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Stochastic dynamics of a warmer Great Barrier Reef 1 

Jennifer K Cooper, Matthew Spencer, John F Bruno 2 

Appendices (additional methods and results) 3 

A.1 Data sources 4 

Reef composition data come from the intensive surveys of the Australian Institute of Marine Science 5 

Long-Term Monitoring Programme. These surveys were carried out using video transects. There are 3 6 

sites per reef, and 5 permanently-marked 50 m transects per site (Abdo et al. 2004, p. 5). On each 7 

transect, the benthic organisms present at 200 points are identified (Abdo et al. 2004, p.30). 8 

 9 

Sea surface temperature (SST) and anomaly data were obtained from the CorTAD database Version 3 10 

(http://www.nodc.noaa.gov/sog/cortad/, accessed 02/12/2011) (Selig et al. 2010). Weekly SST data at 4 11 

km resolution were extracted using Matlab R2012a (The Mathworks, Inc., Natick, MA), and a mean SST 12 

and mean SST anomaly calculated for each calendar year. We obtained site-specific climatology data 13 

(Selig et al. 2010) by subtracting mean SST anomaly from mean SST for each site in each year. 14 

 15 

We used centred and scaled (to zero mean and unit standard deviation) lagged SST anomaly and 16 

climatology (for the calendar year preceding the explanatory observation, and thus two years before the 17 

response observation) as explanatory variables in our models. We denote by 𝑧1(𝑡) =
𝑣1(𝑡)−�̅�1

𝑠1
 the centred 18 

and scaled lagged annual mean SST anomaly at time 𝑡, where 𝑣1(𝑡) is the value of lagged annual mean 19 

SST anomaly at time 𝑡, �̅�1 is the sample mean lagged annual mean SST anomaly (over all times and 20 
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locations), and 𝑠1 is the sample standard deviation of lagged annual mean SST anomaly (over all times 21 

and locations). Similarly, we denote by 𝑧2(𝑡) =
𝑣2(𝑡)−�̅�2

𝑠2
 the centred and scaled lagged climatology at time 22 

𝑡. 23 

 24 

We also investigated other combinations of SST variables (lagged and unlagged SST, lagged climatology 25 

and anomaly separately, and unlagged climatology and anomaly, together or separately). The combination 26 

of lagged climatology and lagged anomaly outperformed all other SST variables, as measured by 27 

Akaike’s Information Criterion (Table A1). 28 

 29 

We downloaded spatial data on integrated local threats to reefs from 30 

http://www.wri.org/publication/reefs-at-risk-revisited#datasets (accessed 06/10/2012). Local 31 

threat categories were decided by expert judgement (Burke et al. 2011, p. 16). Most of the 32 

underlying data used to produce these categories were resolved to a 1 x 1 km grid, according to 33 

the metadata at 34 

http://www.wri.org/sites/default/files/reefs_at_risk_revisited_metadata_local_threats.xlsx 35 

and the technical notes at 36 

http://www.wri.org/sites/default/files/docs/reefs_at_risk_revisited_technical_notes.pdf 37 

(both accessed 2 June 2014). The exception, population growth was on a smoothed 3 x 3 km grid 38 

(Reefs at Risk Revisited technical notes, page 4). The effects of point sources of local threat were 39 

weighted by distance (Burke et al. 2011, p. 16; Reefs at Risk Revisited technical notes, Tables 2 40 

and 4 and pages 7, 8, 10, 12). 41 

 42 

http://www.wri.org/sites/default/files/reefs_at_risk_revisited_metadata_local_threats.xlsx
http://www.wri.org/sites/default/files/docs/reefs_at_risk_revisited_technical_notes.pdf
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These data were in vector format. We used the R packages rgdal (version 0.7-19) and rgeos (version 0.2-43 

7) to obtain the local threat level for the polygon containing each reef. 39 pairs of observations came from 44 

reefs that were not in any polygon with a defined local threat level. All were less than 0.5 km from the 45 

closest polygon with a local threat level, so we assigned them the local threat level of this closest polygon 46 

(270 pairs of observations had low local threat level, 80 medium, 5 high (all from a single reef), and 9 47 

very high (all from a single reef)). Locations of reefs and their local threat levels are shown in Fig. A1. 48 

A.2 Short-term changes in reef composition 49 

 50 

If the reef compositions 𝐲(𝑡) and 𝐲(𝑡 + 1) at two successive time points were vectors in an 𝑛-51 

dimensional real space, we could simply subtract 𝐲(𝑡) from 𝐲(𝑡 + 1) to obtain a measure of change. 52 

However, 𝐲(𝑡) and 𝐲(𝑡 + 1) are vectors in an (𝑛 − 1)-dimensional simplex, and simple subtraction may 53 

result in a vector that is not a composition. Instead, we use the perturbing vector 54 

𝐩(𝑡) = 𝒞 (
𝑦1(𝑡+1)

𝑦1(𝑡)
,

𝑦2(𝑡+1)

𝑦2(𝑡)
,

𝑦3(𝑡+1)

𝑦3(𝑡)
), where 𝒞(𝐰) =

𝐰

∑ 𝑤𝑖𝑖
 denotes the closure operation for a non-negative 55 

vector 𝐰 (Aitchison 1986, p. 42). 56 

 57 

A.3 Transformation of compositions 58 

 59 

Denote by 𝐱(𝑡) = ilr 𝒚(t) the isometric log-ratio transformed composition at time 𝑡. The elements of 𝐱(𝑡) 60 

are 61 

𝑥1(𝑡) = −
1

√2
log

𝑦1(𝑡)

𝑦2(𝑡)
,         (A.1) 62 
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which increases as the ratio of algae to coral increases, and 63 

𝑥2(𝑡) = −
2

√6
log

√𝑦1(𝑡)𝑦2(𝑡)

𝑦3(𝑡)
,        (A.2) 64 

which increases as the ratio of ‘other’ to the geometric mean of coral and algae increases (throughout, log 65 

denotes natural logarithm). The origin of this coordinate system corresponds to equal proportions of coral, 66 

algae, and ‘other’. In addition, ilr 𝐩(𝑡) = ilr 𝐲(𝑡 + 1) − ilr 𝐲(𝑡). 67 

We used the R package compositions version 1.20-1 (van den Boogaart and Tolosana-Delgado 2008) to 68 

carry out these transformations. 69 

A.4 Model details 70 

 71 

Our model is 72 

ilr 𝐩(𝑡) = 𝐜 + 𝐀𝐱(𝑡) + 𝛃1𝑧1(𝑡) + 𝝐(𝑡).       (1) 73 

The first term on the right of Equation 1 is 74 

𝒄 = 𝛃0 + 𝛃2𝑧2 + 𝚪𝐫,         (A.3) 75 

which is constant over time and consists of three terms. The first is an intercept vector 𝛃0. The second 76 

term is the effect of centred and scaled climatology 𝑧2, with coefficient 𝛃2. The third term 𝚪𝐫 is the effect 77 

of the categorical local threat levels. Local threat levels are represented by a 3 × 1 vector 𝒓 of binary 78 

variables (assumed constant over time), only one of which was nonzero for a given reef, indicating 79 

whether the reef was in the Medium, High, or Very High category. The 2 × 3 matrix 𝚪, with columns 80 

𝛄1, 𝛄2, 𝛄3, is the effect on the expected transformed perturbing vector of being in each of the local threat 81 

levels Medium, High, or Very High, relative to the Low threat level. Using Low as the reference level is 82 
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appropriate because for a reef to have Low local threat, it must receive the minimum possible score for 83 

every local stressor (Burke et al. 2011, p. 18), which may make Low qualitatively different from the 84 

‘other’ categories. The vector 𝐜 can be thought of as describing the deterministic aspect of reef dynamics 85 

in the absence of effects of reef composition. 86 

The second term in Equation 1, 𝐀𝐱(𝑡), describes the effects of current reef composition on short-term 87 

changes. The vector 𝐱(𝑡) is the ilr-transformed reef composition at time 𝑡. The first column 𝐚1of the 88 

2 × 2 matrix 𝐀 describes the effect of the transformed ratio of algae to coral on short-term change, and 89 

the second column 𝐚2describes the effect of the transformed ratio of ‘other’ to the geometric mean of 90 

coral and algae. If 𝐀 = 𝟎, then there are no such effects, and each component follows a stochastic 91 

exponential trajectory determined by 𝐜. 92 

The third term in Equation 1, 𝛃1z1(t), is the effect of the centred and scaled SST anomaly. Because 𝑧1(𝑡) 93 

is centred and scaled, it has mean 0 and standard deviation 1. In consequence, 𝛃1z1(t) has mean vector 𝟎 94 

and covariance 𝛃1𝛃1
T (where the superscript T denotes transpose). 95 

The fourth term in Equation 1, 𝝐𝑡, is a multivariate normal error with mean vector 𝟎 and constant 96 

covariance matrix 𝚺. This includes the effects of processes on which we do not have data, such as storms. 97 

A.5 Model fitting 98 

 99 

Equation 1 is a VAR(1) (vector autoregressive model of order 1). We fitted Equation 1 using multivariate 100 

least squares (Lütkepohl 1993, pp. 62-65), implemented in the lm() function in R version 2.15.1 (R Core 101 

Team 2012). Multivariate least squares is consistent, and tests and confidence intervals based on the 102 

standard 𝑡 and 𝐹 statistics are asymptotically valid, even for nonstationary (Lütkepohl 1993, p. 369) or 103 

non-Gaussian (Hamilton 1994, p. 298) processes. Tests and confidence intervals are of course 104 
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approximate for finite samples. We used the Anova() function in the car package (version 2.0-15) to carry 105 

out multivariate hypothesis tests based on Pillai’s trace, which may be more robust than other common 106 

multivariate test statistics (Hand and Taylor 1987). In each of these tests, we controlled for the effects of 107 

the other explanatory variables. For anomaly and climatology, we tested the hypotheses 𝛃𝑖 = 𝟎 (that the 108 

explanatory variable had no effect on the expected transformed perturbing vector). For local threat levels, 109 

we tested the hypothesis 𝚪 = 𝟎 (that there were no differences in expected transformed perturbing vectors 110 

between local threat levels). For reef composition, we tested the hypothesis 𝐀 = 𝟎 (that the transformed 111 

composition had no effect on the expected transformed perturbing vector). For the local threat variables, 112 

we carried out post-hoc multivariate tests of the separate hypotheses 𝛄𝑗 = 𝟎 for 𝑗 = 1,2,3 (that the effect 113 

of local threat levels Medium, High, and Very High did not differ from the effect of local threat level 114 

Low). Similarly, for reef composition, we carried out post-hoc multivariate tests of the separate 115 

hypotheses 𝐚1 = 𝟎 and 𝐚2 = 𝟎 (that the transformed ratio of algae to coral, and the transformed ratio of 116 

other to the geometric mean of coral and algae, had no effect on the expected transformed perturbing 117 

vector). Post-hoc tests were done using the linearHypothesis() function in the car package. We used 118 

Pillai’s trace as the test statistic, and interpreted the resulting P values under a Bonferroni correction 119 

based on the number of post-hoc tests. 120 

 121 

We concentrated on simple models without interactions, for which all of the parameters can be well 122 

estimated. We experimented with models including two- and three-way interactions, but for our data, 123 

these had some parameters that could not be identified, and others that had very large confidence ellipses 124 

and were very close to the boundary of the parameter space (which is often a symptom of overfitting). We 125 

also experimented with a multivariate mixed-effects model with a random intercept for each reef, which 126 

might account for some additional among-reef variability. We tried fitting this model in the R package 127 

sabreR version 1.1, but were unable to achieve satisfactory convergence.  128 
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 129 

Apart from the error covariance matrix 𝚺, each of the parameters in the model (the intercept 𝛃0, the 130 

coefficients 𝛃1 and 𝛃2, and each column of 𝚪 and 𝐀) is a pair of isometric logratio coordinates, which can 131 

be back-transformed and plotted on a ternary plot. We added asymptotic 95% confidence ellipses as 132 

described in Tolosana-Delgado and van den Boogaart (2011). The error covariance matrix 𝚺 can also be 133 

visualized on a ternary plot as an ellipse of unit Mahalanobis distance (the multivariate equivalent of one 134 

standard deviation) around the origin. 135 

In addition to the stochasticity inherent in the model, the values of parameters are not known exactly. We 136 

used a nonparametric bootstrap with 10,000 pseudosamples to propagate this uncertainty. 137 

The R code we used is available as supporting information. 138 

A.6 Effects of observation error 139 

 140 

We did not attempt to include observation error in our model. Although it is easy in principle to add 141 

observation error to models like Equation 1, it is difficult to estimate observation error from short time 142 

series, and we had only very short time series on individual reefs. It might be possible in future to 143 

estimate observation error across all the time series, assuming that observation error is drawn from the 144 

same distribution on each reef. 145 

 146 

Instead, we established the likely consequences of observation error using simulations.  147 

As described in Appendix A.1, each reef composition is estimated from the benthic organisms present at 148 

200 points on each of 5 transects at each of 3 sites (Abdo et al. 2004). If we make the simplifying 149 

assumption that these points are independent, then we can treat the estimated composition as being drawn 150 
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from a multinomial with 3 × 5 × 200 = 3000 observations. We generated 10000 simulated data sets 151 

from the fitted model, each with the addition of multinomial observation error, and refitted the model to 152 

each one. The estimated biases in the effects of SST anomaly, climatology, medium threat and very high 153 

threat were small (Fig. A3, green, pink, yellow and red crosses), as was the bias in the estimated 154 

covariance matrix (Fig A3, grey dotted line). There was a larger estimated bias in the effect of high threat 155 

(Fig. A3, orange cross), but this parameter also has a very large 95% confidence ellipse, so the bias is not 156 

likely to be accurately estimated. More importantly, the intercept and composition effects were all biased 157 

away from the origin (Fig. A3, grey, light blue and dark blue crosses). Because both the composition 158 

effects and the intercept affect the location of the stationary mean, biases in these parameters will also 159 

affect the estimated long-term effect of increased climatology. The strength of this long-term effect was 160 

underestimated in the presence of observation error, but the direction of the effect was approximately 161 

correct (Fig. A4, red dotted arrow). 162 

 163 

 164 

 165 

A.7 Model checking 166 

Our model assumes that the residuals are bivariate normal with constant covariance matrix, and do not 167 

systematically depend on explanatory variables or on time. We checked the assumption of bivariate 168 

normality using bivariate scatter plots of residuals, and identified outliers using the method described in 169 

Filzmoser et al. (2005) and implemented in the aq.plot() function in the R package mvoutlier, with default 170 

parameters. There were 30 potential outliers, mostly representing unusually large increases in other given 171 

the relative abundances of algae and coral (Fig. A5, red crosses). These outliers did not appear to be 172 

spatially segregated (Fig. A1, crosses). Disturbance events and transient dynamics may result in outliers, 173 
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but only if they cause year-to-year changes that are very different from the distribution of most of the 174 

data, after accounting for explanatory variables. 175 

 176 

Deleting these 30 potential outliers had little effect on estimated parameters (Fig A6). We have two 177 

reasons to believe that our models are fairly robust. First, multivariate linear models with large sample 178 

sizes are robust to moderate departures from multivariate normality (Hand and Taylor 1987, p. 202). 179 

Second, an earlier analysis (Żychaluk et al. 2012) based on quite different assumptions (a semi-parametric 180 

model in which 𝐲(𝑡 + 1) was assumed to have a Dirichlet distribution conditional on 𝐲(𝑡), and no 181 

environmental variables were included) gave similar stationary distributions to those described below for 182 

current climatology. Biologically, outliers might arise either from heterogeneity among reefs, or because 183 

large changes in composition are more frequent than expected under a multivariate normal model, even 184 

on a single reef. Such heavy-tailed distributions have often been discussed in the context of population 185 

variability, although they may not be common in nature (Halley and Inchausti 2002). 186 

 187 

We checked the assumptions of constant covariance and absence of systematic biases using scatter plots 188 

of predicted against observed values (Fig. A7). The only obvious problem was that when the observed 189 

year-to-year increase in algae was large, the predicted increase tended to be too small (Fig. A7B). This 190 

affects a relatively small number of observations, but has the potential to be biologically important. 191 

 192 

We checked the assumption of no systematic dependence on explanatory variables or time using scatter 193 

plots of residuals against explanatory variables and time. There were no obvious patterns in plots of 194 

residuals against explanatory variables (Fig. A8). 195 

 196 
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There was a very slight tendency for our model to predict too little increase in coral and other, and too 197 

much increase in algae, in later years relative to earlier years (Fig. A9). Coral cover on the GBR is 198 

believed to have declined substantially over the last few decades (De'ath et al. 2012). The pattern we 199 

observed in residuals is in the opposite direction. This suggests that any decline in coral cover is being 200 

captured by the explanatory variables already in our model, and that changes in variables not included in 201 

our models may slightly mitigate this decline. In other words, if the trend in residuals was maintained, 202 

long-term projections from our model would be too pessimistic. We do not include this explicit temporal 203 

term in our analysis because it is very small relative to the effects in the model, and 10 years of data is not 204 

long enough to give a good idea of whether this is a genuine trend. 205 

 206 

We investigated spatial autocorrelation in residuals by plotting multivariate spline correlograms as 207 

described in Bjornstad and Falck (2001). When pooled over years, there was only very weak spatial 208 

autocorrelation in residuals (Figure A10A). However, the pooled correlogram might hide temporally 209 

varying spatial autocorrelation resulting from events such as cyclones, bleaching and crown-of-thorns 210 

starfish. We therefore also examined correlograms for each year separately. In general, the 95% 211 

confidence envelopes for these correlograms (Figure A10B) were so wide that we have little information 212 

on possible year-by-year spatial autocorrelation.  213 

 214 

A.8 Long-term behavior 215 

 216 
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Assume that lagged annual mean SST anomaly is a sequence of identically normally distributed random 217 

variables, independent of past SST anomalies and of the error term 𝛜(𝑡). Then the two stochastic terms on 218 

the right-hand side of Equation 1 can be summed into a single multivariate normal random variable 219 

𝛈(𝑡) = 𝛃
1

𝑧1(𝑡) + 𝝐(𝑡), with mean vector 𝟎 and covariance 𝚺 + 𝛃
1

𝛃
1
T. Let 𝐁 = 𝐀 + 𝐈, where 𝐈 is the 220 

identity matrix. Then Equation 1 can be written in the form 221 

𝐱(𝑡 + 1) = 𝐜 + 𝐁𝐱(𝑡) + 𝛈(𝑡),        (A.4) 222 

whose long-term behavior is well-known. Given a fixed initial vector 𝐱(0), it can be shown that at any 223 

subsequent time 𝑡, 𝐱(𝑡) has a multivariate normal distribution with mean 224 

𝐸[𝐱(𝑡)] = (𝐈 − 𝐁)−1(𝐈 − 𝐁𝑡)𝐜 + 𝐁𝑡𝐱(0)      (A.5) 225 

and covariance 226 

𝑉[𝐱(𝑡)] = vec−1[(𝐈 − 𝐁 ⊗ 𝐁)−1(𝐈 − 𝐁𝑡 ⊗ 𝐁𝑡)vec(𝚺 + 𝛃
1

𝛃
1
T)],   (A.6) 227 

where ⊗ is the Kronecker product and vec() is the operator that stacks the columns of a matrix into a 228 

single column (Harville 2008, chapters 16 and 21). If 𝐁 has spectral radius (absolute value of largest 229 

eigenvalue) less than 1, then the terms in Equations A.5 and A.6 involving 𝐁𝑡 go to zero as 𝑡 → ∞, and 230 

𝐱(𝑡) approaches a multivariate normal stationary distribution with mean vector 231 

𝛍∗ = (𝐈 − 𝐁)−1𝐜         (A.7) 232 

and covariance  233 

𝚺∗ = vec−1[(𝐈 − 𝐁 ⊗ 𝐁)−1vec(𝚺 + 𝛃
1

𝛃
1
T)]      (A.8) 234 

(Hamilton 1994, chapter 10). 235 

Equations A.4 to A.8 give several biological insights. First, from Equations A.5 and A.6, the existence of 236 

a stationary distribution whose properties are independent of initial conditions depends only on 𝐁, the 237 
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term in the model describing the effects of reef composition on dynamics. If the spectral radius of 𝐁 is 238 

less than 1, then the effects of any disturbance to 𝐱(𝑡) in Equation A.4 will die away over time, rather 239 

than being amplified, and a stationary distribution exists.  240 

 241 

Second, if the spectral radius is less than 1, then the smaller its value, the more quickly the terms in 242 

Equations A.5 and A.6 involving 𝐁𝑡 go to zero, and thus the more quickly the stationary distribution is 243 

approached. In this model, the amount of variability has no effect on the existence or otherwise of a 244 

stationary distribution. If the eigenvalues of 𝐁 are complex, then the approach to the stationary 245 

distribution will involve oscillations. 246 

 247 

Third, if the stationary distribution exists, then its expected value in ilr coordinates (Equation A.7) 248 

depends on both 𝐁 (which describes the effects of reef composition on dynamics) and 𝐜 (which describes 249 

the deterministic aspect of reef dynamics in the absence of effects of reef composition).  250 

 251 

Fourth, if the stationary distribution exists, its covariance (Equation A.8) depends on 𝐁 (which describes 252 

the effects of reef composition on dynamics), 𝚺 (the covariance matrix for stochastic effects other than 253 

fluctuations in lagged annual mean SST anomaly), and 𝛃1 (the effect of fluctuations in lagged annual 254 

mean SST anomaly). In this model, increasing variability, either in SST anomaly or in other stochastic 255 

effects, can increase the spread of the stationary distribution, but cannot alter the location of the stationary 256 

mean in ilr coordinates. 257 

 258 



Jennifer K. Cooper, Matthew Spencer, John F. Bruno  

 
 

13 

The stationary distribution in the original sample space is a logistic normal distribution, obtained by back-259 

transformation. If the multivariate normal has density 𝑓(𝐱) at point 𝐱, then the density at the 260 

corresponding composition 𝐲 = ilr−1(𝐱) is 𝑓(𝐲) =
1

√3𝑦1𝑦2𝑦3
𝑓(𝐱) , where ilr−1 denotes the inverse of the 261 

isometric logratio transformation (Monti et al. 2011). Back-transformation has two important 262 

consequences. First, although the stationary distribution is unimodal in ilr coordinates, the back-263 

transformed stationary distribution can have one, two, or three modes (e.g. Figure 3.3b in Mateu-Figueras 264 

et al. 2011), and is therefore capable of describing distributions resulting from systems in which there is 265 

more than one likely set of reef compositions, separated by compositions that are less likely. Such 266 

patterns are one stochastic analogue of the concept of alternative stable states in a deterministic system. 267 

Second, the back-transformed mean vector 𝛍∗ is known as the metric centre of the distribution, and is the 268 

preferred measure of location for a compositional distribution (Aitchison 1989). It does not in general 269 

coincide with the arithmetic mean of the distribution, whose location will be influenced by the stationary 270 

covariance 𝚺∗ as well as the stationary mean vector 𝛍∗. 271 

 272 

If 𝐁 has spectral radius 1 or greater, then the terms involving 𝐁𝑡 in Equations A.5 and A.6 do not go to 273 

zero as 𝑡 → ∞. The model does not have a stationary distribution in such cases, giving another analogue 274 

to alternative stable states in a deterministic system. The long-term behavior of the expected value 275 

depends on the initial condition 𝐱(0). The covariance also continues to change over time, although it does 276 

not depend on the initial condition. We do not study such cases in detail, because there was very little 277 

support for them in the data (as evaluated by the bootstrap described in Appendix A.10). Instead, we 278 

concentrate on the properties of the stationary distribution, and report the proportion of bootstrap 279 

replicates in which 𝐁 had spectral radius less than 1. 280 

 281 
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Probability of undesirable reef compositions can be found by numerical integration, given the parameters 282 

of the stationary distribution. 283 

 284 

A.9 Sensitivity of the stationary distribution and climatology equivalent 285 

of local threat effects 286 

 287 

Differentiating the stationary mean (Equation A.7) with respect to mean climatology 𝑢2 gives 288 

d𝝁∗

d𝑢2
= (𝐈 − 𝐁)−1 1

𝑠2
𝛃2.         (A.9) 289 

The long-term consequence of the interplay between short-term climatology effects and population 290 

dynamics can be understood by comparing Equations A.9 and A.3. In the short term (Equation A.3), the 291 

derivative of the expected short-term change with respect to climatology is in the direction given by the 292 

climatology coefficient vector 𝛃2 (Fig. 5, solid arrow). In the long term (Equation A.9), the direction of 293 

the derivative of the stationary mean reef composition with respect to climatology is modified by the 294 

matrix (𝐈 − 𝐁)−1, which accounts for the way in which a short-term increase in algae is modified by reef 295 

composition in all successive years (Fig. 5, dashed arrow).  Note that the only case in which the long-term 296 

effect of a change in climatology will be in the same direction as the short-term effect is if 𝐜 is a right 297 

eigenvector of (𝐈 − 𝐁)−1 (or equivalently, of 𝐀). Since almost all vectors are not eigenvectors of a given 298 

matrix, in almost all cases, short-term and long-term effects will be in different directions. 299 

The derivative of the multivariate normal density 𝑓(𝐱) at composition 𝐱 with respect to 𝑢2 is 300 

d𝑓(𝐱)

d𝑢2
= 𝑓(𝐱)(𝐱 − 𝛍∗)T(𝚺∗)−1 d𝝁∗

d𝑢2
.       (A.10) 301 
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Equation A.10 evaluated at 𝑢2 = 0 is the sensitivity of the stationary density to mean climatology. This 302 

sensitivity can be back-transformed to the original sample space in the same way as the density.  303 

We used a similar approach to calculate the equivalent long-term effect of a local threat level in terms of 304 

increase in climatology. From Equation A.9, the long-term effect of a 1˚C increase in climatology is 305 

𝐝 = (𝐈 − 𝐁)−1 𝟏

𝒔𝟐
𝛃2. Similarly, the long-term effect of the difference between low local threat level and 306 

some other level 𝑗 is given by 𝐞 = (𝐈 − 𝐁)−1𝛄𝐣.The projection of 𝐞 onto the direction of 𝐝 is the 307 

component of the local threat effect acting in the same direction as the climatology effect, and the norm of 308 

this projection (𝐞 ∙ 𝐝/(‖𝐝‖2)) measures the long-term equivalent of the local threat effect in terms of 309 

degrees climatology increase. 310 

A.10 Convergence to a stationary distribution 311 

 312 

More than 98% of bootstrap replicates had spectral radius of 𝐁 less than 1, and therefore converged to a 313 

stationary distribution. The bootstrap mean absolute value of the largest eigenvalue of 𝐁 was 0.95 314 

(bootstrap standard deviation 0.03), fairly close to the boundary beyond which such a distribution would 315 

not exist. No bootstrap replicates had complex eigenvalues, so there was no evidence for oscillations on 316 

approach to the stationary distribution.  317 

 318 
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Appendix tables 363 

Table A1. AIC values for alternative models. 364 

Model edf AIC 

Lagged SST anomaly, lagged climatology, local threat, composition 372 81.4 

Lagged SST anomaly, lagged climatology, distance from coast, composition 370 97.7 

Lagged SST anomaly, local threat, composition 371 97.8 

Lagged SST, local threat, composition 371 99.9 

Lagged SST, distance from coast, composition 369 110.2 

Lagged SST anomaly, distance from coast, composition 369 115.9 

SST anomaly, local threat, composition 371 146.1 

Lagged climatology, local threat, composition 371 148.6 

Climatology, local threat, composition 371 150.4 

Lagged climatology, distance from coast, composition 369 166.5 

SST anomaly, distance from coast, composition 369 166.9 

Climatology, distance from coast, composition 369 168.9 

SST, local threat, composition 371 169.0 

SST, distance from coast, composition 369 190.1 

 365 

 Notes: edf (effective degrees of freedom) and AIC calculated using extractAIC() in R. 366 
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Table A2. Effects of reef composition, lagged sea surface temperature anomaly and climatology  and 368 

local threat on short-term change in GBR composition. 369 

Term df Pillai trace approx F num df den df P     

Composition 2 0.19 18.25 4 712  3×10
-14

 

SST anomaly 1 0.11 21.00 2 355 2×10
-9

     

SST climatology 1 0.03 4.98 2 355  0.007 

Local threat 3 0.06 3.92 6 712 0.0007     

Notes: each term is tested by comparing a model containing all terms to a model without the term of 370 

interest, which has df fewer parameters. The null distribution of the resulting Pillai trace statistic is 371 

approximately an F distribution with (num df, den df) degrees of freedom, which was used to obtain the P 372 

value. The composition term is the 𝐀 matrix in Equation 1. 373 

  374 
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Table A3. Post-hoc tests for terms in the model for short-term change. 375 

Term df Pillai trace approx F num df den df P     

a1 1 0.05 8.94 2 355  0.0001 

a2 1 0.08 15.27 2 355 4×10
-7

     

medium local threat 1 0.05 9.30 2 355 0.0001     

high local threat 1 0.009 1.69 2 355 0.19 

very high local threat 1 0.003 0.48 2 355 0.62 

Notes: 𝐚1 (the first column of the 𝐀 matrix in Equation 1) describes the effect of the transformed ratio of 376 

algae to coral on the transformed perturbing vector, and 𝐚2 (the second column of 𝐀) describes the effect 377 

of the transformed ratio of other to the geometric mean of coral and algae on the transformed perturbing 378 

vector. Each of the local threat terms tests the hypothesis that the effect of that local threat level does not 379 

differ from that of low local threat. P values should be interpreted under a Bonferroni correction for five 380 

tests, so that, for example, a P value of 0.01 would be required for significance at the 0.05 level. 381 
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Appendix figures 383 

 384 

Fig. A1. Locations of reefs (circles) colour-coded by local threat level. Locations of potential outliers are 385 

shown as crosses. 386 
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 387 

 388 

Fig. A2. Relationship between shortest distance from reef to coast in kilometres and local threat index. 389 
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 390 

Fig. A3. Effects of simulated observation error on parameter estimates. Circles are true parameter values (the 391 
estimates from Fig. 1C). Crosses with corresponding colours are mean estimates from 10000 replicate simulated 392 
data sets generated under the fitted model, with the addition of multinomial observation error (3000 points). Grey 393 
dashed line: shape of the true covariance matrix 𝚺, represented by an ellipse at unit Mahalanobis distance around the 394 
no-effect point. Grey dotted line: mean estimated shape of covariance matrix.  395 
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 396 

Fig. A4. Estimated long-term direction of increased climatology (scaled to 3.5°C increase) under the 397 

fitted model without observation error (black dashed arrow, as in Fig. 5), and mean  estimated long-term 398 

direction from 10000 simulated data sets with observation error as in Fig. A3 (red dotted arrow). 399 
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 401 

Fig. A5. Scatterplot of residuals, with red crosses indicating potential outliers. 402 
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 404 

Fig. A6. Estimated parameters after the deletion of 30 potential outliers. Symbols as in Fig. 1C. 405 
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 406 

Fig. A7. Scatterplots of predicted against observed year-to-year changes in reef composition (circles) with 407 

lowess smoothers (red lines) and 1:1 lines (black dashed lines). 408 
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 410 

Fig. A8. Plots of residuals against explanatory variables. The y-axis variable resid 1 in A, C, E, G, I is residual year-411 

to-year change in log(algae/coral). The y-axis variable resid 2 in B, D, F, H, J is residual year-to-year change in 412 

log(other/geomean(algae, coral)). In A-D, 𝑥1(𝑡) and 𝑥2(𝑡) are the two components of ilr-transformed composition at 413 

time 𝑡. Red lines are lowess smoothers. 414 
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 415 

 416 

Fig. A9. Plots of residuals against time. The y-axis variable resid 1 in A is residual year-to-year change in 417 

log(algae/coral). The y-axis variable resid 2 in B is residual year-to-year change in 418 

log(other/geomean(algae, coral)). Red lines are lowess smoothers.  419 
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 420 

 421 

Figure A10. Spatial autocorrelation of residuals. A: pooled across all years. B: year by year. Multivariate 422 

spline correlograms (Bjornstad and Falck 2001) calculated using the spline.correlog() function in 423 

the R package ncf version 1.1-5 with default spline degrees of freedom. Shaded regions are 95% 424 

pointwise envelopes, calculated from 1000 bootstrap resamples. 425 
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 427 

Figure A11. Bootstrap standard deviations of stationary density at current climatology (A: low local 428 

threat, B: medium local threat), and with a 2°C increase in mean climatology (C: low local threat, D: 429 

medium local threat). Darker colours are higher standard deviations. 430 
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 432 

Figure A12. Bootstrap standard deviations of sensitivity of stationary density for the GBR to increases in 433 

climatology, evaluated at current mean climatology, and either low (A) or medium (B) local threat. 434 

 435 


