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Appendix

Edge lengths and rate matrix scaling

For a continuous-time Markov process with a rate matrix such as

Q =





−q01 q01

q10 −q10





the transition probabilities P(t) over any non-negative time t (the length of an edge on the

tree) are in general given by the matrix exponential

P (t) = eQt (1)

(Norris, 1997, Theorem 2.1.1). For two-state models, it is straightforward to calculate the

transition probabilities analytically (Kijima, 1997, pp. 177-178). However, Equation 1 makes

it clear that in general, Q and t are not identifiable. Multiplying Q by a constant c and

dividing t by the same constant does not change the transition probabilities. It is therefore

conventional to multiply Q by a constant so that the expected number of events per unit

time at stationarity is 1, in other words

−
s

∑

i=1

πQ(i)qii = 1 (2)

where the summation is over all s possible states (in this case, absence and presence). For a

two-state model, there is one free parameter, which can be expressed as πQ(0) = q10/(q01 +

q10). Edge lengths are then the expected number of events in a stationary model. In a

nonstationary model the edge lengths do not have this interpretation (Yang and Roberts,

1995), but the scaling is convenient for identifiability. We therefore scale all rate matrices

using Equation 2, so that there is a common set of edge lengths for all categories. More

general models could allow different edge lengths for different categories of genes, at the

expense of more parameters.

Likelihood calculation

Consider an edge such as bc in Figure 1. Deleting bc divides the tree into two subtrees,

an upper subtree containing the root, and a lower subtree. We define the lower subtree

conditional likelihood L
(j)
i,lower,bc,v as the likelihood under evolutionary category v for gene
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family i on the lower subtree for edge bc, conditional on state j at c. Similarly, the upper

subtree conditional likelihood L
(j)
i,upper,bc,v is the likelihood under evolutionary category v for

gene family i on the upper subtree at bc, conditional on state j at b (Boussau and Gouy,

2006).

In the standard pruning algorithm (Felsenstein, 1981), we initialize the lower subtree

conditional likelihoods L
(j)
i,lower,kl,v on terminal edges kl. For gene family i under evolutionary

category v, conditional on state j at leaf k,

L
(j)
i,lower,kl,v =















1 xik = j

0 xik 6= j

where xik is the presence/absence state of gene family i in the genome at leaf k. We can

then traverse the tree in postorder to calculate the lower subtree conditional likelihoods for

internal edges. For a vertex b with descendants c and d (Figure 1)

L
(j)
i,lower,ab,v =

s
∑

k=1

pjk,v(tbc)L
(k)
i,lower,bc,v

s
∑

h=1

pjh,v(tbd)L
(h)
i,lower,bd,v (3)

where the summations are over the s possible states and pij,v(t) is the transition probability

from state i to state j in time t under evolutionary category v.

At the root (for example, vertex a in Figure 1, with immediate descendants b and e),

we sum over states weighted by their probabilities at the root to get the full gene family

likelihood Li,v for category v:

Li,v =
s

∑

j=1

πj,v

s
∑

k=1

pjk,v(tab)L
(k)
i,lower,ab,v

s
∑

h=1

pjh,v(tae)L
(h)
i,lower,ae,v (4)

In a stationary model, πj,v is the stationary probability of state j in evolutionary category

v. We can reroot the tree at any vertex and calculate the likelihood using Equation 4,

substituting in the appropriate edge and vertex labels. Because pjk,v(tab) is the only term in

Equation 4 that depends on tab, we do not need to recalculate the lower subtree likelihoods

in order to optimize tab (or any other edge, once we have rerooted at a vertex at one end of

the edge).

If the model is not stationary (as ours is not, because the rate matrices on different edges

may not have the same stationary probabilities), we cannot use the approach described above

to optimize edge lengths. Instead, Boussau and Gouy (2006) showed that we can calculate
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the likelihood using the lower and upper subtree conditional likelihoods on any edge, for

example

Li, v =
s

∑

j=1

L
(j)
i,upper,bc,v

s
∑

k=1

pjk,v(tbc)L
(k)
i,lower,bc,v (5)

The upper subtree conditional likelihoods can be calculated recursively. For example,

L
(j)
i,upper,bc,v =

s
∑

h=1

phj,v(tab)L
(h)
i,upper,ab,vz

(j)
bd (6)

where

z
(j)
bd =

s
∑

m=1

pjm,v(tbd)L
(m)
i,lower,bd,v (7)

The upper subtree conditional likelihoods at the root are needed to initialize the recursion,

for example,

L
(j)
i,upper,ab,v = πROOT(j, v)

s
∑

k=1

pjk,v(tae)L
(k)
i,lower,ae,v (8)

where the root probabilities πROOT(j, v) of each state j in each category v are parameters

(Boussau and Gouy, 2006). Thus after a postorder traverse down to the root in which we

calculate the lower subtree conditional likelihoods, we can do a preorder traverse, during

which we calculate the upper subtree conditional likelihoods. Since pjk,v(tbc) is the only

term in Equation 5 that depends on tbc, we can optimize tbc without recalculating the upper

and lower subtree conditional likelihoods. Identifiability of the edge lengths adjacent to the

root depends on the arrangement of rate matrices. For example, if in all categories, the rate

matrix is the same for the left and right edges at the root, and the state probabilities at

the root are the stationary probabilities in each category, then only the sum of these edge

lengths will be identifiable.

To obtain the full likelihood Li for a gene family, we sum up the likelihoods for each

category v for that gene family, weighted by the category probabilities ρv,

Li =
C

∑

v=1

ρvLi,v (9)

where we have C categories, and
∑C

v=1 ρv = 1. We parameterize the category probabilities

as follows. Each category v corresponds to major category u (u ∈ {0, 1} for the models we

consider here) and rate class ν ∈ {0 . . . k − 1}. Let µu be the probability of major category

u (which we estimate, subject to the constraint
∑

µu = 1). Within each major category,

we have k equiprobable rate classes, with rate multipliers obtained from a discrete gamma

distribution. Then ρv = µu/k.
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Finally, under the assumption that all gene families are independent, the log likelihood l

for all n gene families is

l =
n

∑

i=1

log Li (10)

Conditioning on observability

If some patterns are not observable, we should calculate the gene family likelihood conditional

on a pattern being observable, L+
i .

L+
i =

Li

1 − L−

i

(11)

where L−

i is the likelihood of unobservable patterns for gene family i (Felsenstein, 1992). If

we have multiple categories, substituting Equation 9 into Equation 11 gives

L+
i =

Li

1 − L−

i

=

∑C

v=1 ρvLi,v

1 −
∑C

v=1 ρvL
−

i,v

(12)

where L−

i,v is the likelihood of unobservable patterns for gene family i conditional on cate-

gory v. Similar conditional likelihood calculations are implemented in the intron gain and

loss model in Csűrös et al. (2008) and the restriction site model in MrBayes (Ronquist and

Huelsenbeck, 2003). If we have n independent gene families, and the likelihood of unob-

servable patterns is the same for all gene families, then the conditional log likelihood l+

is

l+ =
n

∑

i=1

log Li − n log(1 − L−

i )

(Felsenstein, 1992).

It is common to assume that L−

i is the likelihood of the pattern with absence at all leaves

(e.g. Zhang and Gu, 2004; Hao and Golding, 2006; Cohen et al., 2008; Hao and Golding,

2008). However, this is not always exactly right. For example, in the COG database,

orthologs are identified by three-way patterns of sequence similarity among genomes (Tatusov

et al., 1997), so a gene family does not appear in the COG database unless it occurs in at

least three genomes. For cases where a number of patterns are unobservable, each such

pattern is a disjoint event, so we sum over unobservable patterns to get L−

i :

L−

i =
∑

j∈U

Lj−
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where U is the set of unobservable patterns, and Lj− is the likelihood of the jth unobservable

pattern. There is an additional complication if we are working with only a subset of the

genomes used to construct a database. Some patterns are observable in the subset that

would not be observable if extra genomes had not been used to construct the database. We

have not attempted to calculated the correct conditional likelihoods for all gene families

in these cases. Instead, we discard any gene family not meeting the observability criteria

(e.g. presence in at least three genomes for COG) within the subset. The result is correct

conditional likelihoods for those gene families that we use, at the cost of throwing away some

data. For simplicity we drop the notation indicating whether we are working with likelihoods

conditional on observability in the following sections, as this has no effect on the algorithms.

Parameter estimation

We estimate edge lengths one at a time using a golden section method (Press et al., 1992,

section 10.1), which is simple and robust. We optimize first the left and then the right

descendant edge at each vertex in preorder, using the decomposition in Equation 5 and the

algorithm in Figure 2. After changing the descendant edges at a vertex, we need to recalculate

the upper subtree likelihoods for the entire tree. This means that optimizing the pair of

descendant edges at each vertex requires a full postorder traversal and a partial preorder

traversal. There is scope for a more efficient algorithm, but the current implementation is

fast enough for our needs.

We use either a Nelder-Mead simplex method (Nelder and Mead, 1965) or a BFGS quasi-

Newton method (Nocedal and Wright, 1999, section 8.1) to estimate the other parameters

(both implementations from the Gnu Scientific Library version 1.8-2, http://www.gnu.org/

software/gsl/). The results we report here are from the BFGS method. In test cases, we

obtained similar parameter estimates from both methods, but the simplex method gave

slightly worse likelihoods. The default starting conditions were the edge lengths from the

16S tree, stationary probabilities of absence 0.5, root probabilities of absence 0.5, mixing

probability of major category 0 0.5 (where applicable) and gamma shape parameter 1 (where

applicable). In most models there was evidence of local optima, so we used the best result

from multiple starting conditions (the default values, starting conditions close to the current

estimates from the next most complex model, and starting conditions close to the estimates
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from the best current model).

In both cases, we use transformations to turn the constrained optimization into an un-

constrained problem. We log-transform the relative gene loss rates q10,v/q01,v and the shape

parameter α to ensure that they remain positive. We use a logistic transformation of the root

probabilities of state 0, πROOT(0, v) to keep them within [0, 1]. We reduce the dependent,

constrained mixing probabilities for the M major categories to a set of M − 1 independent,

unconstrained parameters ζv = log(µv/µM), v = 1 . . . M − 1 (Bickel and Doksum, 2001,

p. 55). We alternate between edge length and other parameter optimization until the log

likelihood converges.

We report approximate standard errors for the parameters other than edge lengths, ob-

tained by treating the edge lengths as fixed. This will underestimate the uncertainty in the

other parameters, but including the large number of edge lengths would probably lead to

numerical instability. We obtain a numerical estimate G of the Hessian matrix of second

derivatives of the log likelihood with respect to the transformed parameters. Then the Hes-

sian H for the untransformed parameters is H = J′GJ, where J is the Jacobian matrix

of derivatives of transformed parameters with respect to untransformed parameters (Chris-

tensen et al., 2008). The covariance matrix Σ for the untransformed parameters is estimated

as Σ = −H−1 (Bickel and Doksum, 2001, p. 386), and the standard errors are the square

roots of the diagonal elements of Σ.

Empirical Bayes estimation of posterior category probabilities

We use an empirical Bayes method (Garthwaite et al., 2002, section 7.8) to estimate the

posterior probability P (ci = v|D) that the category ci to which a gene family i belongs is

v, conditional on the data D. Given the maximum likelihood estimates ρ̂j of the mixing

probabilities for each category j

P (ci = v|D) =
ρ̂vLi,v

∑C

j=1 ρ̂jLi,j

where the likelihoods are maximized with respect to all the model parameters. Our estimate

of the category to which a gene family belongs is the category with maximum posterior

probability. We are ignoring the uncertainty in the ρ̂j. The same method is used to identify

sites under positive selection in codon models (Nielsen and Yang, 1998).
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Implementation

We implemented the models described above in C, together with a simulator. The source code

is available from http://www.liv.ac.uk/∼matts/genecontent.html under the Gnu Public

License, along with data and examples. The software allows arbitrarily complex specification

of major categories and patterns of rate change across the tree within each major category,

although we have not investigated the performance of models more complicated than the

ones described here.

Our results were obtained on a 3GHz Intel Xeon processor with 4G RAM running 32-

bit Debian Etch linux (kernel 2.6.18-6-686). For the COG data, parameter estimation took

2-293 minutes, depending on the model. For parametric bootstrap tests and the simulation

study described below, we compiled our code under Cygwin (http://www.cygwin.com/) and

used a Condor high throughput computing system (http://www.cs.wisc.edu/condor/) to

distribute replicates among idle PCs running Windows XP at the University of Liverpool.

Simulation study

We also did a simulation study to see whether we could accurately estimate parameters and

assign gene families to categories under the most complex model, model F. We generated 100

data sets, each containing 3944 gene families present in at least three genomes (as in the real

COG data). We used the estimated parameters and edge lengths for model F fitted to the

COG data set (main text, table 1). For each simulated data set, we estimated parameters

under model F using the same settings as were used for the real data, except that we only

used the default starting conditions.

With the exception of the root probability of absence in major category zero and the

gamma shape parameter, the mean estimated parameters from simulated data sets were close

to their true values (Table 1). However, the true values of all the parameters other than

the stationary probability of absence in rate matrix 0 and the shape parameter lay outside

the approximate 95% confidence intervals from the simulation study (mean ± 2 standard

errors), suggesting small-sample biases in the parameter estimates. The only parameter for

which this bias may be relatively large is the root probability of absence in major category

0. It may be difficult to estimate this parameter because there are relatively few genes in

this category.
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For each replicate, we also have an estimate of the standard error for each parameter

obtained by inverting the Hessian. We would expect these standard errors to underestimate

the true uncertainty, because they ignore uncertainty in edge lengths. The worst case was for

the stationary probability of absence in major category zero, where the mean of the standard

errors obtained by inverting the Hessian was only 0.07 times the standard error obtained by

direct calculation from the distribution of estimates over 100 replicate data sets. In all other

cases, the mean of the standard errors obtained by inverting the Hessian was at least 0.46

times the standard error obtained by direct calculation. Overall, standard errors that ignore

uncertainty in edge lengths should be interpreted very cautiously.

Using the default starting conditions, the edges leading to Buchnera sp. APS (in all

replicates) and Ralstonia solanacearum (in 10 out of 100 replicates) were estimated at 100

(the largest allowed edge length), suggesting problems with local optima. In the real data,

we observed similar problems for some data sets when starting from the 16S edge lengths,

but not when starting from other sets of edge lengths (and not at all in the final results

reported in the main text, Table 1). Excluding these two edges in replicates for which these

problems occurred, the relationship between true and estimated edge lengths had intercept

0.0001 (standard error 0.0001), slope 1.10 (standard error 0.003) and R2 = 0.92. Thus, edge

lengths were in general estimated accurately, although there was a tendency for the lengths

of long edges to be overestimated. Again, this may be due to finding local rather than

global optima. When we ran the same kind of simulation but started the optimization with

edge lengths at their true values, the relationship between true and estimated edge lengths

had intercept −8.51× 10−5 (standard error 4.87× 10−5) and intercept 1.001 (standard error

9.29 × 10−4), and there were no estimated edge lengths of 100.

Over all simulated data sets, the maximum posterior probability category was the true

category for 71% of gene families. Category assignments were least reliable for rate classes

1 and 2 in major category 0, and most reliable for major category 1, which made up most of

the observable gene families (table 2). Identification of major categories was reliable, with

95% of gene families assigned to the correct major category. This is partly because almost all

observable gene families were in major category 1 (dispensable in parasites), and almost all

of these were assigned to major category 1 (table 3). Although 66% of the observable gene

families that were not dispensable in parasites (major category 0) were correctly assigned, the
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specificity of assignment to major category 0 was low. Only 50% of gene families that were

assigned to this category truly belonged to it. In summary, we found acceptable accuracy of

category assignments, and good accuracy of major category assignments.

Conditioned logdet tree estimation

We estimated conditioned logdet distances from the COG gene content data (Tatusov et al.,

1997), for each possible choice of conditioning genome (Spencer et al., 2007). The maxi-

mum likelihood estimates of some pairwise distances were non-existent, when the determi-

nant of the pattern probability matrix was zero or negative. For these distances, we used

a constrained maximum likelihood and pseudocount method (A. Sangaralingam et al., in

preparation). This was implemented as the -eI option in the program cond_logdet 0.3,

available from http://www.liv.ac.uk/∼matts/genecontent.html under the Gnu Public

License. We combined distances from each choice of conditioning genome using a modified

version of BIONJ (Gascuel, 1997) and inverse variance weighting (Spencer et al., 2007). This

produces an unrooted supertree without edge lengths. We therefore initialized all the edge

lengths for this tree at the mean of the edge lengths estimated under model F on the 16S

topology, and rooted the tree between firmicutes and all other bacteria, as for the 16S tree.

We used the default starting conditions when estimating parameters on this tree.
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Table 1: Means and approximate 95% confidence intervals for 100 replicate sets of parameters estimated under model F from simulated data

sets generated under model F.

Parameter True valuee Mean 95% CIf

πQ(0, 0)a 0.14 0.15 [0.08, 0.22]

πQ(0, 1) 0.93 0.92 [0.90, 0.93]

πROOT(0, 0)b 0.58 0.33 [0.22, 0.44]

πROOT(0, 1) 0.93 0.95 [0.94, 0.96]

µ0
c 0.04 0.06 [0.04, 0.07]

αd 0.73 0.83 [0.72, 0.93]

aπQ(0, i) is the stationary probability of gene family absence in rate matrix i, where i = 0 is the rate matrix used throughout major category 0 and on all edges

except those leading only to parasites in major category 1. Rate matrix i = 1 is used only on edges leading only to parasites in major category 1.
bπROOT(0, j) is the probability of gene family absence at the root in major category j.
cMixing probability for major category 0.
dShape parameter for gamma rate variation.
eEstimated from the COG data.
fMean ± two standard errors.
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Table 2: True (rows) and estimated (columns, estimated by maximum posterior probability) categories for 100 replicate simulations, each of

3944 observable gene families generated on the tree in the main text, figure 2, with parameters from model F fitted to the COG data (main

text, table 1).

True category Estimated category

Major categorya Rate classb Category 0 1 2 3 4 5 6 7 Proportion in true categoryc Proportion correctd

0 0 0 2060 147 124 2 321 329 2 0 0.007 0.69

0 1 1 1228 510 573 121 251 1729 423 4 0.01 0.11

0 2 2 523 498 1522 553 124 445 1550 146 0.01 0.28

0 3 3 86 122 650 3485 40 72 162 738 0.01 0.65

1 0 4 5106 1146 973 70 9861 9214 84 0 0.07 0.37

1 1 5 724 1128 1209 551 7482 67281 15967 191 0.24 0.71

1 2 6 20 183 508 508 778 30682 83147 10641 0.32 0.66

1 3 7 0 0 40 206 4 188 14012 113956 0.33 0.89

aMajor category 0 is gene families that are not dispensable in parasites, and major category 1 is gene families that are dispensable in parasites.
bRate classes are in increasing order of gain and loss rate.
cProportion of observable gene families that were in this true category.
dProportion of observable gene families in this true category for which the estimated category was correct.
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Table 3: True (rows) and estimated (columns, estimated by maximum posterior probability) major categories for 100 replicate simulations,

each of 3944 observable gene families generated on the tree in the main text, figure 2, with parameters from model F fitted to the COG data

(main text, table 1).

Estimated major

True majora 0 1 Proportion in true majorb Proportion correctc

0 12204 6336 0.05 0.66

1 12372 363488 0.95 0.97

aMajor category 0 is gene families that are not dispensable in parasites, and major category 1 is gene families that are dispensable in parasites.
bProportion of observable gene families that were in this true major category.
cProportion of observable gene families in this true major category for which the estimated major category was correct.
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Figure 1: A tree with vertices a . . . e and edges with weights tab . . . tae. The root is at a and

the triangles represent descendant subtrees.
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Figure 2: Algorithm for edge length optimization. We apply this to each vertex in turn, in

preorder.

1. Traverse the tree in postorder, storing z
(j)
bd (Equation 7) for each edge bd and each state

j at the vertex b closest to the root. Also store lower subtree conditional likelihoods

(Equation 3).

2. Initialize the upper subtree conditional likelihoods at the root using Equation 8.

3. Traverse the tree in preorder up to the vertex of interest (for example, b in Figure 1),

calculating upper subtree conditional likelihoods at each vertex using Equation 6.

4. Optimize the log likelihood as a function of the left descendant edge (e.g. tbc in Figure

1), using Equations 5, 9 and 10 and a golden section method.

5. Update the right upper subtree likelihood at the vertex of interest to account for the

optimized left edge.

6. Optimize the log likelihood as a function of the right descendant edge (e.g. tbd in Figure

1) in a similar way to the left edge.
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