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Summary

1.

 

Communities of competing sessile organisms are often modelled using Markov
chains. Sensitivity analysis of the stationary distribution of these models tells us how we
expect the abundance of each organism to respond to changes in interactions between
species. This is important for conservation and management.

 

2.

 

Markov models for such communities have usually been formulated in discrete time.
Each column of the discrete-time transition matrix must sum to 1 (column stochasticity).
Sensitivity analysis therefore involves defining a pattern of compensation that maintains
column stochasticity as a single transition probability changes. There is little biological
theory about the appropriate compensation pattern, but the usual choices involve
changing only the elements of a single column of the transition matrix.

 

3.

 

I argue that if  the underlying dynamics occur in continuous time, each transition
probability is the net outcome of direct and many indirect interactions.

 

4.

 

Determining the consequences of changing a single direct interaction will often be of
interest. I show how this can be achieved using a continuous-time model. The resulting
discrete-time compensation pattern is quite different from those that have been considered
elsewhere, with changes occurring in many columns.

 

5.

 

I also show how to determine which direct interactions are being changed under any
discrete-time compensation pattern.
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: competition, interspecific interactions, marine communities, stationary
distribution.
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Introduction

 

Most models of interspecific interactions do not work
very well for species-rich systems. Although the para-
meters of classical predator–prey models can be estimated
from time-series data (Harrison 1995), we often mis-
identify the system even in simple cases (Jost & Arditi
2000). For complex communities, we are often unable
to predict the qualitative effects of major perturbations.
For example, we cannot give precise answers to appar-
ently simple questions such as whether a seal cull will
increase the yield of a fishery (Yodzis 1998).

One exception is the case of multispecies Markov
models. These have been applied to communities of sessile
organisms such as trees, corals, mussels and sponges
(e.g. Usher 1979; Tanner 

 

et al

 

. 1994; Wootton 2001a;

Hill 

 

et al

 

. 2004). Their parameters are estimated easily
from field data, and they make surprisingly good pre-
dictions of the effects of species removals (Wootton
2001b). Markov models for communities of competing
sessile organisms assume typically that the state of the
community at a given point in space is defined by the
single species (or empty space) present at that point,
that the set of possible states is fixed and finite, and that
the future state at a point depends only on the present
state, not on states at any previous times.

These models have almost always been formulated in
discrete time. Their parameters are the conditional
probabilities of observing a species 

 

i

 

 at a point in space
at time 

 

T

 

 + 

 

t

 

, given that we saw species 

 

j

 

 at that point at
time 

 

T

 

. These parameters, known as transition prob-
abilities, cannot usually be interpreted as probabilities
that species 

 

i

 

 can directly replace species 

 

j

 

, because they
include the effects of indirect transitions. Unless it is
physically impossible for more than one transition to
occur in a unit of time, observing 

 

j

 

 at time 

 

T

 

 and 

 

i

 

 at
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time 

 

T

 

 + 1 does not rule out the possibility that 

 

k

 

 first
replaced 

 

j

 

, and was in turn replaced by 

 

i

 

 (Wootton 2001a).
This makes it difficult to predict how the system will
respond to changes in the direct interactions between
species. For example, suppose we increase the rate of
disturbances that remove living organisms, leaving
empty space. The probabilities of transitions to empty
space from all species will probably increase, but prob-
abilities of transitions from species 

 

i

 

 to species 

 

j

 

 via
empty space are also likely to increase. Because the dis-
crete-time model does not separate direct and indirect
transitions, it does not tell us how to deal with this
situation. Questions of this kind, known as sensitivity
analyses, are important to management and conserva-
tion, but we do not know how to answer them using
discrete-time Markov models. If one species may replace
another at any time, formulating the model in con-
tinuous time can solve this problem. The parameters of a
continuous-time Markov model are the instantaneous
rates of direct replacement of one species by another.
Unlike the discrete-time transition probabilities, these
rates can be interpreted as the intensities of direct inter-
actions between species. Using continuous-time
models, we can predict how an increase in the rate of one
kind of transition will affect the transition probabilities
observed over a given time interval, and thus determine
the consequences of changing only one direct inter-
action rate. Continuous-time Markov chains are rarely
used in community ecology (two exceptions are Cohen
& Singer 1979; Singer & Cohen 1980). In this paper, I
first describe the usual discrete-time models and list some
suggestions that have been made for doing sensitivity
analyses of these models. Next, I introduce continuous-
time models, describe some aspects of parameter esti-
mation and develop sensitivity analyses in continuous
time, showing how we can uniquely answer questions
about the effects of a change in one direct interaction
rate. I show how changing a single direct interaction
rate affects the discrete-time transition matrix, and
how we can calculate the pattern of changes in direct
interaction rates corresponding to a given change in
the discrete-time transition matrix. Different kinds of
sensitivity analysis involving a change in some focal
discrete-time transition probability are asking different
biological questions. I show that they can have quali-
tatively different answers. This is important, because
such methods have been used in a number of major
long-term ecological studies (Tanner 

 

et al

 

. 1994; Wootton
2001b; Hill 

 

et al

 

. 2004). Finally, I consider some possi-
bilities for the case where interaction rates vary over
time.

 

Discrete-time Markov chains

 

In discrete time, a Markov chain with 

 

s

 

 possible states
is defined by an 

 

s

 

 

 

×

 

 

 

s

 

 transition matrix 

 

P

 

(

 

t

 

), whose
entries 

 

p

 

ij

 

(

 

t

 

) are the conditional probabilities of observ-
ing state 

 

i

 

 at a point at time 

 

T

 

 + 

 

t

 

, given that the point
is in state 

 

j

 

 at time 

 

T

 

 [this convention is common in ecology,

but in many other fields the conditional probability of

 

i

 

 given 

 

j

 

 would be 

 

p

 

ji

 

(

 

t

 

)]. The 

 

P

 

(

 

t

 

) matrix is therefore
column-stochastic (each column sums to 1). Let 

 

x

 

(

 

T

 

)
be a column vector whose elements 

 

x

 

1

 

(

 

T

 

), 

 

x

 

2

 

(

 

T

 

), … ,

 

x

 

s

 

(

 

T

 

) are the probabilities of each state at some time 

 

T

 

.
Then 

 

x

 

(

 

T

 

) and 

 

x

 

(

 

T

 

 + 

 

t

 

) are related by:

 

x

 

(

 

T

 

 + 

 

t

 

) = 

 

P

 

(

 

t

 

)

 

x

 

(

 

T

 

) eqn 1

Here, in common with most other studies, I will focus
on homogeneous, linear Markov chains. Homogene-
ous means that the conditional probabilities of states at
time 

 

T

 

 + 

 

t

 

 given the state at time 

 

T

 

 do not vary with 

 

T

 

.
Linear means that the conditional probabilities do not
depend on the frequencies of states. Such models ignore
important features of the real world such as density
dependence and temporal variability in environmental
conditions, but can always be thought of as local
approximations (cf. Caswell 2001: 29–31).

 

Sensitivity of the stationary distribution in a 
discrete-time model

 

An important aspect of the study of a model is deter-
mining the consequences of changing the parameter
values. For example, most communities modelled by
eqn 1 asymptotically approach a stationary probability
distribution of states, given by the dominant right
eigenvector 

 

w

 

1

 

 of 

 

P

 

(

 

t

 

), normalized to sum to 1 (Hill 

 

et al

 

.
2004). I assume that the Markov chain is irreducible
(any state can be reached from any other, although not
necessarily in a single transition) and has a unique
stationary distribution. It will often be interesting to
know how this stationary distribution will change with
the transition probabilities 

 

p

 

ij

 

(

 

t

 

). Examining the deriv-
atives (sensitivities) of the stationary distribution with
respect to the 

 

p

 

ij

 

(

 

t

 

) is one way to do this. Applications
include finding management strategies that maximize
the amount of space filled by a native species, or mini-
mize the amount filled by an invader. Similar ideas can
be applied to other community properties (Hill 

 

et al

 

.
2004). Because the 

 

P

 

(

 

t

 

) matrix is column-stochastic, an
increase in 

 

p

 

ij

 

(

 

t

 

) must be compensated by a decrease in
one or more other elements in column 

 

j

 

. Let the com-
pensation pattern 

 

D

 

V

 

[

 

P

 

(

 

t

 

)]

 

(

 

ij

 

)

 

 be a matrix whose (

 

m

 

, 

 

n

 

)th
element  is the partial derivative of 

 

p

 

mn

 

(

 

t

 

)
with respect to 

 

p

 

ij

 

(

 

t

 

). Then the sensitivity of the stationary
distribution with respect to 

 

p

 

ij

 

(

 

t

 

) is:

eqn 2

(cf. Caswell 2001: 253, eqn 9·139). Caswell (2001: 253)
suggests several possibilities for 

 

D

 

V

 

[

 

P

 

(

 

t

 

)]

 

(

 

ij

 

)

 

, including:
• Specific compensation.  is 1. One element
in column 

 

j

 

 is 

 

−

 

1. I will consider the obvious choice,
element (

 

j

 

, 

 

j

 

). This means that increasing one of the
probabilities of leaving a state is compensated by decreas-
ing the probability of  staying in that state. All other
columns have only zeros.

    D Pv[ ( )]( )t mn
ij

    

d
dp t

t
p tij

mn
ij

mnm n

w
D P

w
V

1 1

( )
  [ ( )]

( )
( )

,

= ∑ δ
δ

D Pv[ ( )]( )t ij
ij
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• Uniform compensation.  is 1. All other
elements of column 

 

j

 

 are 

 

−

 

1/(s − 1). All other columns
have only zeros.
• Proportional compensation.   is 1. All other
elements (m, j) of column j are – pmj /(1 − pij). All other
columns have only zeros.

It is not usually obvious which pattern to choose.
One approach is to try several choices from the list above
and hope they give similar results (Hill et al. 2004). In the
following sections, I develop the alternative continuous-
time formulation, and show that changing a single in-
stantaneous rate can affect every column of P(t). This is
because the pij(t) are composites of direct and indirect
transitions, rather than independent parameters. I also
show how to determine the changes in direct interactions
corresponding to a given discrete-time compensation
pattern.

Continuous-time Markov chains

It is often reasonable to assume that transitions can
occur at any time. For example, if  organisms have long
breeding seasons, colonization may occur during a
large part of each year (Connell 1975: 477). Disturbances
such as storms could occur at any time, although they
might be more frequent at some times of year than others.
Overgrowth of one sessile organism by another is likely
to be possible at any time. Finally, if  the time step is
longer than a year, more than one event could happen
per time step even if  events are limited to particular
seasons. If  transitions may occur at any time, then the
homogeneous continuous-time analogue of eqn 1 is the
system of differential equations:

x′ = Qx eqn 3

where x′ is a vector of first derivatives with respect to
time and Q is a matrix of instantaneous rates. For a scalar
differential equation x′ = ax, the solution is x (t) = eatx(0),
where the scalar exponential is defined by the series:

eqn 4

Similarly, it can be shown that the solution of eqn 3 is:

x(t) = eQtx(0) eqn 5

where the matrix exponential is:

eqn 6

(e.g. Norris 1997: 62–63). Comparing eqns 1 and 5 sug-
gests that eQt must be the transition matrix P(t). We can
see from eqn 6 that for small t, P(t) ≈ I + Qt. The pij(t)
are conditional probabilities, which must be real and
between 0 and 1. Thus if  any of the off-diagonal entries
qij were complex or negative, there would also be
complex or negative pij(t) for small t. Furthermore, any
transition out of a state j must be into some other state

i, so the rate of leaving a state j is the sum of the rates
from j to each other state i:

eqn 7

Thus, to account for the fate of every point leaving
state j, the diagonal entries of Q must be:

eqn 8

We therefore define Q as the set of valid Q matrices,
having real and non-negative off-diagonals, and diagonal
entries given by eqn 8. Let W be a matrix whose columns
are the right eigenvectors of Q, and let ΛΛΛΛ be a diagonal
matrix of the corresponding eigenvalues. Then Q can
almost always be diagonalized as:

Q = WΛΛΛΛW−1 eqn 9

The eigenvalues of P(t) are then the scalar exponentials of
the eigenvalues of Q. P(t) and Q have the same eigenvectors.

Estimating the continuous-time model

In most cases, we do not have observations in continuous
time. Instead, we know the number nij of  observations
of state j at time T for which we observed state i at time
T + t. The maximum likelihood estimate of pij(t) is then:

eqn 10

where n.j is the total number of transitions observed out
of state j (Caswell 2001: 135; Bladt & Sørensen 2005).
Estimating a continuous-time Markov model given the
discrete-time transition matrix is known as the embed-
dability problem. Equation 6 suggests that we could
obtain an estimate Q using the matrix logarithm:

eqn 11

If Q ∈ Q, this is the maximum likelihood estimator
(Singer & Cohen 1980; Bladt & Sørensen 2005). In
practice, things are more complicated. First, there are
some discrete-time transition matrices which cannot be
embedded in a homogeneous continuous-time Markov
chain. Secondly, there are some discrete-time transition
matrices which can be embedded in more than one
homogeneous continuous-time Markov chain. Singer
& Spilerman (1976; their Table 1) summarize the condi-
tions under which a transition matrix may be uniquely
embeddable in a homogeneous process. In many cases,
we find that the maximum likelihood matrix P(t) is not
embeddable in a homogeneous continuous-time Markov
chain, because 1/t log P(t) has negative or complex off-
diagonals. Two possible explanations are that the true
transition matrix P(t) is not generated by a homogeneous

D Pv[ ( )]( )t ij
ij

    D Pv[ ( )]( )t ij
ij

e
at
m

at
m

m

  
( )

!
=

=

∞

∑
0

e
t

m
t

m

m

Q Q
  

( )
!

=
=

∞

∑
0

   

dx

dt
q x q x q q

q q x q x

q x q x q x q x

j
j j j j j

j j sj j js s

j j mj j js s
m j
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,

,

= + +…− +…+

+ +…+ +…+
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≠
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q qjj mj
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  = −
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process, or that the true transition matrix P(t) is embed-
dable, but P(t) is not embeddable because of sampling
variability. If  the latter explanation is true, we should
be able to find a Q ∈ Q for which eQt ≈ P(t). A good
approach is to find the maximum likelihood Q ∈ Q
(Kalbfleisch & Lawless 1985). Elsewhere, we describe
one way of performing this for ecological data, together
with a likelihood ratio test of the hypothesis that the
true P(t) is embeddable in a homogeneous continuous-
time Markov process (Spencer & Susko 2005). The
problem of  uniqueness in the presence of  sampling
variability is less easily solved. Possible approaches
include Bayesian analyses (Geweke et al. 1986; Bladt &
Sørensen 2005), and determining whether there are any
P matrices reasonably close to the estimated transition
probability matrix, but with quite different logs (Singer
& Spilerman 1976). However, it has been suggested that
multiple solutions to eqn 11 are only likely when the
time step t is very long (Kalbfleisch & Lawless 1985).

Interpretation of sensitivity analyses from a 
continuous-time model

Once we have a continuous-time model, we can determine
how the system responds to changes in each of the direct
interaction rates. Unlike the discrete-time case, we can
find a unique answer to the question ‘what will happen
if  just one direct interaction rate is changed?’. By defi-
nition (eqns 7 and 8), a change in an element qij alone
will result in an equal and opposite change in qjj. This is
the unique compensation pattern that corresponds to
changing only one direct interaction rate in a continuous-
time model. To see why this is so, consider the equations
for three states i, j and k out of a system of s states:

eqn 12

Note that the terms in brackets are the rates of leaving
each state, as defined in eqn 8. Now consider increasing
a single direct interaction rate qij by a tiny amount δ.
This is what we do when we look at the sensitivity of the
system to a change in qij alone:

eqn 13

We have increased the rate at which we go from state j
to state i and therefore, by definition, if  nothing else has
changed we have increased the rate at which we leave
state j. Because qjj is −1 times the rate of leaving state j,
we must decrease qjj by the same amount as the increase
in qij. At first sight this appears no different from the
arbitrary compensation patterns for discrete-time models
discussed in the section ‘Sensitivity of the stationary
distribution in a discrete-time model’. It appears that
we could consider any pattern of changes in rates q.j out
of state j, provided we ensure that each column of Q
sums to zero. However, such changes address a different
question: ‘what will happen if we simultaneously change
several rates of transition from state j to other states?’.
As an example, consider what will happen if we increase
qij by a tiny amount δ, and simultaneously decrease qkj

by the same amount:

eqn 14

The rate of leaving state j has not changed, because the
increase in qij is balanced by the decrease in qkj. However,
we have changed two parameters, not one. We might some-
times be interested in sensitivity analyses that change
multiple interaction rates, if each parameter was a function
of some environmental variable. However, we would not
expect the rates of leaving each state to remain constant.

The Markov models discussed here assume that if
the rate of leaving some state j decreases because a
parameter qij is reduced, the extra individuals remain-
ing in j may be affected by other ecological processes,
but the rates of these processes do not change. It might
be more realistic to allow rates to be affected by abund-
ances. For example, qij = aijxi leads to a Lotka–Volterra
model with a per-capita interaction rate aij. We cannot
use the techniques described here to analyse such
models, but it would be interesting to see whether they
make better predictions of transition probabilities in field
data. If  we can specify a functional form for each qij, it
will lead to a clearly defined (but different) sensitivity
analysis of the effects of changing each parameter.

Sensitivity of the stationary distribution in a 
continuous-time model

I now calculate the sensitivity of the stationary distri-
bution to a change in only one direct interaction rate.
Caswell (2001: 250) showed that the partial derivative
of w1 with respect to element aij of  some matrix A is:

eqn 15
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where  is the mth element of w1, the sum is over all s
states, and:

eqn 16

with  being the complex conjugate of the ith element
of the mth left eigenvector of Q. For a continuous-time
Markov chain, the dominant eigenvalue λ1 is zero. This
means that the sum of w1 is constant, so the second term
on the right-hand side of eqn 15 is always zero, and:

eqn 17

As discussed above, a change in an element qij will be
compensated by an equal and opposite change in qjj. To
answer questions about the response of the system to
changes in a single direct interaction rate, we require
the total derivative:

eqn 18

Compensation in the corresponding discrete-time 
transition matrix

I now calculate the derivative of P(t) with respect to qij,
assuming Q is diagonalizable. This leads to the conclu-
sion that compensation patterns other than the single-
column ones discussed in the section ‘Sensitivity of the
stationary distribution in a discrete-time model’ are
relevant to some biological questions, including the
important class of questions about the effects of chang-
ing a single direct interaction.

  P (T )    qij

For a function f(y) of a vector y, the directional deriv-
ative DV[ f(y)] in direction V is:

eqn 19

where vi and yi are the ith elements of V and y, respec-
tively. The direction vector V gives the relative size of
the change in each element of  y. Here, we apply a
similar idea to a function of a matrix.

If Q can be diagonalized as in eqn 9 (which will almost
always be the case), the first directional derivative of
P(t) in direction V (where V is a matrix the same size as
Q) is:

eqn 20

(Najfeld & Havel 1995; theorem 4·5). � is the Hadamard
(elementwise) product, B = W−1VW and ΦΦΦΦ(t) has entries:

eqn 21

V is called a direction by analogy with the vector case
(eqn 19): vij gives the relative size of the change in qij. In
most applications of eqn 19, the direction V is normalized
to have unit length. However, if we are interested in chang-
ing one direct interaction, we want a unit change in a single
qij and the corresponding change in the diagonal element.
Thus V has zeros everywhere except for vij = 1 and
vjj = −1. Using the chain rule, the total derivative of
the stationary distribution with respect to qij is then:

eqn 22

where m and n are summed over all states s,  is
the (m, n)th element of the directional derivative of P(t)
with respect to qij, and pmn(t) is element m, n of  the P(t)
matrix. This is identical to eqn 18. Comparing eqns 22
and 2 shows that DV(Q)(ij) is the compensation pattern
for P(t) resulting from a change in a single direct inter-
action rate qij. In general, there are non-zero entries in
all columns of DV(Q)(ij).

     
     
 P (t )

Equation 20 gives the change in P(t) corresponding to
a given change in Q. We can also invert this equation to
determine what pattern of changes Vc in direct interac-
tion rates would result from some specified pattern of
changes DV(P) in the transition probability matrix. We
can rearrange eqn 20 as follows:

eqn 23

where �−1 denotes elementwise division. If  Q can be
diagonalized as in eqn 9 and has distinct eigenvalues,
then Vc exists and is unique, because all the elements of
ΦΦΦΦ(t) are positive. This means that in such cases, there is
only one set of changes in direct interaction rates cor-
responding to a specified change in the elements of
P(t). This is useful because it can help us to understand
what biological question is being addressed by a sensitivity
analysis involving a given compensation pattern.

A biological example

Table 1 shows the Q matrix for a coral reef community
(Tanner et al. 1994; Exposed Crest site), estimated by
the maximum likelihood method described in Spencer
& Susko (2005). We were unable to reject the hypothesis
of homogeneity in continuous time (parametric boot-
strap test, P = 0·072, reported as P = 0·096 in Spencer
& Susko (2005), but this was with an incorrect way of
sampling missing data), and the transition probabilities
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from the best homogeneous model were very close to
the discrete-time maximum likelihood estimates. This
does not mean that the true situation is homogeneous,
but we can hope that it is close enough to homogeneity
that we may learn something useful about the system
from a homogeneous model. I define one unit of time as
the mean time interval between samples (26 months),
so that the Tanner et al. (1994) P matrix is P(1). I report
comparisons between sensitivity of the continuous-time
matrix Q and the one-time-unit discrete-time matrix eQ.
The results for comparing sensitivity of Q and the ori-
ginal matrix P(1) were almost indistinguishable, because
eQ and P(1) are very similar. Matlab code for these
analyses is available at http://www.mathstat.dal.ca/
∼matts/. For some entries (i, j), the directional derivative
DV(Q)(ij) of  eQ (eqn 20) shows changes that are mainly
confined to column j, and can therefore be approximated
by one of the compensation patterns Caswell (2001) sug-
gests. However, this is not always the case. The deriva-
tive of eQ with respect to element q2,9 has large positive
values in row 2 and large negative values in row 9, for all
columns (Fig. 1b). State 2 is tabular Acropora and state
9 is free space.

Increasing the rate of transitions from free space to
tabular Acropora increases the probability of reaching
tabular Acropora from any other state in one unit of
time. This is because the transition to free space has the
largest rate from every non-empty state (row 9 of Table 1).
Thus, the two-state path from any other state to tabular

Acropora has a probability that is strongly dependent
on the rate from free space to tabular Acropora. Figure 2
shows the corresponding sensitivities of the stationary
distribution. In both cases, sensitivities calculated using
the continuous-time matrix (eqn 18) generally show
similar qualitative patterns to sensitivities calculated
using the discrete-time matrix (eqn 2) and any of the three
columnwise compensation patterns discussed above.
For example, under all compensation patterns, increasing
the transition rate or probability from state 4 (staghorn
Acropora) to state 3 (bushy Acropora) has the largest
(and positive) effect on the stationary probability of
bushy Acropora (Fig. 2a). Increasing the transition rate
or probability from state 9 (free space) to state 2 (tabular
Acropora) has the largest (and positive) effect on the
stationary probability of tabular Acropora (Fig. 2b).
Nevertheless, there are some important differences. For
example, under uniform or proportional compensation
in discrete time, the second-largest effect of increasing
the rate or probability of transitions from staghorn to
bushy Acropora is a decrease in the probability of free
space. Under continuous-time or specific compensation
in discrete time, the second-largest effect is a decrease
in the probability of staghorn Acropora. This is because
the uniform and proportional compensation patterns
have relatively large decreases in the probability of tran-
sitions from staghorn Acropora to free space. The specific
compensation pattern reduces only the probability that
staghorn Acropora persists, and this is close to the

Table 1. The estimated instantaneous rate matrix Q (Spencer & Susko 2005) for the coral reef community at the Exposed Crest
site in Tanner et al. (1994; their Table 2)a

−0·482 0 0·014 0·00929 0 0·117 0·0563 0·0601 0·0278
0·0121 −0·574 0·00342 0·0255 0·0231 0·0125 0·0269 0·0305 0·0102
0·0443 0 −0·555 0·0148 0·0784 0·139 0·15 0·059  0·0634
0·0245 0 0·00704 −0·767 0·0727 0·235 0·0342 0·0833 0·0369
0·000669 0·0131 0 0 −1·3 0 0 0·00291 0·0071
0·0154 0·0255 0·0194 0·0679 0·0295 −2·04 0·0302 0·0302 0·0256
0 0 0·00501 0 0 0·0343 −0·861 0·00681 0·00916
0·00828 0 0·00778 0·0203 0·0583 0·00557 0·0206 −1·04 0·0216
0·376 0·535 0·499 0·629 1·04 1·5 0·543 0·768 −0·202

aThe states are ordered encrusting acroporid corals, tabular Acropora, bushy Acropora, staghorn Acropora, soft corals, algae, 
massive corals, pocilloporid corals, free space.

Fig. 1. Directional derivatives DV(Q)(ij) (eqn 20) of the one-time-unit transition matrix eQ with respect to the elements (a) q34 and
(b) q29 of the Q matrix shown in Table 1. Matrix elements are ordered as in Table 1.

http://www.mathstat.dal.ca/
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compensation pattern resulting from the continuous-time
model. For both parameter sensitivities that I exam-
ined (i = 3, j = 4 and i = 2, j = 9), the largest changes
are an increase in the stationary probability of state i
and a decrease in the stationary probability of state j.
For states i and j, specific compensation in element ( j, j)
overestimates the sensitivity. Surprisingly, this is true
even for sensitivity to q3,4 (Fig. 2a), for which the deriv-
ative of eQ was qualitatively similar to specific compen-
sation. This is because the magnitudes of the non-zero
entries in the specific compensation pattern (1 for ele-
ments 3,4; −1 for elements 4,4) are greater than the
magnitudes of the large entries in the derivative of eQ

(0·52 for elements 3,4; −0·48 for element 4,4). For states
other than i and j, uniform compensation consistently
overestimates the absolute sensitivity in both cases.
This may be because most of  the elements in column
j of  eQ are little affected by changes in qij. Proportional
compensation overestimates the sensitivity of  the
probability of empty space (state 9) in both cases. This
may be because the rate of transition to free space is the
largest for all non-empty states, and so is the most
altered under proportional compensation. The magni-
tudes of the sensitivities are generally much greater for
i = 2, j = 9 (Fig. 2b) than for i = 3, j = 4 (Fig. 2a: this
panel is drawn with a much smaller vertical axis range).
Nevertheless, the proportional differences between
the compensation pattern implied by continuous-time
dynamics and all three discrete-time columnwise com-
pensation patterns can be quite large in both cases. The
proportional difference in sensitivity under the

compensation pattern implied by continuous-time
and sensitivity under a columnwise discrete-time
compensation pattern is:

eqn 24

For example, for i = 3, j = 4 (Fig. 2a), the proportional
difference in sensitivity of staghorn Acropora is 0·43
under specific compensation, 0·78 under uniform com-
pensation and 0·28 under proportional compensation.
For i = 2, j = 9 (Fig. 2b), the proportional difference in
sensitivity of empty space is 0·42 under specific com-
pensation, 0·74 under uniform compensation and 0·23
under proportional compensation. Tables 2 and 3 show
the changes in direct interaction rates corresponding to
a unit infinitesimal change in p29, and specific or uni-
form compensation, respectively. These are calculated
using eqn 23, and illustrate two important points. First,
the discrete-time compensation patterns used here
(and almost all others) result in changes to many direct
interaction rates (all the elements of Tables 2 and 3 are
non-zero, although some are small). They are therefore
addressing a different question from that answered by
the continuous-time sensitivity analysis. Secondly,
different compensation patterns correspond to quite
different biological changes. For example, to achieve
specific compensation, we need to make large increases
in the rates of transitions to empty space from all other
states (Table 2, row 9), and large decreases in the rates
of transition from all states other than 9 to state 2

Fig. 2. Derivatives (sensitivities) of the stationary distribution for the community in Table 1 with respect to elements (a) 3,4; (b)
2,9. Filled circles are derivatives with respect to an element of the continuous-time rate matrix Q (eqn 18). Squares are the
derivatives with respect to elements of the one time-unit transition matrix eQ (eqn 2) and specific compensation [altering element
( j, j) to compensate for the change in element (i, j)]. Diamonds are the same but with uniform compensation [altering all elements
(m, j); m ≠ i in column j equally]. Triangles are proportional compensation [altering all elements (m, j); m ≠ i in column j in
proportion to their magnitudes]. The horizontal axis indexes states in the stationary distribution (ordered as in Table 1). Panels
(a) and (b) are drawn to different vertical scales.
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(Table 2, row 2). To achieve uniform compensation, we
make large decreases in the rates of transition from all
states other than 9 to state 2 (Table 3, row 2), but make
small decreases in the rates of transitions to empty
space from all other states (Table 3, row 9). It is not
clear whether these particular patterns of change are of
biological interest.

Temporal variability

The example above came from a tropical habitat where
seasonal variation may be relatively unimportant
(although rates certainly do vary over time in all systems).
This is unlikely to be true in all cases. For example, tran-
sition probabilities were significantly different between
summer and winter for a mussel bed community on the
north-east coast of the United States (Wootton 2001b).
A homogeneous continuous-time model was not a good
fit to the annual transition probabilities (M. Spencer,
unpublished analysis). If  we can find seasons within
which transitions are homogeneous, then there is a rel-
atively simple solution. Suppose we have a case where

, with t = t1 + t2, and t1, t2 known.
For example, in the mussel bed system (Wootton 2001b),
t1 = 8 months for the winter transition matrix, and t2 =
4 months for the summer transition matrix. If  homo-
geneity held within seasons, we could obtain separate
estimates of Q1 and Q2 from the corresponding transi-
tion probability matrices (Kalbfleisch & Lawless 1985),
using the methods discussed in the section ‘Estimating
the continuous-time model’. The m, nth element of P(t) is:

eqn 25

where  is the m, kth element of  P1. Taking the
derivative of each term in the sum, the derivatives of
P(t) with respect to the i, jth element of Q1 are given by:

eqn 26

Similarly, the derivatives of P(t) with respect to the i, jth
element of Q2 are:

eqn 27

We could substitute these derivatives into eqn 22 to
calculate the sensitivity of the stationary distribution.
The generalization to simultaneous changes in qij in
both Q1 and Q2 is straightforward:

eqn 28

However, transitions may not be homogeneous even
within the fixed seasons (this is the case for Wootton’s
data: M. Spencer, unpublished analysis). Models of
temporal variability use extra parameters, and a homo-
geneous model within each season already has the same
number of parameters as observations (counts of each
transition in each season). Thus, a model that is not
homogeneous within seasons will not be identifiable
from data of the kind discussed here. The general con-
clusion that the single-column compensation patterns
discussed in the section ‘Sensitivity of the stationary

Table 2. Changes in the direct interaction rates Q corresponding to a unit infinitesimal change in p29 and specific compensation
in element p99. Data from Tanner et al. (1994; their Table 2)a

−0·0052 −0·0078 −0·0072 −0·0093 −0·0177 −0·0303 −0·0079 −0·0122 0·0196
−0·2993 −0·4412 −0·4095 −0·5244 −0·9531 −1·5334 −0·4497 −0·6712 1·4927
−0·0121 −0·0182 −0·0168 −0·0217 −0·0417 −0·0716 −0·0186 −0·0286 0·0454
−0·0074 −0·0111 −0·0102 −0·0132 −0·0255 −0·0441 −0·0113 −0·0174 0·0272

0·0013 0·0019 0·0018 0·0023 0·0045 0·0078 0·0020 0·0030 −0·0046
0·0000 0·0000 0·0000 0·0000 0·0000 0·0001 0·0000 0·0000 0·0000

−0·0019 −0·0028 −0·0026 −0·0034 −0·0065 −0·0113 −0·0029 −0·0045 0·0069
−0·0046 −0·0069 −0·0064 −0·0082 −0·0161 −0·0280 −0·0071 −0·0109 0·0166

0·3291 0·4859 0·4509 0·5779 1·0561 1·7109 0·4955 0·7417 −1·6037

aThe states are ordered encrusting acroporid corals, tabular Acropora, bushy Acropora, staghorn Acropora, soft corals, algae, 
massive corals, pocilloporid corals, free space.

Table 3. Changes in the direct interaction rates Q corresponding to a unit infinitesimal change in p29 and uniform compensation
in other elements of column 9. Data from Tanner et al. (1994; their Table 2)a

0·0277 0·0406 0·0377 0·0481 0·0853 0·1328 0·0413 0·0608 −0·1509
−0·3010 −0·4436 −0·4117 −0·5273 −0·9587 −1·5433 −0·4522 −0·6751 1·4986

0·0228 0·0332 0·0308 0·0393 0·0682 0·1032 0·0338 0·0492 −0·1329
0·0278 0·0406 0·0377 0·0482 0·0845 0·1292 0·0414 0·0606 −0·1536
0·0596 0·0886 0·0822 0·1056 0·1976 0·3297 0·0905 0·1372 −0·2661
0·0829 0·1242 0·1151 0·1480 0·2848 0·4921 0·1269 0·1950 −0·3422
0·0428 0·0632 0·0586 0·0752 0·1376 0·2233 0·0644 0·0966 −0·2066
0·0455 0·0673 0·0624 0·0801 0·1474 0·2407 0·0686 0·1031 −0·2161

−0·0082 −0·0141 −0·0130 −0·0172 −0·0466 −0·1078 −0·0147 −0·0274 −0·0302

aThe states are ordered encrusting acroporid corals, tabular Acropora, bushy Acropora, staghorn Acropora, soft corals, algae, 
massive corals, pocilloporid corals, free space.
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distribution in a discrete-time model’ correspond to
changes in many direct interactions will still hold, but
we will not know what compensation pattern is associated
with changes in only one direct interaction rate.

Discussion

Sensitivity analysis is important in many contexts,
including designing management strategies and sam-
pling schemes. To obtain useful information, we have
to know that the sensitivity analysis we use is biolo-
gically relevant. However, the biological meaning of the
compensation patterns used in existing sensitivity
analyses of discrete-time Markov models is unclear.
Continuous-time models may clarify the changes in
interspecific interactions that are implied by a given
compensation pattern, and will therefore help us to ask
the right questions. There are many further avenues for
research in continuous-time models. First, the maximum-
likelihood approach allows us to estimate a best-fitting
continuous-time model. However, there could be other
models that fit almost as well that have quite different
structures. There are several possible approaches to
dealing with this uncertainty (Singer & Spilerman 1976;
Geweke et al. 1986).

Secondly, the transition probability matrix is usually
averaged over large numbers of  sample points and
time intervals, even though there is often significant
spatial and temporal heterogeneity (Tanner et al. 1996).
Homogeneous models are caricatures at best. Making
the transition rates simple functions of space and time
(Kalbfleisch & Lawless 1985) might give better models.
Other options include random-effects models in which
transition rates are sampled from some parametric dis-
tribution (Yang 1994), and hidden Markov models in
which different rate matrices operate at different times
(Tucker & Anand 2005). Thirdly, there is an obvious
connection between neutral models of  biodiversity
(Hubbell 1997) and continuous-time Markov chains.
Abundance distributions do not provide very sensitive
tests of neutral models, because many different models
can generate similar abundance distributions (He 2005).
Comparing the estimated distribution of interaction
strengths with the predicted distribution from a neutral
model might tell us why neutral models sometimes fail
(Wootton 2005). In conclusion, modelling communi-
ties of sessile organisms as continuous-time rather than
discrete-time Markov chains seems to offer increased
biological understanding and a clearer view of the con-
sequences of changing single interspecific interactions.
It may therefore be worth applying continuous-time
models more widely than they have been so far.
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