara et al. 2002).404

However, the problem is more difficult in continuous time because the length of the sample405

path is unknown. An alternative approach is to treat a single observed spatial pattern as406

a sample from the stationary distribution of a continuous-time Markov chain, as has been407

done for models of forest gap creation and regeneration (Schlicht and Iwasa 2004). It is408

not clear that this would be appropriate for our system, given the large variation in state409

frequencies over time.410

In conclusion, the models we have investigated here are simple, and have already411

been well-studied in theoretical ecology. Our main contribution is the attempt to compare412

the performance of these models as quantitative descriptions of long-term field data.413
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Stochastic models of real time series can both increase our understanding of the underlying414

mechanisms, and help us to make better predictions about the future dynamics of415

populations and communities (e.g. Foley 1994; Kendall et al. 1999; Thomas et al. 2005).416
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Table 1: Log likelihoods (l), number of parameters and Akaike’s Information Criterion (AIC)

for Protected Crest models, ordered by increasing AIC.

Model l Parameters AIC

Saturated discrete −1.5413 × 104 485 3.1797 × 104

LV −1.6208 × 104 35 3.2486 × 104

Linear −1.7184 × 104 35 3.4437 × 104

Time-averaged discrete −1.7330 × 104 35 3.4730 × 104
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Table 2: Estimated A matrix (years−1) for LV model, Protected Crest.

1 2 3 4 5 6

1: acroporid corals 0 0.6075 6.3557 0.0802 0.1525 0.9572

2: soft corals 0.3654 0 1.13e-54 0.8443 62.1711 0.5078

3: algae 28.9099 2.20e-25 0 11.8025 6.94e-38 25.6192

4: massive corals 0.7293 2.79e-47 0.4187 0 0 0.8297

5: pocilloporid corals 8.40e-12 4.21e-04 38.6881 1.12e-06 0 1.3899

6: free space 0.3068 0.1381 23.1526 0.4922 1.0719 0

Note: Estimated initial state frequencies were [0.4938, 1.0441×10−5, 0.0174, 0.0102, 0.0175,

0.4612]T.
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Fig. 1.— Protected Crest data (circles), LV model (solid line), linear model (dashed line),

and time-averaged discrete model ignoring variation in time intervals (crosses). States are

(A) acroporid corals, (B) soft corals, (C) algae, (D) massive corals, (E) pocilloporid corals,

(F) free space. Time is measured in years since the first sample. The vertical axis scales are

different in each panel.
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