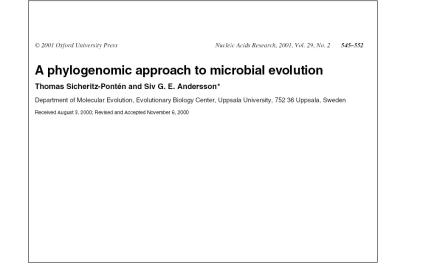
Phylogenomic Analyses to Detect Prokaryote to Eukaryote Horizontal Gene Transfer

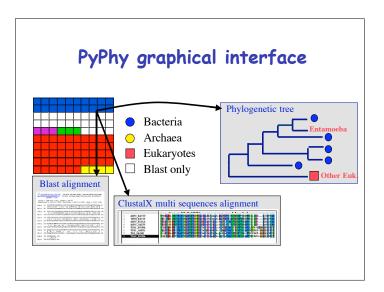
> T. Martin Embley Newcastle University

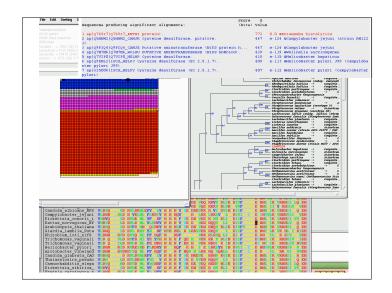
Overview

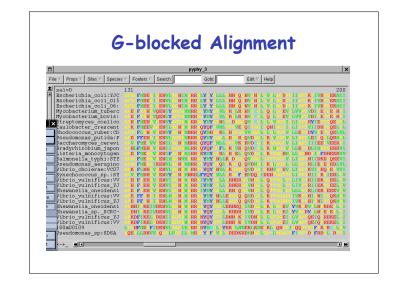

- The approach used detection of 'recent' HGT based upon phylogenetic trees
- The computer programmes used and some of their features
- Some results from analysis of the genome of Entamoeba histolytica
- Future directions and challenges

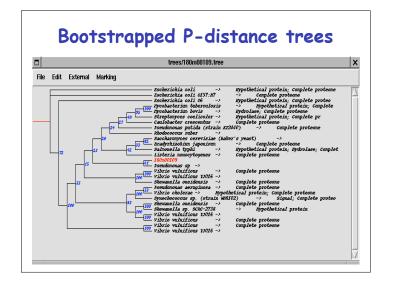
Why study HGT?

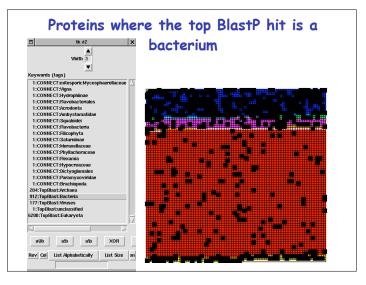
- What is the role of HGT, outside of endosymbiosis, in the evolution of eukaryotes?
- How much HGT has occurred? What types of genes? Where from?
- How has HGT affected the evolution of parasitic eukaryotes? Does HGT provide drug targets?

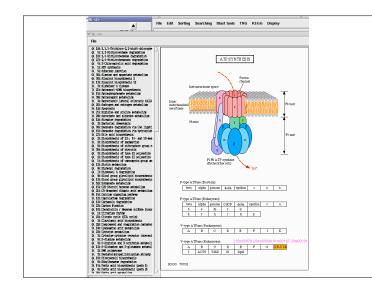

How have we chosen to look for HGT?

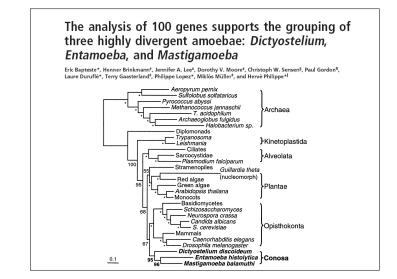

- A semi-automated phylogenomics approach based upon a published computer programme called PyPhy
- Use trees to detect HGT in a two-stage process:
 - Simple parsimony or p-distance trees from edited alignments
 - Bayesian trees with more sophisticated phylogenetic models as a second stage screen
 - Distance-based bootstrapping to gain a measure of confidence in groups on trees

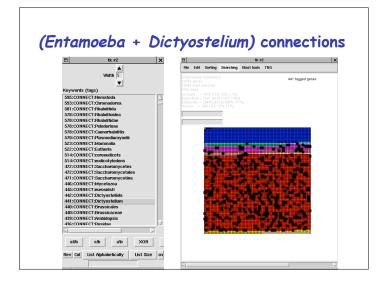

PyPhy - the Primary Screen

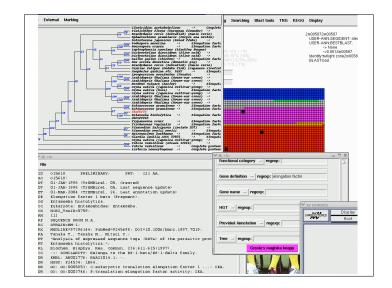

- The database
 - Translated (Tr)EMBL
 - Swissprot entries (for annotation)
- BlastP searches using query genome to recover homologues
 - user defined cut-off values (e.g. at least 40% similarity over >70<200% of the length of query sequence)
- Align sequences using ClustalX and trim the alignment using GBLOCKS
- Construct bootstrapped P-distance or parsimony trees
- Display results as a grid with coloured squares indicating neighbor relationships

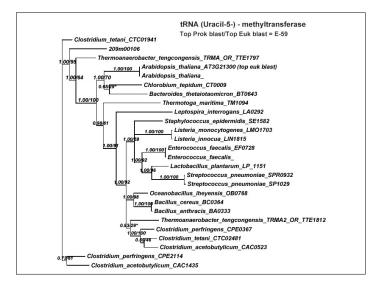


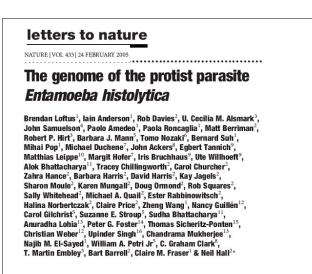


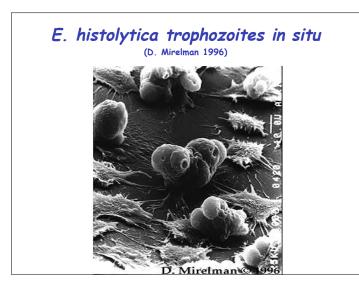


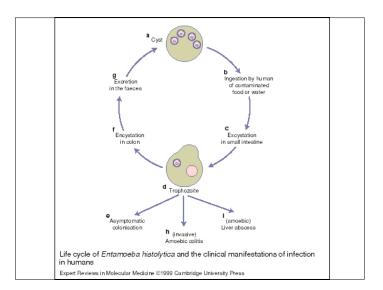




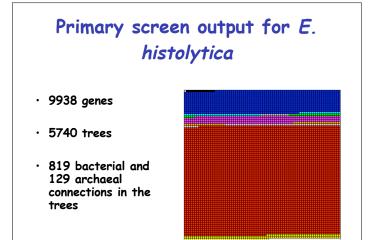



PyPhy - the secondary screen I


- Search EST databases and hits added to the alignments
- Feed G-blocked alignment into MRBAYES (Huelsenbeck & Ronquist 2001)
 - WAG matrix, gamma correction for site rate variation and a proportion (pinvar) of invariant sites.
- Make Bayesian consensus trees with posterior probabilities as support values

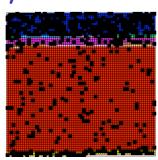

PyPhy - the secondary screen II

- Bootstrapping to provide an additional indication of support for relationships
- Each data set is bootstrapped (100 replicates) and used to make distance matrices under the same evolutionary model as in the Bayesian analysis, using custom (P4) software
- Trees are made from the distance matrices using FastME (Desper & Gascuel 2004) and a bootstrap consensus tree made using P4
- Transfer BS support values onto the Bayesian consensus tree



The E. histolytica genome

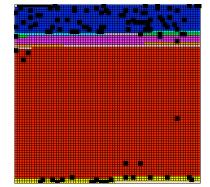
- Sequenced by TIGR and the Sanger institute (PIs Brendan Loftus and Neil Hall)
- ~ 23.7 Mbp
- 9938 predicted genes
- 1/3rd of genes have no detectable homologue in public data bases
- Large gene families, duplications are common

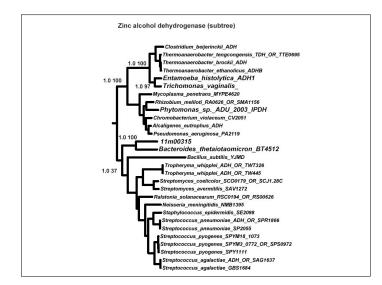

Aim of our HGT screen

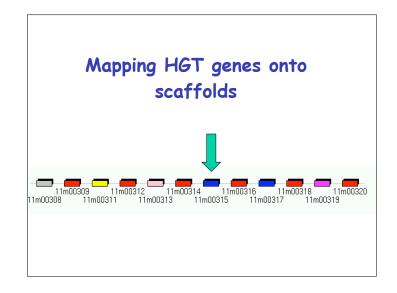
- To identify the strongest candidate 'recent' HGT from prokaryotes to *Entamoeba*
 - The tip of the HGT iceberg?
 - Help to validate HGT as a plausible explanation for topological incongruence deeper in tree
- These cases should be the easiest to defend paralogy or poor tree-building is unlikely to be an equally plausible explanation to HGT
- This screen is not seeking to detect more 'ancient' transfers, for example - at the base of major groups or from the alpha-proteobacterial mitochondrial endosymbiont

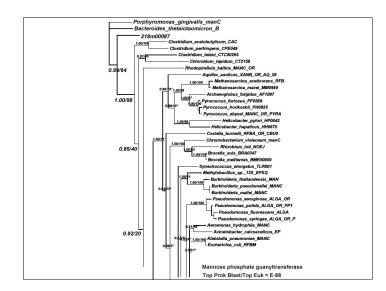
Superimposed top blast hit = prokaryote

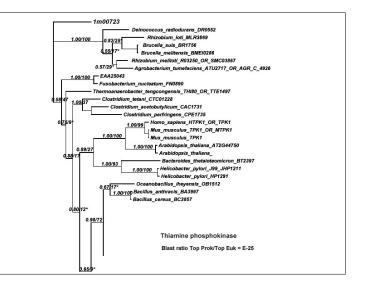
 912 genes have a bacteria and 204 an archaea as the top BLAST hit, 107 of these genes show eukaryotic connections in the primary tree.

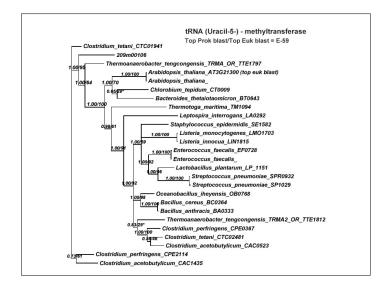

Criteria for HGT 2° analysis

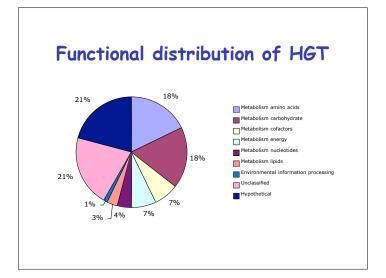

(vary in degree of ad hoc-ness)

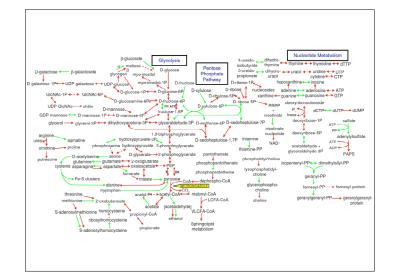

- Strongly supported tree placing Entamoeba within a conventional bacterial group
- No other eukaryotic sequence in tree
 - sampling is very poor, surprises occur!
- Two or more strongly supported nodes separating Entamoeba from any other eukaryotic sequence
- Eukaryotes never appear together in bootstrap partitions
- High ratio of prokaryote to eukaryote BlastP score

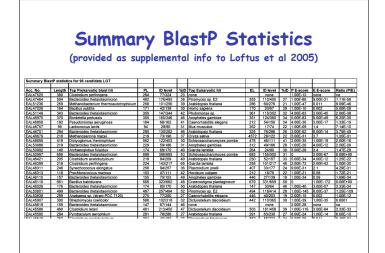

Results of the 2nd generation analysis

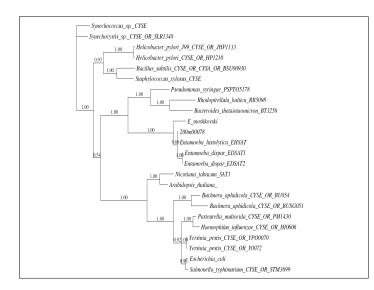

 96 Bayesian trees are most simply explained by prokaryote to eukaryote HGT

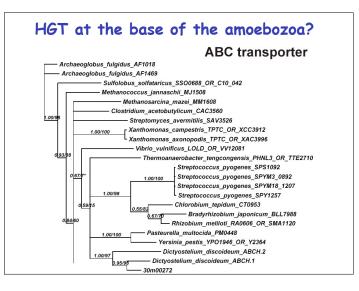


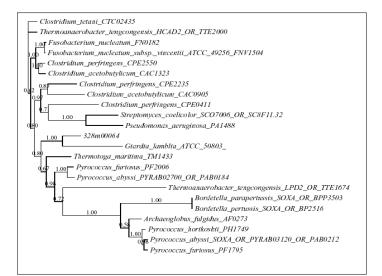


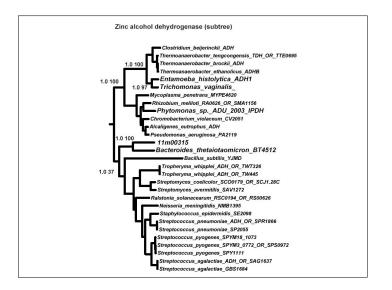


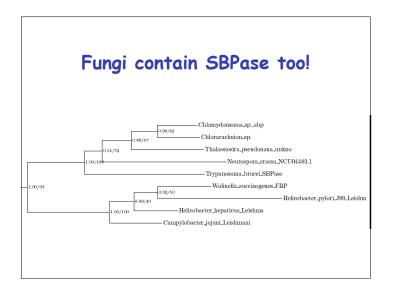

121m00124	Tartrate dehydrogenase	METABOLISM	
133m00129	Fructokinase	METABOLISM	
400m00033	Arginine decarboxylase METABOLISM		
78m00151	Lysophospholipase L2	METABOLISM	
9m00390	HesA/MoeB/ThiF family protein	METABOLISM	
24m00307	NADH dehydrogenase, similar to nitrite reductase	ENERGY METABOLISM	
61m00186	5-nitroimidazole antibiotic resistance protein CELL RESCUE, DEFENC		
30m00272	ABC transporter TRANSPORT		
289m00068	Conserved hypothetical protein	UNKNOWN FUNCTION	






Name	NN MrBayes	Best Prokaryote blast hit	
100m00122	DT Deinococcus	Clostridium perfringens	
189m00102	Archeal like	Pyrobaculum aerophilum	
10m00331	Proteo /Xanthobact	Methanobacterium thermoautotrophicum	
119m00142	Proteo /Vibrio	Bacillus subtilis	
11m00315	Bact/Chlorob	Bacteroides thetaiotaomicron	
209m00106	Firmicutes	Clostridium perfringen	
126m00107	Bacteria like	Pseudomonas aeruginosa	
130m00124	Firmicutes	Lactococcus lactis (subsp. lactis) (Streptococcus lactis)	
133m00129	Bacteria like	Bacteroides thetaiotaomicron	
133m00136	Bact/Chlorob	Methanosarcina mazei (Methanosarcina frisia)	


We see a broad collection of donors



PNAS | February 4, 2003 | vol. 100 | no.3 | 1067-1071 Plant-like traits associated with metabolism of *Trypanosoma* parasites

Véronique Hannaert*, Emma Saavedra*[†], Francis Duffieux*[‡], Jean-Pierre Szikora*, Daniel J. Rigden[§], Paul A. M. Michels*, and Fred R. Opperdoes^{*¶}

- *Trypanosoma brucei* contains a complete open-reading frame encoding a homologue of sedoheptulose-1,7-bisphosphatase (SBPase).
- This enzyme is typical for the Calvin cycle of photosynthetic organisms and only encountered in the chloroplasts of green algae and plants
- This was taken as evidence by that *Trypanosoma* once had a plastid

http://www.icp.ucl.ac.be/~opperd/Supplem entary/sbpase_nbj_tree.html Rhodobacter spheroides | Rhizobium melilot - Xanthohacter flavus Eubacterial Alcaligenes eutrophus FBPases and Prokaryotes bifunctional - Anabaena sp. - Nostoc punctiforme - Synechocystis sp. - Synechococcus sp. - Haemophilus influenzae Cyano-bacteria FBP/SBPases Escherichia coli - Heliobacter pylor Arabidopsis thaliana Wheat Spinach S1,7BPases Plants - Chlamydomonas reinhardtii - Trypanosoma brucei 0.1

The people who do the work

Ponten

Robert Hirt and Cessie Alsmark Thomas Sicheritz

Peter Foster

Collaborators: Brendan Loftus and Neil Hall (TIGR) Matt Berriman (Sanger)

