Kirk Green, Wim Michiels, Thomas Wagenknecht University of Bristol

Pseudospectra of matrix functions

We study the spectrum of matrix functions $F(\lambda) = \sum_{i=1}^m A_i p_i(\lambda)$, where $A_i \in \mathbb{C}^{n \times n}$, and $p_i : \mathbb{C} \to \mathbb{C}$ are entire functions. A complex number $\lambda \in \mathbb{C}$ is called an *eigenvalue* of F if $\det(F) = 0$. We are interested in the behaviour of the eigenvalues of F under perturbation of the coefficient matrices A_i .

For this we discuss $pseudospectra \ \Lambda_e psilon(F)$ of matrix functions F. We derive a computable formula for $\Lambda_e psilon(F)$ and present applications to the stability analysis of higher-order differential equations and delay-differential equations. We also discuss the consequences of structured perturbations of the matrices A_i .

The presentation is based on joint work with K. Green and W. Michiels.