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Abstract

Gene families are frequently gained and lost from prokaryotic genomes. It is widely believed

that the rate of loss was accelerated for some but not all gene families in lineages that became

parasites or endosymbionts. This leads to a form of heterotachy which may be responsible

for the poor performance of phylogeny estimation based on gene content. We describe a

mixture model which accounts for this heterotachy. We show that this model fits data on

the distribution of gene families across bacteria from the COG database much better than

previous models. However, it still favours an artefactual tree topology in which parasites

form a clade over the more plausible 16S topology. In contrast to a previous model of genome

dynamics, our model suggests that the ancestral bacterium had a small genome. We suggest

that models of gene family gain and loss are likely to be more useful for understanding

genome dynamics than for estimating phylogenetic trees.

Introduction

A gene family is the set of members of a group of repeated sequences in a genome (Graur

and Li, 2000, p. 264), derived from a common ancestor within some given time (or sequence

similarity) threshold. Gene families can be gained by horizontal transfer or by sequence

evolution resulting in a change of the gene family into which a gene is classified (it is therefore

not impossible, although presumably unlikely, for sequence evolution to result in multiple

origins of a gene family). Gene families can be lost by deletion or sequence evolution.

Understanding the processes by which gene families are gained and lost is a major part

of understanding genome evolution, given the substantial variation in gene content across

genomes. Increasingly, this understanding is being gained using progressively more realistic

Markov models of gene gain and loss on a phylogenetic tree.

The first phylogenetic model of gene family gain and loss assumed that the rates of gain

and loss were equal, and that the same rates applied to all gene families (Hao and Golding,

2006). This is analogous to a Jukes-Cantor model of nucleotide evolution. The first obvious

improvement to this model is to allow the gain and loss rates to be different, so that the

stationary probabilities of gene family absence and presence need not be equal. Unequal gain

and loss rates give much better fits to data on genomes from across the tree of life (Cohen
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et al., 2008). Not assuming that the process of gain and loss has reached stationarity further

improves the fit. This requires estimating the probability of gene family absence at the root

of the tree in addition to the gain and loss rates (Cohen et al., 2008). There is also strong

evidence that some gene families are gained and lost at higher rates than others. Cohen

et al. (2008) and Hao and Golding (2008) developed mixture models with several categories

of gene families, each having the same relative gain and loss rates but different absolute

rates. These models are exactly analogous to discretized gamma models of rate variation in

sequence evolution (Yang, 1994), and are homogeneous in time. As with sequence evolution,

adding this kind of rate variation results in huge improvements in fit (Cohen et al., 2008; Hao

and Golding, 2008). However, there are biological arguments for considering heterogeneous

models of rate variation among gene families and over time. For example, the number of

genes in bacterial genomes varies by approximately an order of magnitude (Mira et al., 2001).

In particular, parasitic and endosymbiotic bacteria (parasites for short from now on) often

have much smaller genomes than their free-living relatives, probably because they can rely

on their host to perform some functions (Mira et al., 2001). The gene families performing

these functions in the parasite might then be lost at a higher rate than normal. Gene families

involved in functions that cannot be performed by the host are not likely to show accelerated

loss rates, although parasites may have reduced opportunities for lateral transfer (Mira et al.,

2001). The parasitic lifestyle has arisen multiple times in unrelated lineages (Ochman and

Moran, 2001). As a result, each of these lineages may have a common set of gene families

with accelerated loss rates (Snel et al., 2005). This common change in evolutionary rates for

a subset of data in unrelated lineages is analogous to one form of heterotachy in sequence

evolution (Kolaczkowski and Thornton, 2004), and has the potential to mislead phylogenetic

methods based on gene content, even those such as conditioned genome reconstruction that

do not assume a stationary, homogeneous process (Spencer et al., 2007).

To address the problem of accelerated gene family loss in parasites, we develop a heteroge-

neous mixture model with two major categories of gene families. One major category of gene

families has the same gain and loss rates everywhere (Figure 1a). A second major category

of gene families that are dispensable in parasites has accelerated loss rates in edges leading

to these taxa (Figure 1b). We estimate the probabilities of these major categories. Within

each major category, we also allow discrete gamma rate variation of the kind modelled by
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Cohen et al. (2008) and Hao and Golding (2008).

We will assume that the tree topology is known, and that we know which genomes

belong to parasites. With these assumptions, the pattern of gain and loss rates for each

major category on each edge can be specified in advance (although the actual rates must be

estimated). In general, a model of this kind will be nonstationary, because we will not force

the stationary probabilities to be the same everywhere on the tree. We must therefore work

with a rooted tree, and estimate the probabilities of gene family presence and absence at the

root in each major category. Previous models have assumed that gain and loss edge lengths

are either a constant multiple of substitution edge lengths (Cohen et al., 2008), or that the

relationship between gain and loss edge lengths and substitution edge lengths is linear, but

differs among edges in ways that can be specified a priori (Hao and Golding, 2006, 2008).

Since there is no reason to think either of these assumptions is true, we will also estimate

gain and loss edge lengths.

Using these methods, we show that there is strong evidence for an increase in the loss

rate of some but not all gene families in parasitic bacteria. We also show that our model

favours a small rather than a large genome in the ancestral bacterium. We compare the fit

of our models on a plausible tree topology based on 16S data, and an implausible topology

based on gene content data.

Materials and Methods

Modelling gene family gain and loss

We assume that the gain and loss of a gene family can be modelled by a two-state continuous-

time Markov process, with states 0 (absence) and 1 (presence). In reality, the process is

unlikely to be strictly Markovian. For example, the number of members of a gene family

within a genome may also change due to duplication and deletion of segments of DNA.

The loss of a gene family with many members may be less likely than the loss of a gene

family with only one member in a genome. Models for the number of members of a gene

family exist (e.g. Gu and Zhang, 2004; Spencer et al., 2006; Iwasaki and Takagi, 2007) but

are computationally complex. We assume that gene families are independent, and that

lineages evolve independently. We have discussed the justification for these assumptions
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elsewhere (Spencer et al., 2006, 2007). It is important to remember that this model is only

an approximation. For example, lateral transfer is an important source of gene gains in

bacteria (Doolittle et al., 2003), and violates the strict assumption of lineage independence.

However, if we have only sampled a small fraction of the lineages that exist at any time, it

is not unreasonable to assume that the rate of gene gains in a given lineage does not depend

strongly on other lineages that are present in our data.

For an individual gene family, the Markov process we have assumed is described by a

rate matrix

Q =





−q01 q01

q10 −q10



 (1)

where qij is the instantaneous rate of transition from state i to state j. If x = [x0, x1] is a

vector of the probabilities of gene family absence (x0) and presence (x1 = 1 − x0), and the

process is homogeneous in time (Q does not change) then

dx

dt
= xQ

with stationary probabilities [πQ(0), πQ(1)] of absence and presence at equilibrium.

For a heterogeneous model with a rate shift in some gene families on edges leading only

to parasites, we use two different Q matrices. Q0 is used on all edges in major category 0

(Figure 1a) and edges other than those leading only to parasite genomes in major category

1 (solid lines in Figure 1b). Q1 is used only on edges that lead only to parasite genomes in

major category 1 (dashed lines in Figure 1b). For rate variation among categories of gene

families within major category i, we assume that each rate class v has gain and loss rates

cvQ(ij), with Q(ij) being the rate matrix for edge j in major category i. The class-specific

rate multiplier cv is the mean rate for the vth equiprobable partition of a gamma distribution

with mean 1 and shape parameter α (Yang, 1994).

The details of our models are in the Supplementary Material. The parameters we need

to estimate are as follows. Each rate matrix i is described by its stationary probability of

gene family absence, πQ(0, i) (we use this parameterization for compatibility with Cohen

et al., 2008, even though our model is non-stationary). Each major category j has a root

probability of gene family absence, πROOT(0, j), because we do not assume that the process

of gain and loss is stationary. If we have two major categories, µ0 is the probability that

a gene family belongs to major category 0 (we do not consider models with more than two
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major categories). Rate variation among gene families is described by the shape parameter

α. To test the hypothesis that accelerated gene family loss affects some but not all gene

families in parasites, we fit models with various restrictions on these parameters.

Model selection

We fit the following models:

A. The same relative gain and loss rates for all gene families and all edges. Figure 1a

applies to all gene families. This is equivalent to model M2 in Cohen et al. (2008),

except that we estimate edge lengths rather than assuming they are a constant multiple

of substitution edge lengths.

B. The relative gain and loss rates are the same for all gene families, but change on edges

leading only to parasites. Figure 1b applies to all gene families.

C. A mixture model in which the relative gain and loss rates change for some but not all

gene families on the edges leading only to parasites. Major category 1 is the subset

of dispensable gene families in parasites. Major category 0 contains all other gene

families. Some gene families evolve according to Figure 1a, and some according to

Figure 1b.

D. The same relative gain and loss rates for all edges, but some gene families are every-

where gained and lost faster than others. This is model A with gamma rate variation,

and is equivalent to model M2+Γ in Cohen et al. (2008), except that we estimate edge

lengths.

E. The relative gain and loss rates change for all gene families on edges leading only to

parasites, and in addition some gene families are everywhere gained and lost faster

than others. This is model B with gamma rate variation.

F. A mixture model in which the relative gain and loss rates change for some (major

category 1) but not all gene families on the edges leading only to parasites, and in

addition some gene families are everywhere gained and lost faster than others. This is

model C with gamma rate variation.
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Table 1 summarizes these models and their parameters. Previous work leads us to expect

that models with gamma rate variation will fit better than models without (Cohen et al.,

2008; Hao and Golding, 2008). For comparing models with and without gamma rate variation

(A with D, B with E and C with F), we use the likelihood ratio statistic

2Λ = 2(l1 − l0)

where l1 is the log likelihood for the more complicated of a pair of nested models, and l0 is

the log likelihood for the simpler model of the pair. 2Λ ∼ 0.5χ2
0 +0.5χ2

1 under the hypothesis

of no gamma rate variation (Self and Liang, 1987; Ota et al., 2000).

Our main interest is in establishing whether there is a rate shift in edges leading to para-

sites, and whether this rate shift applies to all genes or only a subset. Standard asymptotic

theory does not apply to likelihood ratios between mixture models with different numbers

of components (e.g. comparing F with D or E), for two reasons. The null hypothesis (that

one of the components has mixing probability zero) is on the boundary of the parameter

space, and the parameters of the absent component are not identifiable under the null hy-

pothesis (Chen et al., 2001). Modified likelihood ratio statistics have been developed whose

null distribution is known for models with one parameter per component in addition to the

mixing probabilities (Chen et al., 2001). These modified likelihood ratio methods have not

yet been extended to models with multidimensional parameters in each component. Another

possibility is an extension of the C(α) procedure (Lindsay, 1995, pp. 68-73), which tests a

one-component model against any nearby alternative with more than one component. These

methods would be worth pursuing in future. However, for this application we use the con-

ceptually simple but computationally intensive parametric bootstrap method to estimate the

null distribution of the likelihood ratio statistic (McLachlan, 1987). We generate K replicate

simulated data sets under the simpler of a pair of nested models, fit both the simpler and

the more complex models, and obtain the likelihood ratio statistic for each replicate (we

use the true parameters for the simpler model as starting conditions). The p-value can be

estimated as the proportion of bootstrap replicates having test statistics at least as large as

the observed value.
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Data

Our primary dataset is the set of all 50 bacterial genomes in the COG database (Tatusov

et al., 1997). This contains 4873 gene families, of which 929 were discarded under the

assumption that observability requires presence in at least three genomes in the subset of

data being analyzed (Supplementary Material). For these 50 genomes, we downloaded 16S

rRNA sequence alignments from the Ribosomal Database Project release 9.57 (Cole et al.,

2007). We then estimated a maximum likelihood tree using PHYML version 2.4.4 (Guindon

and Gascuel, 2003) with the general time-reversible model of nucleotide evolution and four

gamma rate categories. We rooted the tree between the firmicutes and all other bacteria.

Deep branching of firmicutes is supported by analysis of 191 concatenated genes in taxa from

across the tree of life (Ciccarelli et al., 2006), and is plausible (Koch, 2003) although not

universally accepted.

We used Bergey’s Manual of Systematic Bacteriology (Bergey, 1984; Garrity, 2005) to

identify the following twelve taxa as parasites/endosymbionts with limited metabolic capa-

bilities: Mycobacterium leprae, Buchnera sp. APS, Rickettsia prowazekii, Rickettsia conorii,

Chlamydia trachomatis, Chlamydia pneumoniae CWL029, Treponema pallidum, Borrelai

burgdorferi, Ureaplasma urealyticum, Mycoplasma pulmonis, Mycoplasma pneumoniae, My-

coplasma genitalium (Figure 2). Assignments were based on explicit reference in Bergey’s

Manual to an obligate intracellular lifestyle, failure or great difficulty to cultivate in tissue

culture or artificial medium, or other evidence of reduced metabolic abilities.

Effects of tree topology

To explore the effects of tree topology, we also estimated the three models that included

gamma rate variation (D, E, and F) on a tree topology based on a conditioned logdet method

(Spencer et al., 2007) applied to the COG gene content data (Supplementary Material).

In common with other topologies based on models of gene gain and loss, this topology

contains the artefactual parasites clade (Figure 3). If our mixture model is a good enough

representation of the process of gene family gain and loss, we would expect that this incorrect

topology would have a worse log likelihood for model F, but a better log likelihood for models

D and E, which do not account for heterotachy in parasite gene loss. Using a second topology

also lets us see how sensitive our parameter estimates are to tree topology.
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Results and Discussion

We first examine the results of fitting all six models on the 16S topology. In all cases, models

with gamma rate variation have significantly better likelihoods than models without (Table

1, models A vs. D, B vs. E, C vs. F, likelihood ratio tests with null distribution 0.5χ2
0+0.5χ2

1,

p < 1e − 16 in all cases). In conjunction with previous results (Cohen et al., 2008; Hao and

Golding, 2008), this is strong evidence that there is variation among gene families in the rate

of gain and loss.

Model E is significantly worse than model F (Table 1, 2Λ = 116, with only two extra

parameters in model F). Of 99 bootstrap replicates, none had test statistics greater than the

observed value (p < 0.01; the largest bootstrapped likelihood ratio statistic was 7.6). These

replicates included four cases in which model F was apparently trapped in a local optimum

and had a substantially worse log likelihood than model E (by up to 4.6 log likelihood units),

but re-estimating these cases from different starting conditions could not make any difference

to our qualitative conclusion. Model D is also significantly worse than model F (Table 1, 2Λ =

3121, with three extra parameters in model F). Of 99 bootstrap replicates, none had test

statistics greater than the observed value (p < 0.01; the largest bootstrapped likelihood ratio

statistic was 17.4). We therefore select model F. We have strong evidence that some but not

all gene families have an accelerated loss rate in the edges leading to parasites, and that some

gene families also have faster gain and loss rates everywhere than others. Unlike variation

in genome size, this form of heterotachy is not handled by methods such as conditioned

logdet, and may therefore be responsible for the failure of conditioned logdet methods to

give a correct phylogeny (Spencer et al., 2007). One way to deal with this problem would be

to partition gene families into categories using empirical Bayes (Supplementary Material),

and calculate conditioned logdet distances separately for each category. Simulation studies

showed that we can estimate parameters and assign categories with reasonable accuracy

under model F, although very rare categories are problematic (Supplementary Material).

In model F, the ratio of gain to loss rates is 5.90 in gene families that are not dispensable

in parasites, and on the non-parasite edges (thin edges coloured black in Figure 2) for

dispensable genes. For dispensable genes on parasite edges (thick edges coloured red in

Figure 2), the ratio of gain to loss rates falls to 0.08. This is a substantial change in genome

dynamics. It is widely believed that genome reduction in parasites and endosymbionts affects
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some but not all kinds of genes (Boussau et al., 2004). However, ours is the first study to

test this hypothesis using a probabilistic model of genome dynamics.

The marginal probability of gene family absence at the root is
∑C

v=1 ρvπROOT(0, v) = 0.92

for model F. This is consistent with the idea that the ancestral bacterium had a small rather

than a large genome (although we do not know exactly how small, unless we can calculate

the total number of gene families to which the marginal probability of gene family absence

applies). Furthermore, the probability of absence at the root is much higher for gene families

that are dispensable in parasites (93%, Table 1) than for those that are not dispensable in

parasites (58%, Table 1). This makes biological sense. We would expect that many of the

gene families that are not dispensable in parasites are required by all bacteria.

Our model D is the same as model M2+Γ in Cohen et al. (2008), except that we estimate

each edge length, while Cohen et al. (2008) assume that edge lengths are proportional to

protein substitution edge lengths, and estimate the constant of proportionality. However,

their parameter estimates are quite different from ours. Biologically, their estimates imply

a relatively large ancestral genome, with a tendency for the number of gene families to

decrease towards the leaves of the tree (Table 2, row M2+Γ). Our estimates (both for model

D and for the best-fitting model F) imply the opposite (except for the parasites in model

F). Our results are not directly comparable because we used different subsets of the COG

database and different tree topologies. To obtain a directly comparable result, we re-fitted

model D using the parameters from Cohen et al. (2008) as a starting point. We used both

our estimated edge lengths from model D (Table 2, row D1) and the 16S substitution edge

lengths (Table 2, row D2). We found two local optima, both with the same qualitative

pattern as Cohen et al. (2008), but with much worse log likelihoods than our original fit of

model D. Non-stationary models for gene content data may be particularly prone to local

optima, because loss from a large ancestral genome and gain from a small ancestral genome

can generate similar distributions of genome size. However, unless there is another, much

better, local optimum with a large ancestral genome which we have not located, there is

strong evidence that the ancestral genome was small rather than large.

This agrees with the idea that the last universal common ancestor had a small genome

(Koonin, 2003). Previous studies of ancestral genome size have used parsimony, which

requires an ad-hoc choice of relative weights for gain and loss events (e.g. Snel et al., 2002;
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Kunin and Ouzounis, 2003; Mirkin et al., 2003). Because different weights give different

results, parsimony studies cannot provide a definitive answer, and the idea of a large universal

common ancestor genome has supporters (Castresana, 2001). It has been suggested that

Occam’s razor should lead us to assume that ancestral genomes were of similar size to extant

genomes (Dagan and Martin, 2007). We can then choose rules for gain and loss events that

give ancestral genomes of the right size. Dagan and Martin (2007) used this approach to

estimate the proportion of gene families that have experienced lateral gene transfer. Whether

this assumption is plausible must depend on how far back in time we look. For example, it

seems unlikely that the very first genome would have been of similar size to extant genomes.

This is an interesting approach, and it might be possible to do something similar in a model-

based method, by using informative priors on ancestral genome sizes. In summary, model-

based studies of genome evolution have the potential to resolve the problem of ancestral

genome size, but more remains to be done.

More complex models have larger values of the gamma shape parameter α, and thus less

rate variation among gene families (Table 1, models D, E, and F). This is probably because

rate variation over time in the more complex models can accommodate some of the patterns

that would otherwise need to be explained by rate variation among gene families.

For model F, the mean ratio of estimated edge lengths under model F to 16S edge lengths

(excluding two zero-length edges in the 16S tree) was 1.37 (standard deviation 4.28). Thus,

the rate of gene family gain and loss is of the same order of magnitude as the rate of 16S

substitutions. 16S edge lengths are not very strongly associated with gene family gain and

loss edge lengths (correlation 0.41). A previous study found weaker correlations between

substitution edge lengths and estimated numbers of gene family gains and losses (Boussau

et al., 2004). However, their estimates were based on parsimony reconstructions of gains and

losses, which will not be reliable if there were multiple gains and losses on some edges. Edges

for which the expected ratio of gene family gains and losses to substitutions is very different

from the mean may be of biological interest. For example, parsimony reconstructions suggest

a high frequency of gene family loss relative to nucleotide substitutions on edges leading to

intracellular bacteria (Boussau et al., 2004).

Contrary to our expectations, models D, E, and F all had better log likelihoods on the

conditioned logdet tree, which has an artefactual parasites clade (Table 1). This probably
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means that none of our models is a good enough representation of the changes in genome

dynamics associated with a parasitic lifestyle. Parameter estimates for these three models

with the conditioned logdet tree were qualitatively similar to those obtained from the 16S

tree (Table 1), with the exception of the exception of a much lower root probability of absence

in major category 0 for model F fitted to the conditioned logdet tree. This parameter may

be hard to estimate because so few gene families are in this category. In general, it does

not seem as though having the correct tree topology is essential for parameter estimation.

The improvements in log likelihood when using the conditioned logdet tree over the 16S

tree are large, but decrease with increasing model sophistication (2Λ = 3330 for model D,

1416 for model E, and 1314 for model F). Furthermore, the improvement in log likelihoods

between models E and F is much smaller for the conditioned logdet tree (2Λ = 14) than

for the 16S tree (2Λ = 116). This suggests that when estimated on the more plausible 16S

tree, heterotachy is needed to account for the similarities in gene content among widely-

separated parasites. On the conditioned logdet tree, heterotachy is much less important

because similarities in gene content among parasites can be explained by recent common

ancestry. Overall, we do not yet have an adequate model of gene family gain and loss, but

our mixture model is a substantial improvement over earlier models.

Conclusion

The variable success of gene content phylogenies so far has been attributed to the lack of

realistic models of genome dynamics (McInerney, 2006). Our work has provided strong

evidence that changes in the relative rates of gain and loss occur for some but not all gene

families in parasitic bacteria. Attempts to estimate phylogenies from gene content data

are likely to fail unless they take account of this heterotachy. However, more sophisticated

models may be needed in order to get the right topology from gene content data. We may

simply need more different categories of gene families. Our software can estimate much

more complex models than the ones we considered here, but the structure of these models

should be informed by biology, and we need to show that their parameters can be reliably

estimated from real data. We might also need to further relax our assumptions about rates

of gene gain and loss. Our current models are non-stationary, but all parasite lineages
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have one equilibrium genome size, and all non-parasites have another. Conditioned logdet

methods were developed to avoid restrictive assumptions about equilibrium genome size

(Lake and Rivera, 2004), but are not able to deal with rate variation among gene families.

Generalizations of covarion models (Whelan, 2008) with switching between several classes

of equilibrium genome size might be useful. There has been some progress in combining

models of gene gain and loss with models of sequence evolution (Arvestad et al., 2004). As

yet, these models have only a simplistic gain and loss component, but in future, they may

be useful for topology estimation.

Alternatively, there may be relatively little information about the ancestry of parasites

in gene family presence/absence data (Ed Susko, personal communication). Only a small

proportion of gene families are present in parasites, and absences are not very informative,

because most gene families are absent from most genomes. Among those that are present in

parasites, there are many gene families in common, so that grouping the parasites together

will always be a fairly good explanation for the observed pattern.

Models of gene family gain and loss may be more useful for understanding genome dy-

namics than for topology estimation, especially as most parameter estimates do not seem

not very sensitive to tree topology. Potential applications of the models we have described

include modelling the evolution of plastid genomes, identifying gene families with unusual

gain and loss patterns, and probabilistic reconstructions of ancestral genomes. Probabilistic

models are important because existing studies of genome dynamics often depend on parsi-

mony with ad-hoc choices of gain and loss penalties. There are two major problems with the

parsimony approach. First, when there are large numbers of gene family gains and losses

(which seems likely, given that our estimates suggest rates comparable to those of nucleotide

substitutions), parsimony reconstructions are unlikely to be reliable. Second, without a

probabilistic model of evolution, it is difficult to test hypotheses about how evolution works.

The modelling framework that we and others (e.g. Cohen et al., 2008; Hao and Golding,

2008) have used addresses both of these problems.

Supplementary Material

Details of methods and simulation results.
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Table 1: Log likelihoods and parameter estimates for six gene family gain and loss models fitted to 50 COG bacterial genomes.

Topologya Modelb lc md πQ(0, 0)e πQ(0, 1) πROOT(0, 0)f πROOT(0, 1) µ0
g αh

16S A -71191 2 0.44 (0.004)i - 0.89 (0.005) - - -

B -67238 3 0.34 (0.003) 0.95 (0.001) - 0.82 (0.006) - -

C -66560 5 0.35 (0.003) 0.96 (0.001) 0.19 (0.058) 0.89 (0.006) 0.09 (0.007) -

D -66359 3 0.04 (0.001) - 0.97 (0.003) - - 0.51 (0.009)

E -64857 4 0.14 (0.003) 0.91 (0.003) - 0.92 (0.004) - 0.70 (0.023)

F -64799 6 0.14 (0.003) 0.93 (0.003) 0.58 (0.062) 0.93 (0.005) 0.04 (0.005) 0.73 (0.026)

Conditioned logdet D -64694 3 0.03 (0.001) - 0.96 (0.003) - - 0.52 (0.011)

E -64149 4 0.08 (0.002) 0.84 (0.005) - 0.93 (0.004) - 0.67 (0.021)

F -64142 6 0.07 (0.002) 0.85 (0.005) 0.03 (0.01) 0.94 (0.004) 0.01 (0.002) 0.67 (0.021)

aModels D to F are estimated on two different tree topologies: one derived from 16S sequence data, and one from conditioned logdet distances based on gene

content data.
bModels as follows. A: no rate shift. B: rate shift in all gene families. C: categories with and without rate shift. D: no rate shift, gamma rate variation. E: rate

shift in all gene families, gamma rate variation. F: categories with and without rate shift, gamma rate variation.
cLog likelihood.
dNumber of parameters (excluding the 98 edge lengths on the rooted tree which must be estimated for all models).
eπQ(0, i) is the stationary probability of gene family absence in rate matrix i, where i = 0 is the rate matrix used throughout major category 0 and on all edges

except those leading only to parasites in major category 1. Rate matrix i = 1 is used only on edges leading only to parasites in major category 1.
fπROOT(0, j) is the probability of gene family absence at the root in major category j.
gMixing probability for major category 0.
hShape parameter for gamma rate variation.
iApproximate standard errors in parentheses for all parameters.

18



Table 2: Local optima for model D.

Modela lb πQ(0, 0)c πROOT(0, 0)d αe

M2+Γ - 0.87 0.15 0.64

D1 -70714 0.86 0.27 0.75

D2 -66594 0.92 0.30 0.76

D -66359 0.04 0.97 0.68

aEach row is a local optimum for model D, obtained from different starting conditions. The row M2+Γ contains the parameter estimates from Cohen et al. (2008).

D1 used the parameters from M2+Γ and the edge lengths we obtained for model D (table 1) as starting conditions. D2 is the same, except that 16S edge lengths were

used as starting conditions. D is our original fit of model D.
bLog likelihood.
cStationary probability of absence in rate matrix 0.
dProbability of absence at the root in category 0.
eShape parameter for gamma rate variation.
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Figure legends

Figure 1. Mixture model for gene loss in parasites. Parasites are leaves labelled P on a

rooted tree. We assume that there are two major categories of genes: (a) those that have the

same relative rates of gain and loss (Q0) everywhere; and (b) those that have a different set

of gain/loss parameters (Q1) on the dashed edges leading exclusively to parasitic genomes.

The edge lengths are the same for both categories.

Figure 2. Estimated edge lengths for the 16S topology under model F (Table 1) for the

COG data. Edges leading only to parasites/endosymbionts are shown as thicker red lines.

Parasites/endosymbionts are indicated by circles and bold genome names. Edge lengths are

in expected numbers of gains and losses per gene family at stationarity. Tree drawn using

Dendroscope (Huson et al., 2007).

Figure 3. Estimated edge lengths for the conditioned logdet topology under model F

(Table 1) for the COG data. Edges leading only to parasites/endosymbionts are shown as

thicker red lines. Parasites/endosymbionts are indicated by circles and bold genome names.

Edge lengths are in expected numbers of gains and losses per gene family at stationarity.

Tree drawn using Dendroscope (Huson et al., 2007).
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