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Abstract:  Pressure on natural communities from human activities continues to increase. Even 16 

unique ecosystems like the Great Barrier Reef (GBR), that until recently were considered near-17 

pristine and well-protected, are showing signs of rapid degradation. We collated recent (1996-18 

2006) spatio-temporal relationships between benthic community composition on the GBR and 19 

environmental variables (ocean temperature and local threats resulting from human activity). We 20 

built multivariate models of the effects of these variables on short-term dynamics, and developed 21 

an analytical approach to study their long-term consequences. We used this approach to study the 22 

effects of ocean warming under different levels of local threat. Observed short-term changes in 23 

benthic community structure (e.g., declining coral cover) were associated with ocean temperature 24 

(warming) and local threats. Our model projected that in the long term there was a very high 25 

likelihood of low (≤10%) coral cover. With increasing temperature and/or local threats, corals 26 

were initially replaced by sponges, gorgonians, and other taxa, with an eventual moderately high 27 

probability of domination (>50%) by macroalgae when temperature increase  was greatest (e.g., 28 

3.5°C of warming). Our approach to modeling community dynamics, based on multivariate 29 

statistical models, enabled us to project how environmental change (and thus local and 30 

international policy decisions) will influence the future state of coral reefs. The same approach 31 

could be applied to other systems for which time series of ecological and environmental 32 

variables are available.  33 

 34 

Keywords: Great Barrier Reef, coral reef, reef state, communities, dynamics, compositional data, 35 

ocean temperature, local threat, stochastic model, long-term behavior, climate change, human 36 

impacts.  37 
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Introduction 39 
 40 
Natural communities are under threat from human perturbation and the effects of climate change 41 

(Halpern et al. 2008, Butchart et al. 2010). Despite clear evidence of degradation in many habitat 42 

types (Duffy 2003, Worm et al. 2006), the size and direction of long-term impacts remain 43 

uncertain, because few ecological monitoring programs are older than a few decades. Coral-reef 44 

communities are one of the clearest examples of a biological system greatly altered by human 45 

activities, including overfishing, increased nutrient loading, and anthropogenic warming (Hughes 46 

et al. 2003). Globally, coral cover has declined to 10-20%, and corals have been replaced to 47 

some degree by other invertebrates such as gorgonian soft corals and sponges, by crustose 48 

coralline algae, algal microturfs and bare carbonate substrate (collectively termed CTB: Aronson 49 

and Precht 2000), and by fleshy macroalgae (Aronson et al. 2002, Bruno and Selig 2007, Bruno 50 

et al. 2009, Schutte et al. 2010). This broad decline of coral cover has led to a general flattening 51 

or simplification of reef habitats with direct consequences for fishes and other reef inhabitants 52 

(Alvarez-Filip et al. 2009).  53 

 54 

Ocean warming has been a primary cause of mass coral mortality and coral cover decline over 55 

the last two to three decades (Hughes et al. 2003, Hoegh-Guldberg and Bruno 2010, Selig et al. 56 

2012). Temperatures ~1˚C greater than the local seasonal maximum can disrupt the relationship 57 

between corals and their symbiotic zooxanthellae, leading to “coral bleaching” (Baker et al. 58 

2008). In some circumstances, bleaching can cause partial or complete mortality of coral 59 

colonies. Mortality and mass bleaching have been observed across the Pacific and Indian 60 

Oceans, and the Caribbean (Glynn 1991, Baker et al. 2008, Eakin et al. 2010). Anomalously high 61 

water temperature is also associated with coral disease outbreaks (Bruno et al. 2007, Harvell et 62 
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al. 2009, Rogers and Muller 2012), possibly due to an increase in susceptibility of the coral host 63 

caused by thermal stress and bleaching (Mydlarz et al. 2009).  64 

Although the proximate causes of coral population declines (e.g., disease, bleaching, and 65 

pollution) have been identified, relatively little progress has been made in deciphering the 66 

relative importance of different drivers. Thus, our understanding of how these drivers affect 67 

entire reef communities (not just coral cover) is incomplete. Moreover, little progress has been 68 

made on using the large empirical record of reef degradation to develop analytical models of 69 

future reef composition. By linking changes in community structure with changes in 70 

environmental conditions, we should be able to identify key environmental drivers. These data 71 

can also be used to move beyond the usual univariate studies of reef health (e.g. De'ath et al. 72 

2012) into multivariate studies of community dynamics.   73 

 74 

The purpose of this study was to project the composition of future coral reef benthic 75 

communities under current environmental conditions, and under environmental change 76 

scenarios. We used data from the Great Barrier Reef to build multivariate models for the effects 77 

of ocean temperature and “local threat level” (an index of local human impacts developed for the 78 

Reefs at Risk Revisited report, Burke et al. 2011) on short-term changes in reef composition. We 79 

then used these simple empirical models and a novel analytical approach to project the long-term 80 

distributions of reef composition under both current environmental conditions and increased 81 

ocean temperature, and local threat level. We also estimated the probability of undesirable reef 82 

compositions, in which coral cover is reduced to ≤ 10% or when macroalgae dominates > 50% of 83 

the benthos.  84 

 85 
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Methods 86 

Data  87 

Data from Australia’s Great Barrier Reef (GBR) were obtained from quantitative reef surveys. 88 

Video transect surveys of 46 reefs (locations: Appendix, Fig. A1) were performed over at least 89 

two consecutive years between 1996 to 2006 as part of the Australian Institute of Marine Science 90 

long-term monitoring programme. The methods are described in Abdo et al. (2004) and 91 

summarized in Appendix A.1. Reef data consisted of proportional benthic cover of three 92 

biological categories: coral, macroalgae and other (which includes CTB, sponges, gorgonians, 93 

and other invertebrates). The data we use were aggregated to reef level, and are a subset of the 94 

data in Bruno et al. (2009) and Żychaluk et al. (2012). These data formed multivariate time series 95 

of reef composition in consecutive years (62 series, median length 7 years, length range 2 to 11 96 

years). We analyzed the combined data as 364 pairs of observations in consecutive years. 97 

 98 

For each reef, we extracted data on sea surface temperature (SST) climatology (the long-term 99 

value for a 4 x 4 km square, as defined in Selig et al. 2010),  annual mean anomalies (departure 100 

from long-term value for this 4 x 4 km square), and local threat level as described in Appendix 101 

A.1. We used one-year lags for both climatology and anomaly, and centred and scaled them to 102 

mean zero, standard deviation 1. The Reefs at Risk Revisited local threat level index (Burke et 103 

al. 2011) is a categorical variable (with 4 levels: 1) low, 2) medium, 3) high, and 4) very high) 104 

that summarizes information on coastal development, marine-based pollution and damage, 105 

watershed-based pollution, and overfishing, most of which was resolved to the 1 km or 3 km 106 

scale (Burke et al. 2011). It is important to note that we have little information about the effects 107 

of high and very high local threat, because we had only one reef (with 5 and 9 pairs of 108 



Jennifer K. Cooper, Matthew Spencer, John F. Bruno  

 
 

6

observations in consecutive years) for each of these two categories. We also considered distance 109 

from the coast as another potential proxy for human activity, but this was strongly related to 110 

local threat index (Appendix, Fig. A2), and models using distance from the coast always 111 

performed worse than corresponding models using local threat index (Appendix, Table A1).  112 

Short-term change in reef composition 113 

We represent the reef compositions on a single reef in two consecutive years by the column 114 

vectors ܡሺݐሻ and ܡሺݐ ൅ 1ሻ. Each such vector has three components ݕଵሺݐሻ, ݕଶሺݐሻ, ݕଷሺݐሻ, 115 

representing the proportions of coral, algae, and other at time ݐ, and summing to 1. We described 116 

short-term changes in composition (from one year to the next) using perturbing vectors 117 

(Appendix A.2), which are themselves compositions. If there is no change in composition 118 

between two years, the corresponding perturbing vector is ቀଵ
ଷ
, ଵ
ଷ
, ଵ
ଷ
ቁ. For each element of the 119 

perturbing vector, a value greater than 1/3 indicates an increase in that component, and a value 120 

less than 1/3 indicates a decrease.  121 

Model assumptions 122 

We assume that the perturbing vectors on each reef are independent of those on other reefs, that 123 

future perturbing vectors are conditionally independent of past reef composition given current 124 

reef composition, that the process generating these perturbing vectors is homogeneous over time 125 

(conditional on the values of environmental variables), and that measurement error is small 126 

relative to the short-term variability in the true composition of a reef. We argued in Żychaluk et 127 

al. (2012), supporting information, section S1.2, that similar assumptions will often be 128 

approximately true, and that models based on them are useful descriptions of the regional 129 

dynamics of coral reefs. 130 

Models for short-term change 131 
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For a single species, a linear model for changes in log abundance between successive time points 132 

is the natural starting point for an investigation of the factors affecting population dynamics, 133 

because exponential growth results in a straight-line relationship between log abundance and 134 

time. In the same way, a linear model for isometric log-ratio (ilr) transformed perturbing vectors 135 

(Appendix A.3) is a natural starting point, because exponential growth of all components results 136 

in a straight-line trajectory in ilr coordinates (Egozcue et al. 2003). We do not expect that all 137 

components will grow exponentially, so we include the effects of current reef composition in our 138 

model, which takes the form 139 

ilr ܘሺݐሻ ൌ ܋ ൅ ሻݐሺܠۯ ൅ ઺ଵݖଵሺݐሻ ൅ ࣕሺݐሻ.      (1) 140 

Each term in Equation 1 is a column vector with two elements. The response variable ilr ܘሺݐሻ is 141 

the transformed short-term change in reef composition. The first term on the right of Equation 1 142 

 is a constant for any given reef and environmental change scenario, which depends on 143 (܋)

climatology and local threat. The second term (ܠۯሺݐሻ) is the effects of current transformed reef 144 

composition. The third term is the effect of SST anomalies. The fourth term (૓ሺݐሻ) describes the 145 

stochastic effects of processes such as storms, diseases, and crown of thorns starfish, for which 146 

we do not have data (and for which we assume mean vector zero and constant covariance 147 

matrix). More detail on Equation 1 is given in Appendix A.4. All the parameters in Equation 1 148 

can be back-transformed to compositions and represented on ternary plots, in the same way as 149 

the perturbing vectors. We fitted and checked this model, tested hypotheses, and visualized 150 

parameters as described in Appendices A5-A7. 151 

 152 

Our model is the multivariate equivalent of the widely-used stochastic Gompertz model. The 153 

univariate version is a plausible description of the density-dependent dynamics in many single-154 
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species time series (e.g. Dennis et al. 2006), and the multivariate version is likewise a good way 155 

to approximate the dynamics of a multi-species community (Ives et al. 2003, Hampton et al. 156 

2013). Independently, Gross and Edmunds (in review) arrived at a very similar model for reef 157 

dynamics. 158 

Long-term behaviour and effects of changes in sea surface temperature 159 

Under the simplifying assumption that annual mean SST anomaly is a sequence of identically 160 

normally distributed random variables, independent of past SST anomalies and of the error term 161 

૓ሺݐሻ, the model in Equation 1 may converge to a stationary distribution, which can be found 162 

analytically (Appendix A.8). This stationary distribution tells us about the long-term behavior of 163 

the GBR under current conditions. We then used two approaches to explore the effects of 164 

changes in the long-term mean ݑଶ of climatology on long-term behaviour: sensitivity to 165 

infinitesimal changes and calculation of stationary distributions under a range of long-term 166 

means. We think that changing climatology rather than changing anomalies is the right way to 167 

model the effects of long-term change in SST, because the climatology parameter describes the 168 

long-term mean temperature at a site. However, we comment in the Discussion on the 169 

consequences of this assumption. We assumed that the variance of SST anomalies did not 170 

change, which greatly simplifies the sensitivity analysis. The evidence for changes in the 171 

temporal variability of recent and projected temperatures remains ambivalent (Huntingford et al. 172 

2013), so it would be difficult to justify any other treatment. 173 

 174 

It is possible to calculate the sensitivity of the stationary density at any point to changes in 175 

climatology (Appendix A.9). The contour of zero sensitivity is of particular interest because it 176 

separates reef compositions projected to become less likely under increased climatology (those 177 
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with negative sensitivity) from reef compositions projected to become more likely under 178 

increased climatology (those with positive sensitivity). A similar approach can be used to express 179 

the long-term effects of local threat level in terms of equivalent increases in climatology 180 

(Appendix A.9). Although local threat effects and climatology effects do not necessarily have the 181 

same direction, the component of a local threat effect that acts in the same direction as the 182 

climatology effect tells us how much the difference between two local threat levels is worth in 183 

terms of climatology. 184 

 185 

We also examined the effects of changes in climatology on the stationary distribution of reef 186 

composition using numerical methods. We calculated stationary distributions for a range of 187 

climatologies between the current regional minimum (rounded down to the nearest degree) and a 188 

value 3.5˚C warmer than the current regional mean. These climatologies cover a plausible range 189 

of future ocean temperatures. Increases of 0.83 to 3.91°C in global mean surface temperature by 190 

2100 compared to 2000 are projected under the four Representative Concentration Pathways 191 

(Meehl et al. 2012). Under a range of climate models, sites in the GBR may experience 0.76 to 192 

1.01°C increase in maximum summer SST per °C increase in global mean temperature 193 

(Wooldridge et al. 2012). Thus, an increase of several °C in climatology seems plausible, despite 194 

the large uncertainty. We caution that examining plausible future climatology involves 195 

extrapolating beyond the range of currently-observed climatology. In contrast, the sensitivity 196 

calculation outlined in the previous paragraph looks at the effects of small increases in 197 

climatology, and does not require extrapolation. 198 

Probability of undesirable compositions 199 
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To summarize the changes in stationary distributions across a range of climatologies, we report 200 

the probabilities of low coral cover (the stationary probability that coral cover is less than or 201 

equal to 10%) and high algal cover (the stationary probability that algal cover is greater than 202 

50%). The 10% low coral cover threshold is believed to be the minimum cover required for net 203 

reef accretion (Kennedy et al. 2013), whereas the 50% high algal cover threshold is a 204 

conventional definition of macroalgal dominance (Bruno et al. 2009). These statistics can be 205 

interpreted in two ways: as the long-run proportion of time we expect the composition of an 206 

individual reef to satisfy the specified condition; and as the proportion of randomly-chosen reefs 207 

we expect to satisfy the specified condition, at a given point in time.  208 

 Results 209 

Short-term change in reef composition 210 

The most obvious pattern in the raw data (Fig. 1A) was that most reefs had low algal cover most 211 

of the time, with occasional but generally short-lived excursions towards higher algal cover. 212 

There was a wide range of coral cover. Perturbing vectors, which represent short-term changes in 213 

composition (Fig. 1B), were clustered around the coral-other 0.5-isoproportion line, covering its 214 

whole length. Thus, large increases and decreases in algae occurred, but in general the ratio of 215 

coral to ‘other’ changed little in the short term. Large decreases in macroalgal cover tended to be 216 

associated with unusually cold SST anomalies (Fig. 1B, blue symbols predominate in left half of 217 

plot). It was not easy to discern a difference in short-term changes between local threat 218 

categories (Fig. 1B, different symbol shapes). 219 

Fitted model 220 

Current composition, SST anomaly and climatology, and local threat had significant effects on 221 

transformed perturbing vectors (Appendix, Tables A2 and A3). If the ratio of algae to coral was 222 
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high, the proportion of algae tended to decrease the following year, with little effect on the ratio 223 

of coral to ‘other’ (Fig. 1C, light blue dot (2)). Conversely, if the ratio of ‘other’ to the geometric 224 

mean of coral and algae was high, the proportion of ‘other’ tended to decrease the following 225 

year, and the ratio of algae to coral tended to increase (Fig. 1C, dark blue dot (3)). A one 226 

standard deviation  increase in SST anomaly tended to increase the proportion of algae, with 227 

little effect on the relative proportions of coral and ‘other’ (Fig. 1C, green dot (4)). A one 228 

standard deviation increase in climatology had an effect in the same direction as the SST 229 

anomaly effect, but with a slightly smaller magnitude (Fig. 1C, pink dot (5)). Post-hoc tests 230 

(Appendix, Table A3) showed that only the medium local threat level was significantly different 231 

from the low local threat level. Relative to low local threat, reefs in the medium local threat 232 

category tended to have short-term changes that decreased the ratios of coral to both algae and 233 

‘other’ (Fig. 1C, yellow dot (6)). In subsequent results, we therefore looked separately at the low 234 

and medium local threat levels. The lack of evidence for effects of the high and very high local 235 

threat levels (Fig. 1C, orange (7) and red (8) dots respectively) may be due to the small number 236 

of observations in these categories (5 and 9 pairs respectively, and in each case from a single 237 

reef). Thus, although the high threat category appears to be associated with decreases rather than 238 

increases in algal cover (Fig. 1C, orange dot (7)), the confidence ellipse for this effect overlaps 239 

both the no-effect point, and the confidence ellipses for the effects of medium and very high 240 

threat. 241 

 242 

No major departures from the model assumptions were apparent. We checked by simulation that 243 

our parameter estimates were qualitatively robust to plausible levels of observation error 244 

(Appendix A.6, Fig. A3). However, observation error may lead to underestimation of the effects 245 



Jennifer K. Cooper, Matthew Spencer, John F. Bruno  

 
 

12

of increased climatology (Appendix, Fig. A4). Removing 30 out of 364 pairs of observations that 246 

were identified as outliers (Appendix A.7, Fig. A5) did not substantially affect parameter 247 

estimates (Appendix A.7, Fig. A6). It was noticeable that in observations with large increases in 248 

algae, the model under-predicted these increases (Appendix A.7, Fig. A7B). Although this 249 

involves relatively few observations, it may be biologically important. There were no strong 250 

patterns in residuals plotted against explanatory variables (Appendix, Fig. A8), or time 251 

(Appendix, Fig. A9), and residuals were not strongly spatially autocorrelated (Appendix, Fig. 252 

A10). 253 

Long-term behaviour under current environmental conditions 254 

There was strong evidence for the existence of a stationary distribution (Appendix A.10). Under 255 

current climatology, this distribution was unimodal for both low (Fig. 2A) and medium (Fig. 2B) 256 

local threat levels. The level of uncertainty in the stationary distributions was fairly high, 257 

especially for compositions with high stationary density (Appendix, Fig. A11), but the stationary 258 

distributions of individual bootstrap replicates all had similar shapes.  259 

 260 

In the long term, under current climatology and low local threat level, likely reef compositions 261 

had high cover of ‘other’, moderate coral cover, and low algal cover (Fig 2A). For medium local 262 

threat level (Fig. 2B), this distribution shifted towards compositions with lower coral cover and 263 

higher ‘other’ and algal cover. 264 

Effects of changes in sea surface temperature and local threat level. 265 

The sensitivity of the stationary density to small changes in climatology provides an analytical 266 

estimate of likely effects of long-term increases in sea surface temperature. At low local threat, 267 

the zero contour representing no effect (Fig. 3A, black line) roughly divided compositions with 268 
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low algal cover, which became less likely (blue), from compositions with high algal cover, 269 

which became more likely (red). The largest increases in stationary density (reddest) were for 270 

compositions with low coral and algal cover and high cover of ‘other’. For medium local threat 271 

level (Fig. 3B), the zero contour moved toward the right, so that compositions with low coral 272 

cover became more likely, and compositions with high coral cover less likely. The set of 273 

compositions with the highest increases in stationary density (reddest) was moved towards 274 

somewhat higher algal cover and lower coral cover than in the low local threat level, but the 275 

relative cover by ‘other’ remained the largest component in this scenario. For both local threat 276 

levels, the uncertainty associated with sensitivity was substantial (Appendix, Fig. A12). The 277 

long-term effect of the difference between medium and low local threat levels was equivalent to 278 

the effect of 2.8˚C increase in climatology, but with high uncertainty (95% confidence interval 279 

(1.1, 19.4)˚C increase). Numerical results confirmed this pattern.  With a 2˚C increase in 280 

climatology, the stationary distribution under low threat level (Fig. 2C) shifted away from high 281 

coral cover, and towards high ‘other’ and somewhat higher algal cover, compared with current 282 

conditions (and became more similar to the current distribution under medium local threat). At 283 

medium local threat level, a 2˚C increase in climatology caused a shift away from ‘other’ in the 284 

direction of higher algal cover (Fig. 2D). 285 

 286 

Animations (available online) show more information about the relationship between the 287 

stationary distribution of reef composition and climatology. For low local threat level (Appendix 288 

A11), as climatology increased, coral cover declined, leading to a state with both low coral cover 289 

and low algal cover at around 1.5˚C increase. At higher climatology, coral cover remained low 290 

and algal cover increased. At around 3.25˚C increase, the stationary distribution was bimodal, 291 
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with high density associated with low coral cover and either low algae and high ‘other’, or high 292 

algae and low ‘other’. This bimodality arises because the stationary distribution has a large 293 

enough spread that, for high climatology, the stationary mean is positioned so that large amounts 294 

of density get squashed into both the ‘other’ and algae vertices. Thus, alternative stable states 295 

may be possible under some future environmental conditions. For medium local threat level 296 

(Appendix A12), coral cover was low for current climatology, and most of the probability was 297 

associated with high cover of ‘other’. The distribution moved towards increased algal cover with 298 

increases in climatology, but the stationary distribution did not appear bimodal.  299 

Probability of undesirable compositions 300 

The probability of low coral cover (Fig.4A and B) and high algal cover (Fig. 4C and D) 301 

increased with climatology.  However, the probability of low coral cover was greater than the 302 

probability of high algal cover at any given climatology (this must be partly because the current 303 

stationary distribution has most of its mass much further from the 50% algal threshold than from 304 

the 10% coral threshold). Compared with the low local threat level, the probability of low coral 305 

cover was greatly increased at medium local threat level (Fig. 4A vs. 4B), but there was less 306 

change in the probability of high algal cover (Fig. 4C vs. 4D). 307 

Discussion 308 

Observed and projected effects of ocean warming 309 

Our results highlighted differences between observed short-term and projected long-term 310 

responses of reef composition to ocean warming. Over the period (1996-2006) covered by our 311 

data, the observed short-term effect of increased ocean temperatures on reef composition was to 312 

increase macroalgal cover, with proportional decreases in coral and ‘other’. However, moderate 313 

future warming (~2˚C) in our long-term projections led to dominance by ‘other’ (a category 314 
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including organisms such as sponges, gorgonians, and CTB), with algal dominance only 315 

projected under extreme warming (>2°C).  Empirical evidence for phase shifts from coral to 316 

‘other’ states (Aronson et al. 2002, Norström et al. 2009), and for the relative rarity of 317 

macroalgal dominance at the global scale (Bruno et al. 2009), is consistent with our analysis. 318 

Thus, it may be more appropriate to think of macroalgae as fast-colonizing ephemeral taxa rather 319 

than as competitive dominants under current conditions on the GBR (Connell 1987). However, 320 

the potential for dynamics within the dominant ‘other’ category (Aronson et al. 2002) makes 321 

resolving this category more finely a priority. The differences between the observed short-term 322 

response to warming and our projected long-term dynamics occurred because short-term 323 

increases in algae are modified in the long-term by reef composition in all successive years (Fig. 324 

5, Appendix A.9). The result that short- and long-term effects of environmental change are in 325 

different directions is a general one, and is likely to apply to almost all ecosystems (Appendix 326 

A.9).  327 

 328 

Although moderate warming moves the stationary mean towards dominance by ‘other’ rather 329 

than by macroalgae, such warming also increases the proportions of reefs projected to have high 330 

algal (≥50%) and low coral (≤10%) cover (Fig. 4). This is because the whole of the stationary 331 

distribution is shifted clockwise, around the edge of the simplex, moving its tails away from the 332 

coral vertex and towards the algal vertex (see animations: Appendices A11 and A12). These 333 

proportions can be thought of in two ways. For a single reef, they are the proportions of time a 334 

single reef spends at low coral, or high algal cover. For a population of reefs with the same 335 

environmental conditions, they are the proportions of reefs with low coral and/or high algal 336 

cover at a given time. The 10% threshold for coral cover is somewhat arbitrary, but is generally 337 
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believed to be the approximate minimum value required for net-reef accretion (Kennedy et al. 338 

2013). Current coral cover on the GBR is only ~14%, down from 28% in the mid-1980s, and 339 

even more so from a probable historical baseline of  >50% (Hughes et al. 2011, Bruno 2013). 340 

Our results suggest that warming of an additional 1-2oC will make further coral loss nearly 341 

inevitable.  342 

 343 

When studying the effects of increased temperature, we used the climatology parameter rather 344 

than the anomaly parameter to model the effects of long-term warming. The estimated effect of 345 

climatology on year-to-year changes includes the effects of spatial differences in species 346 

composition and local adaptation, which may explain why the estimated climatology effect is 347 

weaker than the estimated anomaly effect. We implicitly assume that changes in species 348 

composition and opportunities for local adaptation can occur temporally, as well as spatially. If 349 

this is not the case, then we will have underestimated the effects of long-term warming. 350 

Nevertheless, because the directions of the climatology and anomaly parameters are very similar, 351 

the model’s direction for the long-term effect of warming is likely approximately correct. 352 

Local threats  353 

Being in the medium local threat category (compared with the low local threat category) had an 354 

effect on short-term changes in composition roughly equivalent to 2.8 °C of warming. 355 

Consequently, medium threat reefs are expected to have high levels of ‘other’ even under current 356 

conditions, and low levels of coral and high levels of macroalgae are more likely than on low 357 

threat reefs. The local threat metric encapsulates impacts from coastal development, marine-358 

based pollution and damage, watershed-based pollution, and overfishing (Burke et al. 2011).  For 359 

example, terrestrial run-off of sediment, nutrients, pesticides, etc. have a variety of negative 360 
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effects on corals, and can benefit sponges and seaweeds, effectively shifting community 361 

composition away from corals, and towards ‘other’ and/or algae, as our model projected 362 

(Fabricius 2005). Most of the study reefs were in the low local threat category, so there may be 363 

little scope for further reduction in local threat. Furthermore, because ocean temperature 364 

increases of 1-2 ˚C are likely (IPCC 2007), maintaining reefs in the low local threat category will 365 

not alone be sufficient to secure the future of the GBR. Reducing both human perturbations and 366 

the effects of climate change is necessary (Hoegh-Guldberg et al. 2007, Mumby and Steneck 367 

2008, Sale 2008). Because Reefs at Risk Revisited is a static classification, we can say nothing 368 

about how these threat categories might vary over time. Also, because the classification 369 

integrates a wide variety of local threats, it would not be easy to design a management policy 370 

based specifically around these threat categories. 371 

 Complementary modelling approaches 372 

We have greatly expanded the scope of our previous work on statistical models of reef dynamics 373 

(Żychaluk et al. 2012), and addressed the concern that these models ignored among-reef 374 

heterogeneity in environmental conditions (Mumby et al. 2013). Conceptually, our approach (a 375 

multivariate statistical model for reef dynamics) is closely related to statistical summaries of 376 

empirical data on changes in coral cover (e.g. De'ath et al. 2012). However, using a multivariate 377 

model reveals a difference in the direction of environmental change effects between the short and 378 

long term, that would be undetectable using univariate analyses Recently, simple analytical 379 

models (e.g. Fung et al. 2011, Baskett et al. 2014) have advanced our understanding of how the 380 

range of possible reef dynamics depends on biological features such as macroalgal growth rates 381 

and coral life history characteristics. Our model is much less sophisticated as a description of 382 

reef dynamics, although it can be viewed as a linear approximation of a more complicated 383 
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nonlinear dynamical system (Ives et al. 2003), and can answer some of the same questions about 384 

dynamics.  For example, Gross and Edmunds (in review), using a method very similar to ours, 385 

showed that coral reefs from different habitats in the US Virgin Islands varied in their stability 386 

properties in ways consistent with known features of coral life histories. Our model knows much 387 

less biology than ambitious and sophisticated models of reef dynamics (e.g. Melbourne-Thomas 388 

et al. 2011, Kennedy et al. 2013, Sebastian and McClanahan 2013). Unlike these models, we 389 

cannot even attempt to predict what might happen to an individual reef. However, we can make 390 

projections about the statistical properties of ensembles of reefs (analogous to “climate” rather 391 

than to “weather”). We see these diverse modeling approaches as complementary. Given their 392 

differences in assumptions, it may even be productive to use multimodel ensembles (Gardmark 393 

et al. 2013) to look for robust projections about coral reef futures. 394 

 395 

In summary, our models allowed us to explore regional community dynamics of the GBR. The 396 

short- and long-term responses of the system to environmental change were quite different, 397 

because of population-dynamic effects. This is likely to be true in many other systems. Statistical 398 

models of community dynamics have the potential to bridge the gap between analytical theory 399 

and field data, and have been found useful in systems including freshwater  plankton (Ives et al. 400 

2003, Hampton et al. 2013) and marine fisheries (Lindegren et al. 2009), as well as coral reefs 401 

(Gross and Edmunds, in review). 402 
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Figures  576 

Figure 1. (A) Time series of Great Barrier Reef composition at 46 locations between 1996 and 577 

2006. Each series of observations on the same reef in consecutive years is represented by a grey 578 

line, starting at an open blue circle and ending at a filled orange circle. (B) Short-term changes in 579 

reef composition for the data in (A), coloured by annual mean sea surface temperature anomaly 580 

with a one-year lag. Circles: low local threat. Triangles: medium local threat. Diamonds: high 581 

and very high local threat. White lines: 0.5-isoproportion lines, along which two of the 582 

components of the composition have no change in relative proportions. For example, points 583 

along the line from the algae vertex to the point bisecting the coral-‘other’ edge have no change 584 

in the relative proportions of coral and ‘other’. (C) Parameters from Equation 1 in a model for 585 

the data in (B). Each parameter is represented by its contribution to short-term change, with an 586 

approximate 95% confidence ellipse. The intersection of the white lines corresponds to no effect. 587 

Grey (1): intercept. Light blue (2) and dark blue (3): ܉ଵ and ܉ଶ columns of the matrix ۯ, which 588 

describes effects of reef composition. Green (4): effect of centred and scaled SST anomaly. Pink 589 

(5): effect of centred and scaled SST climatology. Yellow (6), orange (7), red (8): effects of 590 

medium, high and very high relative to low local threat level, respectively. Grey dashed line: 591 

shape of the covariance matrix ઱, represented by an ellipse at unit Mahalanobis distance around 592 

the no-effect point.  593 

 594 

Figure 2. Stationary distributions for the GBR at current climatology (A: low local threat, B: 595 

medium local threat), and with a 2°C increase in climatology (C: low local threat, D: medium 596 

local threat). Darker colours are more likely compositions. 597 

 598 
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Figure 3. Sensitivity of stationary density for the GBR to climatology, evaluated at current 599 

climatology and either low (A) or medium (B) local threat. Blue: compositions that would 600 

become less likely under small increases in climatology. Red: compositions that would become 601 

more likely under small increases in climatology. Black line: compositions that would become 602 

neither more nor less likely under small increases in climatology.  603 

 604 

Figure 4. Probability of low coral cover (A and B: less than or equal to 10%) and high algal 605 

cover (C and D: more than 50%) in the GBR over a range of climatology from the current 606 

minimum (rounded down to the nearest degree) to 3.5°C warmer than the current mean. Solid 607 

black lines: bootstrap mean probability. Dashed lines: 95% bootstrap confidence interval. 608 

Vertical dotted line: current mean climatology. Horizontal grey bar: observed range of 609 

climatology. 610 

 611 

Figure 5. Differences between short- and long-term effects of climatology on reef composition. 612 

Solid arrow: direction of short-term effect of increased climatology on ilr-transformed perturbing 613 

vector (tail of vector at the point representing a zero effect). Dashed arrow: direction of long-614 

term effect of increased climatology on stationary mean reef composition (tail of arrow at current 615 

stationary mean, low local threat). The dashed arrow is a straight line in ilr coordinates. Both 616 

arrows are scaled by an amount corresponding to a 3.5°C increase in climatology. 617 

 618 
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 620 
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