Modelling prokaryote gene content

Matthew Spencer

Department of Mathematics and Statistics & Department of Molecular Biology and Biochemistry, Dalhousie University

Acknowledgements

- Andrew Roger
- Ed Susko
- Dalhousie Statistical Evolutionary Bioinformatics group
- Genome Atlantic

Outline

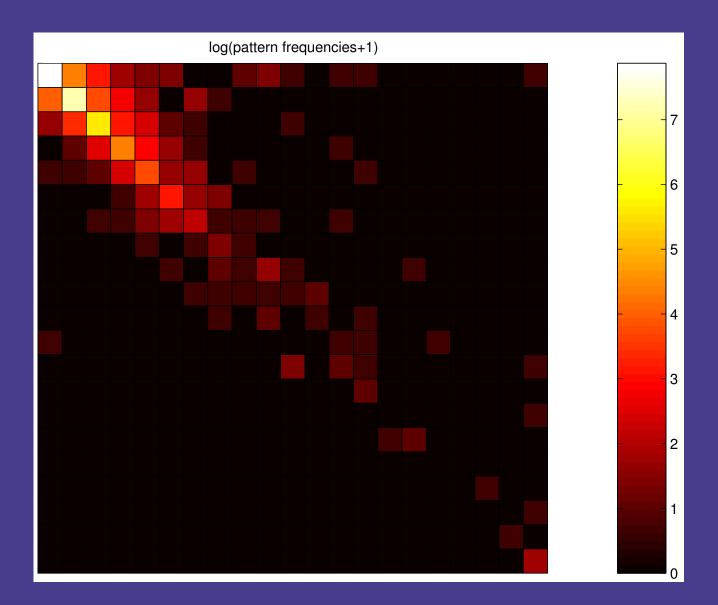
- Gene distributions: lateral transfer or multiple loss?
- Birth-death models vs. models with multi-gene events
- Lateral transfer rates
- ML distance phylogenies
- Residence times of genes

http://www.mathstat.dal.ca/~matts/

Lateral transfer or gene loss?

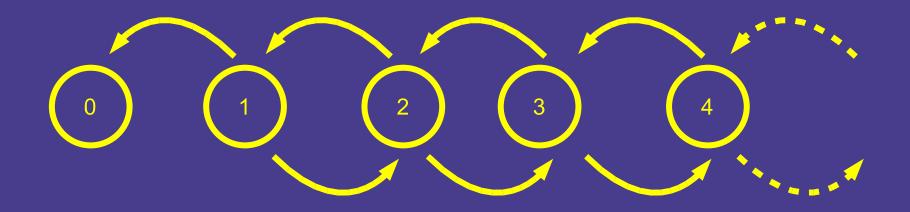
 0^{1}

Gene family size data

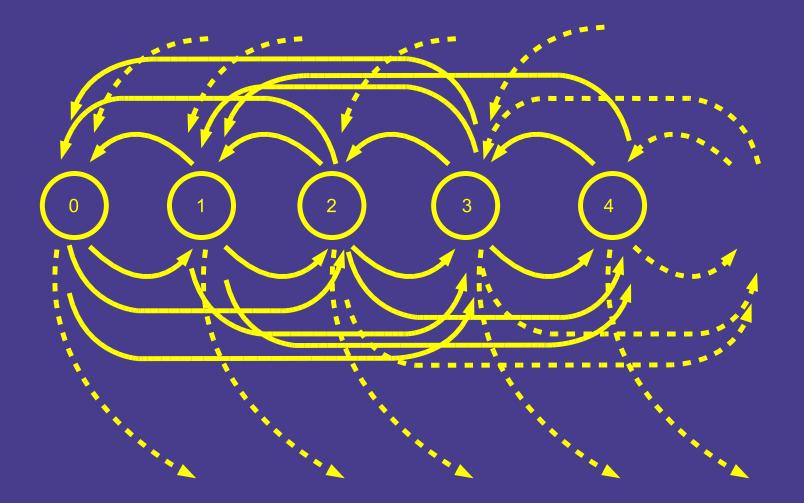


Modelling prokaryote gene content – p. 5

Birth-death model



Models with multi-gene events



Assumptions

- Family independence
- Finite maximum number of genes in family
- Frequent rearrangements
- Lateral transfers come from outside the set of sampled organisms

Rate categories

- Deletions of single genes
- Gains of single genes
- Deletions of > 1 gene
- Gains of > 1 gene where the gain could be duplication
- Gains of more genes than could be duplicated
- Loss of entire gene family
- Transition from 0 to 1 members of family

Results

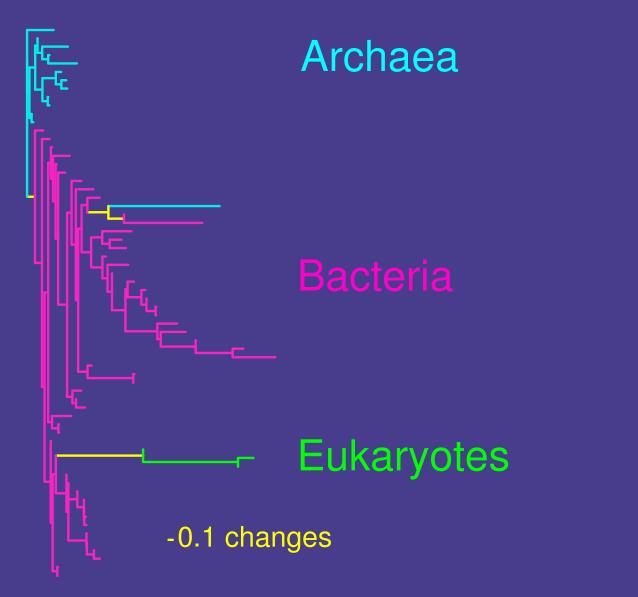
Log likelihoods:blocksbirth-deathSpeciesblocksbirth-deathE. coli -7.55×10^3 -7.89×10^3 A. fulgidus & B. subtilis -9.13×10^3 -9.17×10^3

- Strongly prefer blocks model for both pairs
- Evidence for deletions and duplications of multiple genes

Lateral transfer rates?

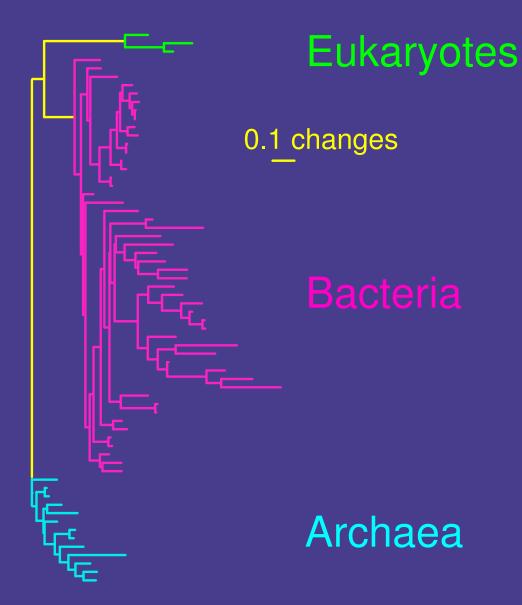
Species	multiple genes	$0 \rightarrow 1$
E. coli	$5.21 imes 10^{-4}$	0.27
A. fulgidus & B. subtilis	6.79×10^{-8}	0.40

Birth-death phylogeny



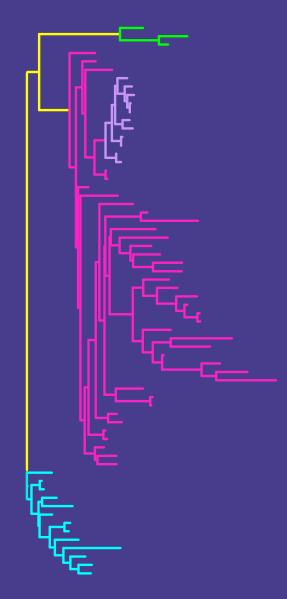
Modelling prokaryote gene content – p. 12

Blocks phylogeny



Modelling prokaryote gene content – p. 13

Blocks phylogeny



Eukaryotes

Parasites/ endosymbionts

Bacteria

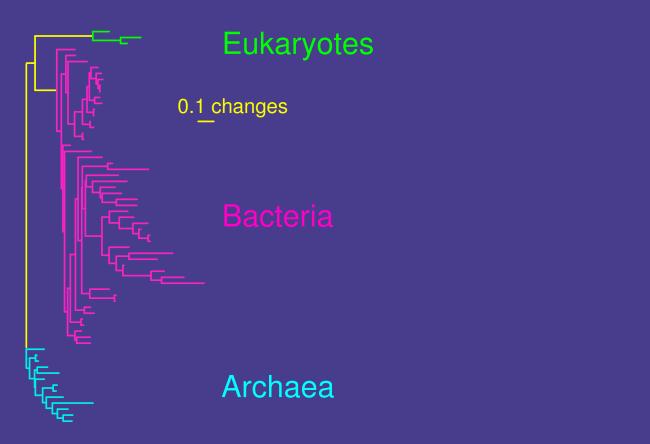
Residence times

- Expected time from origin of a gene (innovation, duplication or transfer) to loss from the genome
- sum over all states *i* [(probability we enter state *i* as a new gene is created) × (expected time to lose a gene created in state *i*)]
- E. coli: mean 0.60, median 0.33 events
- A. fulgidus/B. subtilis: mean 0.48, median 0.34 events
- Between ancestors of bacteria and archaea: 0.19 events

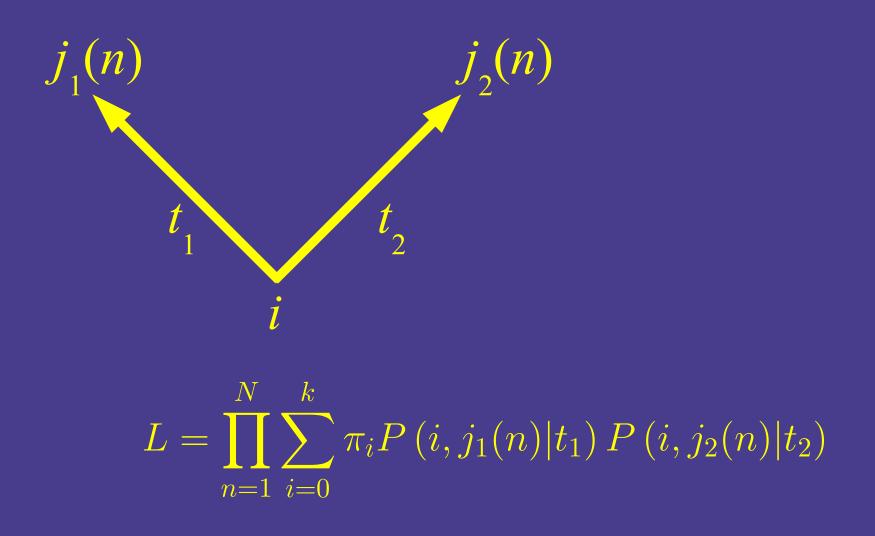
Summary

- Models that allow multi-gene events work better than birth-death models
- No evidence for frequent transfers of multiple genes from the same family
- May be a high rate of lateral transfers of single genes
- If we want to use single genes, we should focus on the ones with long residence times

The End



http://www.mathstat.dal.ca/~matts/



$$L = \prod_{n=1}^{N} \sum_{i=0}^{k} \pi_{i} P(i, j_{1}(n)|t_{1}) P(i, j_{2}(n)|t_{2})$$

$$L = \prod_{n=1}^{N} \sum_{i=0}^{k} \pi_{i} P(i, j_{1}(n)|t_{1}) P(i, j_{2}(n)|t_{2})$$

• P(i, j(n)|t) from exponential of rate matrix

$$L = \prod_{n=1}^{N} \sum_{i=0}^{k} \pi_{i} P(i, j_{1}(n)|t_{1}) P(i, j_{2}(n)|t_{2})$$

- $P(i, j_{\cdot}(n)|t_{\cdot})$ from exponential of rate matrix
- π_i from stationary probabilities of rate matrix

$$L = \prod_{n=1}^{N} \sum_{i=0}^{k} \pi_{i} P(i, j_{1}(n)|t_{1}) P(i, j_{2}(n)|t_{2})$$

- $P(i, j_{.}(n)|t_{.})$ from exponential of rate matrix
- π_i from stationary probabilities of rate matrix
- Sum over possible root states *i*

$$L = \prod_{n=1}^{N} \sum_{i=0}^{k} \pi_{i} P(i, j_{1}(n)|t_{1}) P(i, j_{2}(n)|t_{2})$$

- $P(i, j_{.}(n)|t_{.})$ from exponential of rate matrix
- π_i from stationary probabilities of rate matrix
- Sum over possible root states *i*
- Product over all gene families n

Residence times

$$E(r) = \sum_{i=0}^{k} \beta_i r_i$$

where β_i is the probability that we enter state *i* as a gene appears in the genome, and r_i is the expected time until a gene is deleted, given that we were in state *i* when it appeared in the genome.

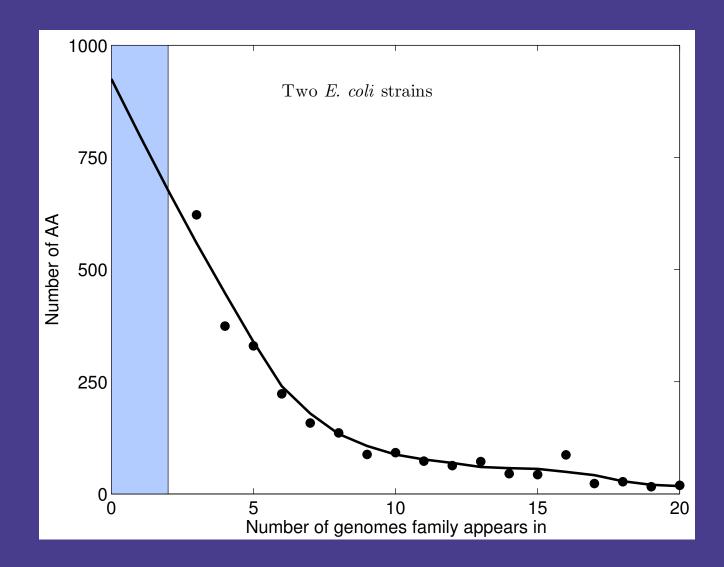
Residence times

At steady state,

$$\beta_{i} = \sum_{j < i} q_{ji} \pi_{j} (i - j) / \sum_{i} \sum_{j < i} q_{ji} \pi_{j} (i - j)$$

The numerator is the sum of steady-state rates of flow into state *i* that add new genes, weighted by the number of genes i - j each flow adds. The denominator normalizes the β_i to probabilities.

Unobservable data by extrapolation



Residence time distribution

