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Abstract

Discrete-time Markov chains are often used to model communities of sessile organ-

isms. The community is described by a set of discrete states, which may represent

species or groups of species. Transitions between states are modelled using a stochas-

tic matrix. A recent study showed how the time-reversal of such a Markov chain can

be used to estimate the distribution of time since the last occurrence of some state

of interest (such as empty space) at a point, given the current state of the point.

However, if the underlying process operates in continuous time but is observed at

regular intervals, this distribution describes the time since the last possible obser-

vation of the state of interest, rather than the time since its last occurrence. We

show how to obtain the distribution of time since the last occurrence of a state

of interest for a continuous-time homogeneous Markov chain. The expected time

since the last occurrence of an initial state can be interpreted as a measure of the

successional rank of a state. We show how to distinguish between different ways in

which a state can have high successional rank. We apply our results to a marine

subtidal community.
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1 Introduction1

Markov chains are often used to model the dynamics of communities of sessile

organisms [1–4]. It is assumed that a point in space can be in one of a finite

number of states 1 . . . s, such as different species or groups of species, and

free space. In most cases, the dynamics of the system are assumed to be

described by a temporally homogeneous, ergodic discrete-time Markov chain.

Temporally homogeneous means that the conditional probability of each state

one unit of time in the future, given the current state, does not depend on

time. Ergodic means that any state is eventually reachable from any other

state, the expected return time to any state is finite, and the probability of

returning to any state i in n time steps is non-zero for all sufficiently large

n. Let P(t) be an s-by-s matrix of transition probabilities , whose entries

pij(t) are the conditional probabilities that a point in state i at time τ will

be in state j at time τ + t (note that in much of the ecological literature, the

transition probability matrix is transposed relative to this definition). We will

sometimes refer simply to the transition probability matrix P, when the time

step t is fixed. If x(τ) is an s-by-1 vector of state probabilities at time τ , then

xT(τ + t) = xT(τ)P(t) (1)

where xT denotes the transpose of x. P(t) is a stochastic matrix, with rows2

summing to 1. Under the above assumptions, there is a unique vector of sta-3

tionary probabilities π such that π
T = π

TP(t), to which the state probabili-4
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ties will converge [5, Theorem 1.8.3].5

Applications of Markov chains in community ecology have mainly addressed6

questions such as quantifying the effects of species removals [4,6,7], compar-7

isons of transition probabilities across communities [3,4], turnover rates and8

recurrence times [4], effects of hypothetical modifications of transition proba-9

bilities [3,8], and identification of keystone species [2]. [9] is an excellent review10

of both discrete- and continuous-time Markov models in ecology. Recently, [10]11

showed how Markov chains can be used to make inferences about past states.12

Specifically, they calculated the distribution of times Tj since the last obser-13

vation of some state j at a point, given the present state of that point. In14

this paper, we briefly review the results presented in [10]. We show how the15

distribution of times since the last observation of some state at a point in a16

discrete-time chain, conditional on the present state, depends on the observa-17

tion interval, and therefore may not tell us about the most recent occurrence18

of a given state in the past. We then describe analogous results for a time-19

homogeneous continuous-time Markov chain. If this is an appropriate model,20

then the resulting distribution of first passage times in the time-reversed chain21

can be interpreted as the distribution of times since the last occurrence of a22

given state at a point in space, conditional on the current state. This distri-23

bution is independent of the intervals between observations of the chain. We24

suggest that the expected first passage time to an initial state (such as empty25

space) in the time-reversed version of a Markov model for an ecological com-26

munity provides a way to rank states by successional level. We show how the27

jump chain corresponding to a continuous-time Markov model can be used28

to calculate the expected number of events at a point since the last occur-29

rence of a given state j, given the current state of the point. This allows us30
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to distinguish between states which have high successional rank because they31

persist for a long time, and states which have high successional rank because32

they are likely to be separated from an initial state by a long series of tran-33

sitions between intermediate states. All our results are based on well-known34

theory concerning the transient behaviour of Markov chains, for which [11] is35

excellent source.36

2 Biological background37

Throughout this paper, we use a model of a subtidal community from the Gulf38

of Maine [4] as an example. Permanent quadrats were located on a rock wall at39

30-35 m depth, and photographed annually. A rectangular grid of points was40

superimposed on each photograph, ensuring that the points represented corre-41

sponding spatial locations each year. The organism present at each point each42

year was identified. The community consists of 14 species/groups of species43

of sponges, sea anemones, ascidians, bryozoans and polychaetes. [4] counted44

the frequencies of transitions among states (species/groups of species and bare45

rock), and estimated transition probabilities from the time-aggregated counts.46

Markov models are often used to gain quantitative insight into successional47

processes [4]. [10] suggested that knowing the expected time since the last48

occurrence of an initial state, given the current state at a point, is potentially49

useful in estimating the time since the establishment of suitable habitat, for50

example the appearance of a hydrothermal vent or the death of a corpse sup-51

porting an insect community. Here, we focus on the ways in which inferences52

about past states can be used to refine our understanding of the successional53

process. Specifically, we show that time since the last occurrence of an initial54

4



state, conditional on the current state, can be used to distinguish between55

states that are usually associated with early stages of succession, and states56

that are usually associated with later stages.57

3 First passage times in time-reversed discrete-time Markov chains58

To obtain the distribution of time since the last occurrence of some given state

j at a point in space with a known current state, [10] first obtained a time-

reversed transition probability matrix PR under the assumption that state

probabilities are stationary:

PR = Π−1PTΠ (2)

[11, Definition 2.7], where Π is a diagonal matrix of stationary probabilities.

[10] then obtained the distribution of first passage times to state j in the

time-reversed chain. Without loss of generality, we will assume that the state

of interest in the past is j = 0. We write

PR =

















pR
00

(pR
0
)T

r T

















(3)

We define an absorbing state as a state from which no other state can be

reached. We construct a chain in which state 0 is absorbing, with transition

probability matrix

PR
0

=

















1 0T

r T

















(4)
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Then the cumulative distribution function for T0 given current state i is

F d
i0(t) = Pi(T0 ≤ t) = [PR

0
]ti0 t = 1, 2, . . . (5)

[11, p. 80], where the superscript d in F d
i0(t) indicates that this is the cumula-59

tive distribution for the discrete-time chain, and the subscript i in Pi(T0 ≤ t)60

indicates that the distribution is conditional on the current state being i.61

Equation 5 gives us the cumulative distribution for T0 in the original chain62

because we have not changed the probability of entering state 0 from any63

other state, but once we have entered state 0 we never leave it. [10] applied64

this method to the Markov model of a rocky subtidal community in the Gulf65

of Maine developed by [4].66

4 Interpretation of the first passage time in the time-reversed67

discrete-time chain68

If P(t) is the transition probability matrix for a discrete-time Markov chain69

with time step t, then the transition probability matrix for a chain observed at70

time intervals of length nt, where n is a positive integer, is [P(t)]n [11, p. 16].71

We can apply the method described in the previous section to calculate F d
ij(t)72

for chains with different intervals between observations. For example, in the73

system studied by [4], state 14 is the polychaete Spirorbis spirorbis, and state74

15 is bare rock. Figure 1 shows the cumulative distributions F d
14,15(t), with time75

steps of one, two and five years. Even though the system is undergoing the76

same dynamics in each case, as the interval between observations increases,77

the value of F d
14,15(t) for any fixed, finite integer time t decreases. In other78

words, as the interval between observations increases, so does the apparent79
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time since the last occurrence of some given state j at a point. If there may80

be multiple events at a point in space between two observation times, then we81

should interpret F d
ij(t) as giving us the cumulative distribution of time since82

the last possible observation of state j given the current state i, not necessarily83

the last occurrence of state j.84

5 First passage times in time-reversed continuous-time Markov85

chains86

We would like to know the distribution of time since the last occurrence of

state j, given that a point is currently in state i. If we suppose that events

can occur at any time, and that the rate of events is constant, then we may

be able to find a matrix Q such that

P(t) = eQt =
∞
∑

k=0

(Qt)k

k!
(6)

for any non-negative real time t [5, Theorem 2.1.1]. We assume here that such a87

matrix exists, and that it is unique. The conditions under which this is true are88

given in [12]. More details of estimating a suitable Q matrix for real data are89

given in the Appendix. We refer to Q as the generator or rate matrix for a time-90

homogeneous continuous-time Markov chain. The off-diagonal elements qij of91

Q are the rates (non-negative, real, with dimensions time−1) of transitions92

from state i to state j. The diagonal elements qii are defined as −
∑

j 6=i qij, so93

−qii is the rate of leaving state i.94

Using the homogeneous continuous-time model, we can calculate the distribu-

tion of times since the last observation of some state j given current state i as

the interval between observations becomes arbitrarily small. The methods are
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similar to the discrete-time case. Let qij be the instantaneous rate of transi-

tions from state i to state j in a stationary finite-state ergodic continuous-time

homogeneous Markov chain, and let πi be the stationary probability of state

i. Then the instantaneous rate of transitions from j to i in the corresponding

stationary time-reversed chain is qR
ji = (qijπi)/πj [5, Theorem 3.7.1]. Thus we

can find a time-reversed generator matrix QR:

QR = Π−1QTΠ (7)

Assuming without loss of generality that j = 0, and writing QR =

















−qR
0

(qR
0
)T

r T

















,

we construct a chain in which state 0 is absorbing,

QR
0

=

















0 0T

r T

















(8)

Now the cumulative distribution of first passage times to state 0 in the time-

reversed chain is given by

Fi0(t) = [eQR

0
t]i0 t ≥ 0 (9)

Let Tj be the first passage time to state j. Without loss of generality we

assume j = 0. Then the probability density of the first passage time to state

0 from initial state i is given by

fi0(t) = eie
Ttr (10)

for t ≥ 0, where ei is a vector with 1 in position i and 0 elsewhere [11, p. 213].95

The first passage time T0 to state 0 from initial state i in a stationary finite-96
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state ergodic continuous-time homogeneous Markov chain has mean Ei[T0] =97

ei(−T)−11 [9,11, p. 212] and variance Vi[T0] = 2ei(−T)−21) − (ei(−T)−11)2
98

[13], where the subscripts i in Ei[T0] and Vi[T0] indicate that they are con-99

ditional on initial state i. We estimated the generator matrix (Table 1) for100

the system studied by [4] as described in the Appendix. Figure 2 shows the101

cumulative distributions of first passage times to state 15 (bare rock) from102

each other state, calculated from the discrete-time model with observation103

interval one year (solid lines) and the continuous-time model (broken lines).104

It is easy to show that the cumulative distributions from the continuous-time105

model will always lie above those for the discrete-time model. This is because106

if we observe the system continuously, we will see all occurrences of state j107

that occurred at observation times in the discrete-time chain, in addition to108

the occurrences between observation times. Then, using the result that for a109

random variable X with density f(x) = 0 for x < 0 and distribution function110

F , E[X] =
∫ ∞
0

(1−F (x))dx [14, Lemma 4.3.4], we can show that the expected111

first passage time for the continuous-time chain will be less than that for112

the discrete-time chain. The difference between the continuous- and discrete-113

time distributions may be large. For example, with current state 14 (Spirorbis114

spirorbis), the probability that the last occurrence of state 15 (bare rock) was115

no more than 10 years ago is 0.81 (from the continuous-time model). However,116

the probability that an occurrence of bare rock would have been observed in117

the last 10 years if we made observations at one-year intervals is only 0.55.118
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6 Expected first passage time in the time-reversed chain as a mea-119

sure of successional rank120

Table 2 gives the mean (Ei[T15]) and variance (Vi[T15]) of first passage time to121

bare rock (state 15) in the time-reversed continuous-time chain based on data122

in [4], conditional on each other current state i. Points currently in states for123

which Ei[T15] is small are likely to have been bare rock more recently than124

points currently in states for which Ei[T15] is large. Since bare rock is the initial125

stage of a successional process, Ei[T15] tells us how far from this initial stage a126

point in space is likely to be, given its current state. This information is difficult127

to obtain in other ways when succession is stochastic and many alternative128

pathways are possible. However, Table 2 also shows that the variance of time129

since the last occurrence of bare rock is large for all states. The difference130

between the smallest and largest values of Ei[T15] among current states is131

7.93 years, but for any given current state Vi[T15] is at least 70. We are quite132

uncertain about the past states of a point in space, given its present state.133

For the continuous-time model based on data in [4], there is little relationship134

between the stationary probability of a state and the expected time since135

the last occurrence of bare rock (Figure 3a, Pearson correlation 0.21: we do136

not test the statistical significance of this and other correlations, because we137

have sampled the entire population of states). However, there is quite a strong138

negative relationship between the rate of leaving a state and the expected time139

since the last occurrence of bare rock (Figure 3b, Pearson correlation −0.74).140

In other words, if we observe a highly persistent species (as measured by low141

leaving rate: −1 times the diagonal element of the Q matrix) such as the sea142

anemone Urticina crassicornis (other species in this genus are known to live143
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at least 20 years [15]) or the sponge Mycale lingua, it is unlikely that the point144

was bare rock recently (95th percentiles of T15: 35 years for Urticina, 34 years145

for Mycale). If we observe a species such as Spirorbis spirorbis that is less146

likely to persist at a point for a long time, the point is likely to have been bare147

rock more recently (95th percentile of T15: 23 years). The relationship between148

the stationary probability and rate of leaving a state is negative but relatively149

weak (Figure 3c, Pearson correlation −0.37). Species that are relatively poor at150

persisting may be able to maintain moderately high abundance by colonizing151

bare rock.152

7 The number of events since the last occurrence of a given state153

The negative relationship between the rate of leaving a state and the expected154

time since the last occurrence of bare rock (Figure 3b) suggested that states155

with high successional rank tend to be highly persistent. This could mean156

that states with different succesional rank differ mainly in the length of time157

it takes for them to colonize bare rock (Figure 4a). However, it is also possible158

for a state to have high successional rank if it is likely to be separated from the159

initial state by a long series of transitions among intermediate states (Figure160

4b). In order to see which of these patterns occurs in a continuous-time Markov161

chain, we need to calculate the expected number of events (changes of state)162

since the last occurrence of the initial state for each current state at a point163

in space.164

The jump matrix S associated with a continuous-time Markov chain is a

stochastic matrix whose entries sij are the probabilities of each state j be-

ing the new state when a transition occurs, given that the current state is
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i:

sij =























−qij/qii j 6= i, qii 6= 0

0 j 6= i, qii = 0

sii =























0 qii 6= 0

1 qii = 0

(11)

[5, p. 87]. We can calculate S for the time-reversed chain QR. As before, we

assume without loss of generality that the state of interest in the past is j = 0,

and define the absorbing jump matrix

S0 =

















1 0T

r T

















(12)

Let J0 be the number of jumps from state i to state 0 in the absorbing jump165

chain for QR. J0 has expectation Ei[J0] = eiN1 [9] and variance Vi[J0] =166

2eiN
2(N − I)r + Ei[J0] − (Ei[J0])

2, where N = (I − T)−1 and ei is a vector167

with a 1 in position i and 0 elsewhere [11, pp. 80-81].168

Table 3 gives the mean (Ei[J15]) and variance (Vi[J15]) of the number of jumps169

since the last occurrence of bare rock (state 15) given the current state, for the170

continuous-time chain based on data in [4]. The Pearson correlation between171

the time since the last occurrence of bare rock (Ei[T15]) and the number of172

jumps since the last occurrence of bare rock (Ei[J15]) is 0.87 (Figure 5). In173

other words, states for which the expected time since the last occurrence of174

bare rock is longer are also expected to be separated from bare rock by a larger175

number of intermediate states. However, the differences among states in the176

expected number of jumps since the last occurrence of bare rock are small177

relative to the variance in number of jumps for any given state. From Table 3,178
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the difference between the largest and smallest values of Ei[J15] is 1.48, while179

Vi[J15] is at least 16.54 for all states.180

8 Conclusions181

Markov models for communities are usually formulated in discrete time. In182

many ecological communities, it is reasonable to assume that some events183

such as mortality can occur at any time, and many other events such as re-184

production may occur over quite long time periods. If this is the case, then a185

continuous-time model might be more appropriate for inferences about some186

kinds of properties than a discrete-time model, which predicts the state of187

the system only at discrete observation points. If the underlying dynamics188

of the system are in continuous time, a discrete-time model will miss many189

events that occur between observation intervals. Here, we showed that the190

expected time since the last occurrence of some past state (estimated from191

a continuous-time model) will be less than the expected time since the last192

observation of this state (estimated from a discrete-time model of the same193

system). Elsewhere, we showed that inferences about the complexity of inter-194

action networks [16] and the consequences of changing interspecific interaction195

parameters [17] from discrete-time models may also be misleading if the true196

dynamics are in continuous time.197

One important caveat is that we assumed homogeneity in time. This may198

not be true, especially in temperate habitats such as the one we studied,199

where it is likely that survival, reproduction and interspecific interactions will200

vary seasonally. There is also statistically significant interannual variability in201

transition probabilities in this system, although the biological consequences202
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of this variability may not be major [18]. We did not consider models with203

temporal variability here because such models cannot be identified from time-204

averaged data such as those presented in [4]. However, temporal variability205

could potentially have large effects on inferences about past states. If the206

sequences of states at points in space are available, these effects could be207

checked by direct comparison of the calculated and observed distributions of208

first passage times. Both time-averaged discrete-time models and homogeneous209

continuous-time models are potentially useful caricatures of the dynamics of210

a community, but it is important to remember their limitations.211

A central idea in the concept of ecological succession is that some states in212

a community tend to appear soon after an initial state such as empty space,213

while others do not occur until much later. However, when the sequence in214

which states occur is not deterministic, it is not immediately obvious how we215

should identify early- and late-succession states. The approach we describe216

here is one way to do this. We refer to states for which the expected time217

since the last occurrence of an initial state (such as bare rock) is long as218

having high successional rank. We can also learn something about why a state219

has high or low successional rank. For the Gulf of Maine subtidal data set we220

analyzed, states with high successional rank tended to be good at persisting221

at a point, and to be separated from bare rock by longer sequences of events222

than states with low successional rank. However, other relationships might223

occur in other communities. Comparative studies of Markov models from a224

range of communities [3,4] will be the best way to address this.225

Inferences about past states could also be useful for estimating the age of a226

habitat [10]. However, for the community we analyzed, the variance in time227

since the last occurrence of bare rock given the current state was large relative228
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to the differences in expected time since the last occurrence of bare rock among229

current states. In other words, for this community, knowing the current state230

does not give us much information about the past. We did not consider the231

consequences of uncertainty in transition probabilities [10], but such uncer-232

tainty would be likely to further reduce the amount of information available233

about the past.234

Several other studies have examined related problems, such as first passage235

times in flow-balanced ecological networks describing food webs and hydrody-236

namic compartments [19], and the estimation of event times in chain-of-events237

models for the progression of HIV, where data are observed at discrete inter-238

vals [20]. In the latter case, the problem differs from ours in that the sequence239

of events is known but their timings are unknown, and that a semi-Markov240

model was used. There are other potential applications to disease modelling.241

For example, hidden Markov models can be used to describe the occurrence of242

drug-resistance mutations in HIV. Given parameter estimates for these models243

[21], it might be of interest to estimate the probability distribution of mutation244

times given the current mutational state.245
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Appendix: estimating the continuous-time model310

Assume that each of a set of independent fixed points in space has a state311

determined by the same finite-state homogeneous Markov chain. If the interval312

between observations is t for all points, the maximum likelihood estimate of a313

transition probability pij is p̂ij = nij/ni, where nij is the number of points in314

state j at time τ + t that were in state i at time τ , and ni is the number of315

points in state i at time τ [22, p. 135].316

We used data from Table 2 in [4], derived from annual photographic obser-

vations of a rocky subtidal community over nine years. Including bare rock,

there were s = 15 distinguishable states, labelled 1 to 15. Note that in [4], the

transition probability matrix is transposed with respect to our notation. The

rows of the matrix in Table 2 of [4], which we refer to as P̃(t), did not exactly

18



sum to 1, presumably because of rounding errors. We therefore rescaled all

elements by the row sums to obtain the estimate P̂(t):

p̂ij = p̃ij/
s

∑

k=1

p̃ik (13)

If P(t) = eQt, an obvious estimate of the continuous-time rate matrix Q is Q̃ =

1/t log P̂(t), where log is the matrix logarithm. This is the maximum likelihood

estimate if P(t) was generated by a homogeneous continuous-time Markov

chain [23]. However, this estimate often has negative off-diagonal entries, either

because of sampling error or because the transition probabilities were not

generated by a homogeneous continuous-time Markov chain. If Q̃ has negative

off-diagonals, there will be some time intervals for which eQ̃t also has negative

entries, so this cannot be a valid rate matrix. If the original data are available,

constrained maximum likelihood [24,16] or Markov Chain Monte Carlo [23]

methods can be used. However, if only P̂(t) is available, as in this case, we

could set any negative off-diagonal entries in Q̃ to zero and adjust the diagonal

elements to maintain zero row sums, giving the estimate Q̂:

q̂ij =























max(q̃ij, 0) i 6= j

q̃ii +
∑

k 6=i min(q̃ik, 0) i = j

(14)

[25]. Other approaches are possible when only P̂(t) is available, such as finding317

a rate matrix whose eigenspectrum matches that of the transition probability318

matrix as closely as possible [26]. However, for the data we used, eQ̂t was very319

close to P̂(t), and gave almost indistinguishable results for the distribution of320

first passage times to bare rock. Q̂ is therefore a satisfactory estimate of the321

continuous-time rate matrix for our purposes. All the discrete-time results we322

report are based on eQ̂t, so that differences between discrete- and continuous-323
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time results are not artefacts of the estimation method for the continuous-time324

model. Table 1 shows the estimate Q̂.325
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Table 1

Generator matrix Q for a continuous-time Markov chain estimated from the data in [4], as described in the Appendix. States are (1)

Hymedesmia sp. 1, (2) Crisia eburnea, (3) Myxilla fimbriata, (4) Mycale lingua, (5) Filograna implexa, (6) Urticina crassicornis, (7)

Ascidia callosa, (8) Aplidium pallidum, (9) Hymedesmia sp. 2, (10) Idmidronea atlantica, (11) coralline algae, (12) Metridium senile, (13)

Parasmittina jeffreysi, (14) Spirorbis spirorbis, (15) bare rock. All rates are years−1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -0.2925 0.1206 0.0170 0.0030 0.0137 0 0.0423 0.0193 1.54e-04 0.0279 0.0012 0.0011 0.0081 0.0069 0.0312

2 0.1821 -0.5889 0.0391 0.0128 0.0332 0.0052 0.0479 0.0599 0.0147 0.0275 0.0172 0.0103 0.0071 0.0062 0.1260

3 0.0537 0.0216 -0.3553 0.0032 0.0202 0.0043 2.52e-06 0.0078 0.0361 0 0.0051 0.0081 0.0016 0.0281 0.1655

4 0.0098 0.0510 0.0049 -0.1776 0.0010 0 7.61e-04 0.0084 0.0100 0.0042 0.0076 0.0148 0 0.0086 0.0565

5 0.1290 0.3239 0.0455 2.59e-04 -0.9734 0.0093 0.0941 0.0834 0.0177 0 9.51e-04 0.0017 0.0083 0.0031 0.2561

6 0.0039 0.0105 0.0131 0 0.0219 -0.1595 0 0.0117 0.0212 0.0032 0.0048 0.0088 0 0 0.0603

7 0.5416 0.3596 0.1207 0.0326 0.2628 0.0645 -2.5204 0.2331 0.0263 0.1729 0.0804 0 0.0644 0.1467 0.4147

8 0.3483 0.4066 0.0609 0.0327 0.2681 0.0075 0.2215 -2.0042 0.0278 0.0966 0.0317 0.0530 0.0218 0.0522 0.3754

9 0.0346 0.1750 0.0305 0.0122 0.0169 0.0068 5.70e-04 0.0612 -0.5435 0.0472 0.0053 0.0036 0 0.0133 0.1364

10 0.6604 0.4312 0.0428 0.0123 0.0049 0.0065 0.2063 0.1055 0.0149 -1.8940 0.0205 0.0111 0.0370 0.0090 0.3316

11 0.0245 0.3324 0.0315 0.0077 0.0500 0 0.0601 0.0349 0.0060 0 -0.6977 0 0.0068 0 0.1438

12 0.0201 0 0.0213 0.0420 0 0 0 0.0169 5.94e-04 0 0 -0.8073 0 0 0.7063

13 0.6096 0.2839 0.0230 0 0.1546 0 0.0936 0.0347 0 0.0540 0.0342 0 -1.4746 0 0.1870

14 0.2815 1.9948 0 0.0488 0.4633 0.0075 0.0938 0 0.0547 0.2226 0 0 0 -3.9231 0.7561

15 0.0281 0.6355 0.0191 0.0060 0.1204 0.0015 0.2224 0.0980 0.0177 0.1023 0.0285 0.0365 0.0298 0.0962 -1.4418
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Table 2

Mean (Ei[T15]) and variance (Vi[T15]) of first passage time in years to state 15 (bare

rock) from each other current state i in the time-reversed stationary continuous-time

Markov chain based on the data in [4].

Current state i Ei[T15] Vi[T15]

1 (Hymedesmia sp. 1) 10.60 90.33

2 (Crisia eburnea) 7.49 78.09

3 (Myxilla fimbriata) 10.54 91.08

4 (Mycale lingua) 13.00 112.38

5 (Filograna implexa) 7.04 76.04

6 (Urticina crassicornis) 13.34 117.97

7 (Ascidia callosa) 6.32 74.63

8 (Aplidium pallidum) 7.13 78.49

9 (Hymedesmia sp. 2) 9.48 89.84

10 (Idmidronea atlantica) 6.98 78.89

11 (coralline algae) 7.67 78.40

12 (Metridium senile) 7.18 79.47

13 (Parasmittina jeffreysi) 7.09 78.28

14 (Spirorbis spirorbis) 5.41 70.31

22



Table 3

Mean (Ei[J15]) and variance (Vi[J15]) of number of state changes (dimensionless)

separating each other current state i from state 15 (bare rock) in the time-reversed

stationary continuous-time Markov chain based on the data in [4].

Current state i Ei[J15] Vi[J15]

1 (Hymedesmia sp. 1) 5.42 17.64

2 (Crisia eburnea) 4.35 17.38

3 (Myxilla fimbriata) 5.45 17.91

4 (Mycale lingua) 5.35 17.80

5 (Filograna implexa) 4.63 17.54

6 (Urticina crassicornis) 5.42 17.68

7 (Ascidia callosa) 4.41 17.41

8 (Aplidium pallidum) 4.86 17.76

9 (Hymedesmia sp. 2) 5.23 18.13

10 (Idmidronea atlantica) 4.68 17.79

11 (coralline algae) 4.68 17.50

12 (Metridium senile) 4.26 17.12

13 (Parasmittina jeffreysi) 4.73 17.83

14 (Spirorbis spirorbis) 3.97 16.54
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Fig. 1. Cumulative distributions of first passage time (T15, years) to state 15 (bare

rock) from state 14 (Spirorbis spirorbis) in the time-reversed stationary discrete–

time Markov chains based on the data in [4], with observation intervals 1 (solid

line), 2 (broken line) and 5 (dash-dot line) years.
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Fig. 2. Cumulative distributions of first passage time (T15, years) to state 15 (bare

rock) from each current state i (panel numbers) in the time-reversed stationary

continuous-time (broken lines) and discrete-time (solid lines) Markov chains based

on the data in [4]. See Table 2 for state names.
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Fig. 3. Relationships between (a) stationary probability (πi, dimensionless) and ex-

pected first passage time (Ei[T15], years) to state 15 (bare rock), (b) rate of leaving

(−qii, years−1) and expected first passage time to state 15, (c) stationary proba-

bility and rate of leaving, for all states i other than bare rock in the time-reversed

stationary continuous-time Markov chain based on the data in [4].
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Fig. 4. Successional patterns where: (a) differences in successional rank result only

from differences in the rate of colonization of bare rock (state j); and (b) differences

in successional rank result from differences in the number of events separating a

state from bare rock.
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Fig. 5. Relationship between expected number of jumps (Ei[J15], dimensionless) and

expected time (Ei[T15], years) to state 15 (bare rock), for all states i other than bare

rock, in the time-reversed continuous-time Markov chain based on data in [4].
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