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Abstract

I review methods that can be used to estimate phylogenies from gene

content data. These methods may be useful for inferring deep phylogenetic

relationships, where sequence data can be misleading due to saturation,

paralogy, and lateral gene transfer. The two major problems with gene

content data are the difficulty of observing the absence of gene families

and the possibility of multiple changes in gene content along an evolu-

tionary pathway. I discuss parsimony, naive distance methods, the SHOT

web server, paralinear distances, and model-based methods developed by

Huson & Steel and Gu & Zhang. I suggest some possible improvements to

these methods, and conclude with recommendations and areas for future

research.

1 Why use gene content to reconstruct phylogeny?

These are many problems with deep phylogenetic reconstruction from nucleotide
and amino acid sequences. Practical difficulties include phylogenetic artefacts
such as long branch attraction, and the effects of rate variation over time, or
heterotachy (Gribaldo and Philippe, 2002). These could in principle be solved
by better models of sequence evolution. There are also two major problems that
cannot be resolved in this way.

First, homologous nucleotide and amino acid sequences may be saturated
with changes (Meyer et al., 1986). Figure 1 illustrates saturation at a single
nucleotide. If the amount of evolutionary change (rate of change × time) is
sufficiently small, closely related species will tend to have the same nucleotide
states (Figure 1a). With more time or a higher rate of change, there may have
been so many substitutions that nucleotide states are no longer informative
about evolutionary history (Figure 1b).

Second, genomes gain genes by duplication and lateral transfer, and lose
genes by deletion. Deletion results in distantly-related genomes having few ho-
mologous genes. For example, among approximately 100 genomes that had been
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Figure 1: (a) Over a small amount of evolutionary time, nucleotide states are
likely to contain useful information about phylogeny. (b) Over a larger amount
of time, information on history may be lost. Labels are hypothetical nucleotide
states at a single site on a tree leading from a common ancestor to extant species.
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sequenced by 2003, there were only about 60 ubiquitous genes (Koonin, 2003).
The scarcity of ubiquitous genes can make it difficult to find suitable sequences
for deep phylogenetic reconstruction. Duplication can result in multiple copies
of a sequence. If different copies are then deleted in different lineages, the re-
lationships among the remaining copies may not reflect the species phylogeny.
Given the generally high rates of gene deletion, this may be a common situation
(Martin and Burg, 2002). Figure 2 shows an example. An ancestral duplication
is followed by three speciation events, with different gene copies lost in the lin-
eages leading to different extant taxa. The two surviving versions of copy B are
more closely related to each other than to the two surviving versions of copy A.
A and B are described as paralogous, which means they are related by a gene
duplication event rather than a speciation event (Page and Holmes, 1998, page
31). In contrast, the two surviving versions of copy A are orthologous: they
are related by a speciation event. If we did not recognize that A and B were
paralogous rather than orthologous, we would incorrectly group the two taxa
containing copy B together in a sequence-based phylogeny.

Because of lateral transfer, different genes may have different evolutionary
histories (Doolittle et al., 2003). For example, in a situation like Figure 3, a
phylogeny based on gene A would group taxa 1 and 2 together, but a phylogeny
based on gene B would group taxon 2 with 3.

Gene duplication, deletion and transfer events are problems for sequence-
based phylogenetics, but they also give rise to patterns of gene content across
taxa. Here, I will discuss methods that use gene content data to infer phyloge-
nies. Changes in gene content may be less prone to saturation than sequence
data. Because we use information from the whole genome, we may be able to
get a summary phylogeny that represents the dominant patterns of information
flow. Furthermore, we can also attempt to estimate biological properties such
as the gene content of an ancestral taxon, or the relative rates of duplication,
deletion and transfer.

The idea that whole-genome phylogenies might be a good idea is not new.
For example, Fitch and Margoliash (1967) wrote “Biochemists have attempted
to use quantitative estimates of variance between substances obtained from dif-
ferent species to construct phylogenetic trees . . . These methods have not been
completely satisfactory because (i) the portion of the genome examined was of-
ten very restricted . . . ” It is only in the last decade that the data to produce
whole-genome phylogenies have become available.

2 Introductory example: why is gene content

phylogenetics difficult?

In this section, I will use some simple examples to illustrate the two major
problems with using gene content data in phylogenetics. The rest of the material
will be mainly concerned with different ways of solving these problems.

Consider the two E. coli strains K12 and 0157:H7 EDL933. I downloaded
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Figure 2: Deletion of different paralogs in different lineages. A single gene is
duplicated to form two copies (black: copy A; grey: copy B). Three speciation
events then give rise to four extant taxa (the light dashed lines indicate the
species phylogeny). Copy A is lost from two taxa and copy B from the other
two. Labels at the top of the tree indicate the copy that is present in each
extant taxon. Circles indicate deletions.
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Figure 3: Lateral gene transfer results in different genes having different evolu-
tionary histories. Numbers are labels for extant taxa. The horizontal dashed
line indicates a lateral transfer of gene B from an ancestor of taxon 3 to an
ancestor of taxon 2.

Table 1: Presence and absence of gene families in the COG database for two E.

coli strains, K12 and 0157:H7 EDL933.
0157:H7 EDL933 absent 0157:H7 EDL933 present

K12 absent 2622 120
K12 present 61 2070

data on these strains from the COG database (Tatusov et al., 2003). There are
4873 gene families in the version of COG I used. K12 has at least one gene from
2131 of these families, while 0157:H7 EDL933 has at least one gene from 2190
families. Table 1 shows the number of occurrences of each pattern of presence
and absence of gene families in these strains.

There are only 120+61 = 181 cases out of 4873 where one of the strains has
no members of a gene family and the other has at least one member. Table 2
shows similar data for a pair of distantly-related species, Archaeoglobus fulgidus

(Archaea) and Bacillus subtilis (gram positive bacteria). Here, there are 1181+
654 = 1835 cases where the two species have different presence/absence states.
It looks as though distantly-related taxa tend to have different presence/absence
states more often than closely-related taxa.

This suggests a simple measure of gene content distance dij between two

Table 2: Presence and absence of gene families in the COG database for Ar-

chaeoglobus fulgidus (Archaea) and Bacillus subtilis (gram positive bacteria).
B. subtilis absent B. subtilis present

A. fulgidus absent 2448 1181
A. fulgidus present 654 590
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taxa i and j
dij = (nAP + nPA)/N (1)

where nAP is the number of gene families absent from taxon i but present in
taxon j, nPA is the number of gene families present in taxon i but absent from
taxon j, and N is the total number of gene families. The minimum possible
value is 0, the maximum possible value is 1, and dij = dji. The two E. coli

strains have dij = 181/4873 = 0.04, while A. fulgidus and B. subtilis have
dij = 1835/4873 = 0.38.

If we had a set of m taxa of interest, we could compute the m×m matrix of
pairwise distances between taxa. There are several good methods we could then
use to estimate a phylogeny for the taxa, such as neighbor-joining (NJ) (Saitou
and Nei, 1987; Studier and Keppler, 1988) and least-squares (Fitch and Mar-
goliash, 1967). Both methods are available in standard phylogenetic software
packages such as PAUP* (Swofford, 2003) and PHYLIP (Felsenstein, 2004b).
See Page and Holmes (1998, section 6.2) for a brief introduction, or Felsen-
stein (2004a, chapter 11) for more detail. These methods will give the correct
phylogeny if the true phylogeny is a tree and we know the true evolutionary
distances.

Unfortunately, there are two problems with this approach, unobservable data
and multiple changes.

2.1 Unobservable data

One fundamental difference between sequence data and gene content data is
that some gene content data are unobservable. For nucleotide data, the possible
states are A, C, G and T, and there is no obvious bias that affects the recording
of these states. For amino acid data, there are twenty possible states (the twenty
amino acids), and again there is no obvious recording bias. For gene content
data, the possible states are either {absent, present} or {absent, present in one
copy, present in two copies. . . }. It is almost always the case that absences are
less likely to be recorded than presences. If a gene family is absent from every
genome in a database, we may not know that the family exists.

Suppose that we have two independent genomes x and y. In each genome, a
gene is present with probability 1/2. Denote the states absent and present by A
and P respectively. Let xA be the event that a gene is present in genome x, and
xP be the event that a gene is absent. Because the genomes are independent,
the probability of observing the pattern {xi, yi} is P (xi) × P (yi). If we could
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observe every case, equation 1 gives the distance

dxy =
P (xA) × P (yP ) + P (xP ) × P (yA)

P (xA) × P (yA) + P (xA) × P (yP ) + P (xP ) × P (yA) + P (xP ) × P (yP )

= P (xA) × P (yP ) + P (xP ) × P (yA)

=
1

4
+

1

4

=
1

2
(2)

(the denominator in the first line includes all possible outcomes, so it sums to
1).

Now suppose that we can always observe the patterns {A,P}, {P,A} and
{P, P}, but we can never observe the pattern {A,A}. The distance we estimate
would be

dxy =
P (xA) × P (yP ) + P (xP ) × P (yA)

P (xA) × P (yP ) + P (xP ) × P (yA) + P (xP ) × P (yP )

=

(

1

2

)

/

(

3

4

)

=
2

3

(3)

Because we cannot observe the double-absence pattern, we get a overestimate
of the distance. Furthermore, this bias depends on the number of genes that
are present. We can do the same calculations for a pair of independent genomes
v and w, each of which has probability 3/4 that a gene is present. Thus v
and w are larger genomes than x and y. The distance is 3/8 if we can observe
every pattern, but 2/5 if we cannot observe the double-absence pattern. The
proportion by which we overestimated the distance is less for v and w than
for x and y. If the distances we calculate do not reflect the true proportion of
differences, and are wrong by different amounts for pairs of genomes of different
sizes, we cannot expect to reliably reconstruct a phylogeny for genomes that
differ in size. This is an important problem, because genomes do differ greatly
in size. For example, genomes in the COG database vary by almost a factor of
10 in the number of gene families that are present.

In reality, the under-recording of {absent, absent} patterns may be more
complex. For example, the data in tables 1 and 2 came from the COG database
(Tatusov et al., 2003). The database is constructed from patterns of pairwise
sequence similarity detected using BLAST (Tatusov et al., 1997). Because of
the way this is done, a gene family will only appear in the database if it is
present in at least three genomes. Nevertheless, the same principles apply.

2.2 Multiple changes

We can estimate the correct tree from a matrix of pairwise evolutionary dis-
tances. An evolutionary distance is the number of changes of state between
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Table 3: Classification of methods for gene content phylogenetics by the kind of
data they use, how they deal with unobservable data, and how they deal with
multiple changes. ‘ML’ means Maximum Likelihood.

Method Data Unobservable data Multiple changes
parsimony usually presence/absence not necessary no attempt
naive distances presence/absence various no attempt
SHOT presence/absence correction based on pattern frequencies approximate evolutionary distances
paralinear distances presence/absence conditioning genome tree-additive distances
Huson and Steel presence/absence not necessary ML distances
Gu and Zhang absent/1 copy/ > 1 copy conditional likelihood ML distances
multi-gene events number of genes in family LOWESS extrapolation ML distances

two taxa. The simple counting method we used above (equation 1) uses the
observed number of changes.

To see why this is an underestimate of evolutionary distance, consider pres-
ence/absence data for a single site. If there was only one change at a given
location, we will observe this as a change from absent to present or present to
absent. If two changes occurred, we will end up where we started (absent to
present to absent, or vice versa), and will observe no changes. If the data are
the number of members of gene families, two changes might give us something
like 10 → 9 → 8. Although we did not end up where we started, we may not be
able to distinguish this from the single change 10 → 8.

3 Methods

In this section, I will review some of the methods for estimating phylogenies from
gene content data. Table 3 classifies these methods by the kind of data they
use, how they deal with unobservable data, and how they deal with multiple
changes. The list is not exhaustive, but I have attempted to include examples
of all the major methods.

3.1 Parsimony

Maximum parsimony estimates the phylogeny that minimizes the total number
of changes (here, gene gains or losses) needed to explain the observed data.
Figure 4 illustrates how we might count the total number of changes needed in
a simple case. A gene family is absent in taxa a and b, but present in taxon
c. If a and b are sister taxa, then the absence of the gene in their common
ancestor i will minimize the number of changes in this part of the tree. If we
assumed the gene was present in i, it would have been independently lost along
the evolutionary paths leading to a and b, requiring two changes instead of none.
The gene could be either present or absent in the common ancestor j of i and
c. We would either need to assume loss of the gene on the path leading from j
to i (if the gene was present in j) or gain of the gene on the path leading from
j to c (if the gene was absent in j). Either of these reconstructions is equally
parsimonious, requiring one change. To estimate a phylogeny using parsimony,
we would have to search over the set of possible trees, doing reconstructions
of this kind on each tree. We would choose the tree with the smallest number
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Figure 4: Inferred ancestral states in parsimony. Extant taxa are a, b and c.
Internal nodes (hypothetical ancestors) are i and j.The labels at the top of
the tree indicate observed states (0=absent, 1=present) in extant taxa. For
example, a:0 means that extant taxon a has state 0. Labels in curly brackets
indicate possible ancestral states.

of changes. For more information on parsimony, see Page and Holmes (1998,
section 6.4) and Felsenstein (2004a, chapters 1, 6, 7, 9 and 10).

Parsimony was one of the first phylogenetic methods to be applied to gene
content data (e.g. Fitz-Gibbon and House, 1999; Montague and Hutchinson III,
2000). Standard software such as PAUP* (Swofford, 2003) and PHYLIP (Felsen-
stein, 2004b) can be used. Parsimony has usually been applied to presence/absence
data, but it could also be used with data on the number of members of gene
families.

Unobservable data are not necessarily a problem for parsimony. If a gene
family has the same state in every extant taxon, parsimony assumes that it did
not change its state anywhere on the tree, no matter what topology the tree
had. In most cases, most of the unobservable data are gene families that are
absent from all extant taxa, and will therefore make no difference to the tree
chosen by parsimony.

Parsimony does not use an explicit model for evolution. We assume changes
are so rare that multiple changes along a single path never occur. This may
be a problem if the rate of change is in fact quite high. As a result, there are
situations in which parsimony is inconsistent: even with infinite data, it will not
estimate the correct tree (Felsenstein, 2004a, pp. 107-122).

Another problem with the absence of an explicit model is that we do not
know how to weight gains and losses. For example, if it were really the case that
gains were rare but losses were common, then minimizing the number of gains
would be more important than minimizing the number of losses. We should thus
give higher weights to rare events. One possible source of external information
on weights is the plausibility of reconstructed ancestral genomes, although this
is rather subjective. Mirkin et al. (2003) reconstructed ancestral genomes for
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taxa in the COG database, using parsimony on a fixed tree with a range of
weights for gene gain and loss. They chose weights so that the reconstructed
ancestors had complete metabolic pathways for essential functions. Boussau
et al. (2004) performed a similar analysis for the α-proteobacteria, but used
three different weights for gene duplication, deletion, and genesis (which includes
lateral transfers). While Mirkin et al. (2003) suggested equal weights for gains
and losses, Boussau et al. (2004) gave five times as much weight to genesis as
to duplication or deletion. It is not clear how to reconcile these results.

It is sometimes assumed that the the transition from absence to presence of a
gene can occur only once, but that a gene can be independently lost in different
lineages. The version of parsimony that matches this assumption is known as
Dollo parsimony, and has been applied to gene content data by Wolf et al.
(2001) and Huson and Steel (2004). However, multiple transitions from absence
to presence could occur by lateral transfer, in which case Dollo parsimony would
not be appropriate.

3.2 Naive distances

By naive distance, I mean any distance measure which is not based on a proper
evolutionary model for gene gain and loss. Some examples of naive distances
that have been used with gene content are:

• Fitz-Gibbon and House (1999) coded gene presence/absence in 11 free-
living microorganisms as a binary matrix, and used PAUP* (Swofford,
2003) to estimate a neighbor-joining tree. They do not describe the dis-
tance measure they used in detail, but it may be equation 1.

• Snel et al. (1999) used

dij = 1 − nPP

min(a, b)
(4)

where a and b are the numbers of genes present in genomes i and j respec-
tively, and nPP is the number of gene families present in both genomes.
Normalizing by the size of the smaller genome accounts for differences in
genome size. If genome a contains 1000 genes and genome b contains 2000
genes, the maximum possible number of shared genes is 1000. Equation 4
will give a distance of 0 if all the genes in a are also in b. This seems like
a good property.

• Wolf et al. (2002) used a distance measure based on the Jaccard coefficient:

dij = 1 − nPP

a + b − nPP

(5)

In a case where all of the genes in a are also present in b, and there are
additional genes in b but not a, equation 5 will give a distance greater
than 0.
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There are many other distances that could be tried. The examples here are easy
to calculate, and standard software can be used to estimate phylogenies from
the resulting distance matrices. However, we have no guarantee that any such
distance will perform well. As discussed above (section 2.2), naive distances will
underestimate evolutionary distances when the true number of changes is large.
We are not certain to get the right tree, even if we have very large amounts
of data. It therefore seems better to consider distances that take account of
multiple changes.

3.3 SHOT

The SHOT web server:

http://www.bork.embl-heidelberg.de/~korbel/SHOT_v2/

has options for estimating phylogenies from gene presence/absence data. It uses
either neighbor-joining or least-squares to estimate a phylogenetic tree from a
matrix of approximate evolutionary distances. Unobservable data are dealt with
using a correction based on pattern frequencies (Korbel et al., 2002). Because
SHOT is one of the simpler model-based methods, it is worth looking at it in
some detail.

The raw data are the presence/absence of families of orthologous genes.
Orthologs are identified from the STRING database (von Mering et al., 2003),
in which families are defined by bidirectional matches and triangles of reciprocal
best matches. The similarity s in gene content between a pair of taxa is defined
as the number of shared orthologs, normalized in a way that reflects genome
size. The default measure of distance is then − log(s). To see why this is a good
approximation to the evolutionary distance, we need to use a simple Markov
model for the evolution of gene content.

Let A and P = 1−A be the probabilities of absence and presence of a gene
family. Let qAP be the instantaneous rate at which families are gained, and qPA

be the rate at which families are lost (both have dimensions of time−1). Then
a simple model for gene content evolution is the pair of differential equations

dA

dt
= −qAP A + qPAP

dP

dt
= qAP A − qPAP = −dA

dt

(6)

Setting dA
dt

= 0 and solving for A gives the stationary probability α = qPA/(qPA+
qAP ) of the absent state.

Let β = exp(−(qPA + qAP )t), where t is the true evolutionary distance. For
this model, the expected frequencies F of the patterns of absence and presence
in a pair of taxa are

FAA = α[1 − (1 − α)(1 − β)]

FAP = α[(1 − α)(1 − β)] = FPA

FPP = (1 − α)[1 − α(1 − β)]

(7)
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We obtain these frequencies by solving equation 6, but we do not show the
details here. Assume that we can observe only those patterns in which a gene
family is present in at least one of the taxa (this is not strictly true: a gene
family will appear in STRING if it is present in at least two taxa, but these two
taxa need not be the pair that we are interested in). The genome sizes a and b
are

a = nPA + nPP

b = nAP + nPP

(8)

Note that in this simple model, a and b are equal. We do not know nAA,
the number of gene families absent from both taxa. The total number of gene
families N is therefore also unknown, but

a = N(FPA + FPP )

= N(1 − α)[α(1 − β) + 1 − α(1 − β)]

= N(1 − α)

(9)

Korbel et al. (2002) suggest the similarity measure s

s = nPP

√
a2 + b2

ab
√

2

=
NFPP

N(1 − α)

= 1 − α(1 − β)

= 1 − α(1 − e−(qP A+qAP )t)

(10)

We can directly estimate s from the first line of equation 10. Rearranging the
last line of equation 10 shows us how to estimate t:

t =
log(s + α − 1) − log(α)

−(qPA + qAP )
(11)

We do not know qPA or qAP , but the denominator is a constant if the parameters
of the model do not change over time. It will shrink or grow every distance by
the same amount. This will make no difference to the topology of the tree, so we
can ignore it apart from its negative sign. Thus, to estimate a tree, the distance
t̂ is linearly related to t, and is just as good for our purposes:

t̂ = − log(s + α − 1) + log(α) (12)

We still cannot use t̂, because we do not know α if we cannot observe the absence
of a gene family in both taxa. We cannot estimate α either from the sizes of the
two genomes, or from the number of times we observe each pattern. However,
the observation that there are few ubiquitous gene families suggests that α (the
stationary probability that a gene family is absent from a given genome) must
be close to 1. If this is the case, then log(s + α − 1) ≈ log(s), and log(α) ≈ 0.
Then we can hope that t is approximately linearly related to − log(s).
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Figure 5: Relationship between true and estimated distances from the SHOT
method under a simple Markov model of gene presence/absence, for two different
stationary probabilities α of gene absence (a: α = 0.99, b: α = 0.89). The
horizontal axis is the true evolutionary distance t (equation 11). The vertical
axis is estimated distance, either t̂ (equation 12, dotted line), − log(s) (the
default estimate in SHOT, solid line), or 1−s (a naive distance measure, dashed
line). Parameters: qPA = 0.8, qAP = 0.01 (a) or 0.1 (b).

Figure 5 shows that this is quite a good approximation for small evolutionary
distances, so long as α is large. There is a linear relationship between true
evolutionary distance t and t̂. The default SHOT estimate − log(s) is almost
linearly related to t when t is small, and is much better than the naive distance
estimate 1 − s. The nonlinearity in the relationship between t and − log(s) is
more of a problem when α is smaller (Figure 5b).

3.4 Paralinear distances

Lake and Rivera (2004) suggested a different method to estimate pairwise dis-
tances, based on Markov models for presence/absence like the one discussed
on section 3.3. Differences in the frequencies of the four nucleotides can cause
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biases in sequence-based phylogeny estimation. For example, taxa with high
GC content may be artefactually grouped together if analyzed using models
that do not allow variation in nucleotide frequencies. Paralinear (also known
as logdet) distances take account of such variation (Lake, 1994; Lockhart et al.,
1994). There is substantial variation in genome size among organisms. For ex-
ample, the smallest genome in the COG database (Mycoplasma genitalium) has
members of only 362 gene families, while the largest (Pseudomonas aeruginosa)
has members of 2243 gene families. Models like equation 6 assume the same
equilibrium size for every genome, which is probably not realistic. Paralinear
distances do not require this assumption, so it seems like they might be a good
idea.

We still have to deal with the problem of unobservable states. Lake and
Rivera (2004) suggested the use of a conditioning genome. Instead of considering
all genes present in either genome i or genome j, they choose a conditioning
genome c. They then calculate paralinear distances between each pair i and
j using only those genes that are present in c. The choice of conditioning
genome affects the distance we will estimate. Let tk be the distance from the
conditioning genome c to the common ancestor of i and j. Different values of tk

lead to different estimated distances (figure 6). If we use the same conditioning
genome for many pairs of taxa, each pair will have a different value of tk (figure
7) and the pairwise distances will be distorted.

When all states are observable, paralinear distances are tree-additive. This
means that the distance between two taxa i and j that are connected by a path
i, x1, x2, . . . , xn, j is the sum of the distances between i and x1, x1 and x2,. . . ,xn

and j. Tree-additivity should ensure that we will get the correct tree if we
have enough data. Given the effects of tk discussed above, it is surprising that
paralinear distances with a conditioning genome still seem to be tree additive.
Nevertheless, this has not been formally proved as far as I know, and the choice
of conditioning genome might be important in real situations with finite data.
More work on this area is needed.

Paralinear distances with a conditioning genome have been applied to a set
of ten prokaryotes and eukaryotes (Rivera and Lake, 2004). Rivera and Lake
(2004) ensured that all taxa in their main analysis had similar-sized genomes.
For additional analyses, they grouped taxa into sets with similar-sized genomes,
and used a different conditioning genome for each set. The method is not yet
implemented in standard software as far as I know.

3.5 Huson and Steel’s method

Huson and Steel (2004) suggested a model for genome size evolution in which
there is a constant rate of gene birth, and the rate of gene death is proportional
to the number of genes in the genome:

dl

dt
= λ − µl (13)

where l is the number of genes in the genome, λ is the birth rate (dimensions
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Figure 6: The evolutionary distance tk from the common ancestor of two taxa i
and j to the conditioning genome affects the estimated paralinear distance (solid
line) between i and j. The true paralinear distance (dashed line) remains con-
stant. Parameters: ti (evolutionary distance from common ancestor to i)=0.1,
tj (evolutionary distance from common ancestor to j)=0.2, qAP (rate of tran-
sitions from absent to present)=0.01, qPA (rate of transitions from present to
absent)=0.8.
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Figure 7: Distance to the conditioning genome depends on location of a pair
of taxa. Here, c is the conditioning genome, and w, x and y, z are two pairs
of taxa. The distances from the conditioning genome to the common ancestors
are tk(w, x) and tk(y, z) respectively. Because these distances are different, we
expect the estimated paralinear distances between w and x and between y and
z to be different proportions of their true values (figure 6).
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of genes × time−1), and µ is the death rate (time−1). Biologically, we can
interpret this to mean that all genes have the same probability of being deleted,
and that new genes arise by processes such as lateral transfer or evolution from
non-coding sequences, rather than by duplication of existing genes. In reality,
we might expect duplication to be an important source of new genes (e.g. Gevers
et al., 2004). More sophisticated models for genome size could allow duplications
as well (e.g. Karev et al., 2004).

Huson and Steel (2004) derive an evolutionary distance between two genomes
i and j that evolve under the model specified by equation 13:

dij = − log

[

1

2

(

u +
√

u2 + 4v12

)

]

(14)

where u = 1 + v12 − v1 − v2, v12 = nPP /m, v1 = a/m, v2 = b/m, a and b are
the sizes of the genomes i and j, and m is the expected number of genes in a
genome, λ/µ. Huson and Steel (2004) suggested using the average number of
genes per genome as an estimate of m. There is no problem with unobservable
data, because the frequencies of absent genes do not appear in equation 14.

This method has been implemented in Splitstree 4:

http://www-ab.informatik.uni-tuebingen.de/software/jsplits/welcome.html

Simulations (Huson and Steel, 2004) suggest that it performs better than a naive
distance (Equation 4), but not quite as well as Dollo parsimony. It has not yet
been applied to real data as far as I know.

3.6 Gu and Zhang’s method

One possible problem with Huson and Steel’s method (section 3.5) is that the
rate of gene gain does not depend on the number of genes in the genome, so the
role of duplication is ignored. Gu and Zhang (2004) developed a birth-death
model for the number of genes in a gene family, under the assumption that each
gene is equally likely to be deleted or duplicated, with rates µ and λ respectively
(dimensions of time−1). In this model, the rate of change of the probability Pn

of having n genes in a gene family is

dPn

dt
= λ(n − 1)Pn−1 + µ(n + 1)Pn+1 − (λ + µ)nPn (15)

In equation 15, the first term λ(n − 1)Pn−1 is the rate at which we move from
having n − 1 genes to having n genes, by duplicating one gene. Similarly,
µ(n+1)Pn+1 is the rate at which we move from having n+1 genes to having n
genes, by deleting one gene. The last term (λ + µ)nPn is the sum of the rates
at which we move from having n genes to having either n+1 or n− 1 genes, by
duplicating or deleting one gene. This model assumes that only one gene can
be deleted or duplicated at a time.

Gu and Zhang (2004) showed that it is not possible to identify the parameters
of this model if we consider only the presence or absence of a gene family. Data
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on whether there are no genes, one gene, or more than one gene in the family
are needed. Such data can be obtained from the COG database. Let A indicate
no genes, P indicate one gene, and D indicate more than one gene in a family.
Then we can use this model to calculate the likelihood of observing a given
frequency of each combination of the states A, P and D in a pair of genomes
separated by an evolutionary distance t. The estimate t̂ that maximizes the
likelihood is a maximum likelihood (ML) estimate of evolutionary distance.

This method is affected by unobservable data. Gu and Zhang (2004) over-
came this problem using a conditional likelihood, in which the likelihood is
normalized by the probability that the data are observable. They assumed that
AA was the only unobservable pattern, and obtained a conditional ML distance
estimate. This is a simplification, because a gene family will appear in the COG
database only if it is present in at least three genomes. Thus AA in a pair of
taxa is not guaranteed to be unobservable, and the other patterns are not guar-
anteed to be observable. They estimated conditional ML distances for a set of 35
microbial genomes from the COG database, and constructed a neighbor-joining
tree. Software to do these analyses is available at

http://xgu.zool.iastate.edu/software.html

3.7 Models with multi-gene events

Thinking about the nature of the data and the biology of prokaryote genomes
suggests some improvements to Gu and Zhang’s method (section 3.6):

• The COG database identifies gene families based on triplets of reciprocal
best matches (Tatusov et al., 2003), so a gene family must appear in at
least three genomes before it will appear in the database. This means
that the observability of a data pattern cannot be decided from pairwise
criteria. Furthermore, the double absence pattern AA is usually the most
commonly observed for pairs of taxa from the COG database (Tables 1
and 2). If we ignore this pattern in the cases where it can be observed,
we will be discarding a large proportion of the data.

• The model allows only one gene to be deleted or duplicated at a time.
There is empirical evidence that blocks of more than one gene can be
duplicated (Gevers et al., 2004; Chen et al., 2003) or deleted (Ochman
and Jones, 2000).

• Equation 15 shows that there is no way of leaving state n = 0 (the absence
of a gene family). Only deletion and duplication are included in the model.
Once a family has been lost, it is lost for ever, and there is no way to gain a
family that was not initially present in a lineage. In reality, gene families
may be gained by lateral transfer, and a new gene family could evolve
from some other sequence (although this will probably be a rare event).

We developed a new method that addresses these problems (M. Spencer,
E. Susko and A. J. Roger, unpublished). First, we estimated the proportions
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of unobservable data for each of the patterns AA, AP , PA and PP for each
pair of taxa in the COG database. Although our model works with the number
of family members rather than presence/absence, the data were too sparse to
estimate the proportion of unobservable data separately for each combination
of i genes in a family in one taxon and j in another taxon. We estimated the
proportion of unobservable data by extrapolation. Consider a pair of taxa. We
know the number of times we observe the pattern AA in this pair of taxa, for
gene families present in 3, 4, . . . ,m taxa (where m is the number of taxa in the
COG database). We used this relationship to predict the number of times AA
occurs in this pair, for gene families present in 0, 1 or 2 taxa in the database
(the unobservable cases). We used a locally weighted least squares (LOWESS)
regression (Cleveland, 1979), in which the slope of the prediction line at any
given point on the horizontal axis is influenced most strongly by nearby points.
This is an appropriate choice because we do not expect the relationship to have
the same shape for all points on the horizontal axis or for all pairs of taxa.
We performed similar analyses for the other patterns. Figure 8 shows examples
of the extrapolations for two pairs of taxa. In most cases, there were many
more unobservable data for the AA pattern than for any other. We then added
estimates of the number of unobservable data to the observed counts of each
combination of i genes in a family in one taxon and j in another. For example,
we divided up unobservable data for the PP pattern in proportion to the number
of times each combination of i > 1, j > 1.

To deal with gain of gene families by evolution from other sequences or by
lateral transfer, we allowed a non-zero rate of transitions from 0 to 1 members
of a gene family. To deal with duplications and deletions of multiple genes, we
allowed transitions between i and j genes in a family, for any values of i and j.
Because allowing a separate rate for each possible combination of i and j would
involve too many parameters, we divided transitions up into blocks:

• Deletions of single genes

• Deletions of multiple genes that leave at least one member of a gene family
present

• Deletions of entire gene families. We used a separate category here be-
cause deleting an entire gene family might increase the risk of losing some
important function

• Duplications of single genes

• Duplications of multiple genes

• Transition from no members of a family to one member. This could occur
by evolution from some other sequence (which might be rare) or by lateral
gene transfer (which might be common).

• Lateral transfers of many genes (leading to larger increases in family size
than could have occurred by duplication).
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Figure 8: Relationship between number of genomes in which a gene family is
found (horizontal axis, ng) and number of observations of a category in the
focal pair of genomes (vertical axis, n..(ng)), where n.. is one of the categories
AA (a, b), AP (c, d), PA (e, f) and PP (g, h). A indicates absent and P
present in each member of the focal pair. Focal pairs are E. coli strains K12
and 0157:H7 EDL933 (a, c, e, g); Archaeoglobus fulgidus and Bacillus subtilis

(b, d, f, h). Dots are observations, and solid lines are LOWESS curves with span
(proportion of points used in each local regression, chosen by cross-validation)
indicated on each panel. The vertical axis scale is fifteen times larger in a and
b than in the other panels.
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Within each block, we assumed that events operated independently and with
equal probability on each possible unit (a single gene or a group of more than
one gene). We estimated ML distances using this model for all 66 genomes in
the COG database. We used likelihood ratio tests to compare the performance
of this model with that of a birth-death model. For the majority of pairs of taxa,
our model performed substantially better than the birth-death model. We then
used least-squares to estimate a phylogeny based on the ML distances from our
model (figure 9).

We have not yet implemented this method in easy-to-use software, and the
large number of parameters means that large amounts of computer time are
needed. Figure 9 has some good features. For example, the three kingdoms
(archaea, bacteria, and eukaryotes) are clearly separated. Nevertheless, there
are some obvious biological problems, most of which commonly occur with phy-
logenetic methods based on gene content.

First, the halophilic archaeon Halobacterium is placed near the root of the
archaea, and the hyperthermophilic bacterium Thermotoga near the root of the
bacteria. Both these results are probably artefacts arising from extensive lateral
gene transfer. Halobacterium may have gained large numbers of genes from the
halophilic bacteria (Ng et al., 2000; Kennedy et al., 2001; Brochier et al., 2004),
and has therefore been displaced towards the bacteria. Similarly, Thermotoga

may have gained many genes from the archaea (Nelson et al., 1999). Although
our model includes lateral transfers, it will not give accurate tree reconstructions
if large numbers of genes are transferred from a single source.

Second, a large group of parasitic and endosymbiotic bacteria have been
wrongly grouped together: the parasitic α-proteobacteria Rickettsia spp., chlamy-
diae (Chlamydia trachomatis, Chlamydophila pneumoniae), spirochaetes (Tre-

ponema pallidum and Borrelia burgdorferi), mycoplasmas (Mycoplasma spp.

and Ureaplasma urealyticum), and the endosymbiont γ-proteobacterium Buchn-

era. This is probably a consequence of parallel loss of genes that are unnecessary
for parasites (Wolf et al., 2001).

Fitting our models to data involves estimating the rates of gene gains and
losses, and these rates can tell us about the biology of gene content evolution.
We examined these rates in detail for two E. coli strains, and for A. fulgidus

and B. subtilis. The estimated rate of lateral transfers of more genes than
could be gained by duplication was not significantly different from zero in either
case. Nevertheless, the rate of transitions from 0 to 1 members of a gene family
was about one fifth of the rate of loss of entire gene families in both cases. If
evolution of new gene families from other sequences is rare, this rate may mostly
represent lateral transfers of single genes. We also estimated the residence time
of a single gene, from when it appears (by duplication or transfer) to when it is
deleted. The median residence time was of the same order of magnitude as the
number of events separating A. fulgidus and B. subtilis. When using sequence
data for deep phylogenetic reconstruction, it may therefore be better to focus
on the subset of gene families with long residence times, rather than using all
possible genes.
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Figure 9: Phylogeny based on maximum likelihood distances for all 66 genomes
in the COG database, estimated by least-squares with inverse square weighting.
Distances are from the model described in M. Spencer, E. Susko and A. J.
Roger (unpublished). The tree is rooted with the archaea as an outgroup. Edge
lengths are expected numbers of gene events per gene family.
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4 Conclusions

I conclude with some recommendations and some ideas for future work.
Which existing method is best? It is probably not sensible to rely on a single

method. All are quite new, and are much less well developed than the corre-
sponding methods for sequence-based phylogeny. Nevertheless, it is probably
safe to suggest:

• Parsimony is unlikely to be the best method, because we do not know how
to weight gene gains and losses. Furthermore, parsimony has well-known
problems with multiple changes.

• Naive distance measures are unlikely to be the best method, because they
do not account for multiple changes. The distance measure used in the
SHOT web server (Korbel et al., 2002) is no more difficult to calculate,
can be justified by simple models of gene presence/absence evolution, and
is likely to perform better than naive distances (section 3.3). Therefore,
it seems like a good choice for a quick analysis.

• Paralinear distances (Lake and Rivera, 2004; Rivera and Lake, 2004) are
the only current method that may be unaffected by substantial variations
in genome size in different parts of the tree. Nevertheless, the use of a
conditioning genome to deal with unobservable data leads to some curious
properties that have not yet been thoroughly investigated (section 3.4).

• The more sophisticated models (Huson and Steel, 2004; Gu and Zhang,
2004, M. Spencer, E. Susko and A. J. Roger, unpublished) offer some
advantages. The models they use may be more realistic, and their param-
eters may give useful biological information. For example, our model can
give some information about the rates of lateral gene transfer relative to
other processes that affect gene content, and can be used to estimate the
length of time a single gene is likely to persist in a genome.

Areas in which more work is needed include:

• Better models of gene content. All the models I discussed make some
major assumptions that are unlikely to be true. Some of these are almost
unavoidable. For example, we have treated genes or gene families as if they
were independent. In reality, events such as duplication and deletion will
affect blocks of contiguous genes, which will not necessarily belong to the
same family. We would then need to model the order of genes as well as the
number of members in a family. This is probably impractical (Felsenstein,
2004a, page 515). Other problems may be more easily addressed. For
example, we assumed equal rates of gain and loss for all gene families, but
models that allowed some families to change faster than others might be
better. Variation in rates in different parts of the tree would allow for
variations in genome size.
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• Full maximum likelihood inference of phylogenies. We discussed estimat-
ing pairwise distances using explicit models for evolution. In principle, we
could use these models to estimate the entire tree in a maximum likelihood
framework. This is one of the best methods for DNA and amino acid se-
quence data, because it has good statistical properties and allows explicit
hypothesis testing (for example, comparisons between models). Page and
Holmes (1998, section 6.5) give a brief introduction to maximum likelihood
phylogenetics, and Felsenstein (2004a, chapter 16) provides more detail.
See Huelsenbeck and Crandall (1997) for an introduction to hypothesis
testing for phylogenetics. Maximum likelihood has been applied to gene
content data, but only for very small numbers of taxa (Zhang and Gu,
2004).

• Extensive lateral gene transfers from a single source are likely to mislead us
if we assume treelike evolution. Nevertheless, there are good methods for
estimating evolutionary networks from pairwise distances (Huson, 1998;
Bryant and Moulton, 2002). So far, these methods have not yet seen much
use with gene content data.
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