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SUMMARY

The thesis consists of three parts A, B and C, part A being
by far the longest part. The objects of interest throughout are
minimal distal transformation groups, in particular those for which
the phase space is a compact topological manifold. Although many of
the results obtained aré true for a transfbrmation group in which

the group acting is an arbitrary t0poldgica1 group, there is an

emphasis, especially in the latter half of part A, on thé éroups
6f intégers and of reals. - o
Part 4 is concernéd mainly with a classification of those
minimal distal transformation: groups with compact manifolds as
phase spaces, and each of parts B and C deals with é problem arising

in connection with the results of part A.
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ON THE STRUCTURE OF MINIMAL DISTAL TRAUSFORMATION GROUPS WITH

TOPOLOGICAL MANIFOLDS AS PHASK SPACES

M. REES

&1 Introduction and statement of the two basic theorems

The first purpose of this paper is to show how the Furstenberg Structure
Theorem for minimal distal transformation groupsa [2], L}] can be rofined whsn

applied fo a minimal distal transformatlon group (X T) for which X i3 a

compsct topo;ogical mapifold. The refinement is given by the Manifold Structure
Theorem 1.2; for which we need a result concerning the dimencion of a factor
of a minimal distal transformation group, namely the Addition Theorenm ].i,
§§-2 ~ 7 are devoted to proving these two basic theorems - tne actual proois
"are glven in §§r6'- 7. The rest of the péper iz devoted to examining, in scue
detail, wh;ﬁ,the struc;ure thecrem tells us in the rase of connected maprolds
of dimension £ 3; an explanaticn of how the structvre theorem gives us bame.
sort of classification of the ¢ransformation groups is given in §9‘ aﬁd the
results are summarizad there'in tabular form, using the notation in the index
of é 8, which ia a constaur reference for the rest of the paper. Details of
che results are :orkad out in §510 - 13.
There is some overls p in this work with that of Bronsiein [i] which will
be discussed where it seems appropriate to do s0.
I should like to thank my superyisor, Professor W. Parry, for cunsidcratle
nelp, particularly in ths prepafatiqn of this paper. Tair faper will be part
of my Ph.D. thesis, and T should like to thank the S.R.C. for financial support
¥e now proceed to the t!o basic theorems:

1.1 The Addition Theorem

Let (X,T) be a minimal distal trarsformation group (4.1) ana let

(Y,7) «<“(x,T) (4.2). Then if "dim" denotes covering dimension, dim n"l(§)
i1g comnstant for y ¢ Y and :

dim Y ¢ dim T-X(y) = dim X (y € 1),




with the convention thaﬁ n+e= oo (n=e20r 1an integer).

1.2 The Manifold Structure Theorew

Let (X,T) be a minimal distal transformation grouv {4.1) and let X be
finite-dimensional with finitely many arcwise—connected compoaents. (These
hypotheses are automatically satis;ied if X is a topological manifold.) Then.
the following conclusions holds

(L) 1f (Y, ) < (X,T) then Y is a topological manltold (and, in particu lar,

X 1a_a.maniigldll .

. (i1) (X,T) has order &, where f <€ Max(l,dim X) '(4.105. A
(iii) Let (XO,T) denota the trivial'transforma@icn gioup and let (xi;l’T)
denote the (unique up to igomorphism) maximal almost periodic extensioa of
(xi,f)‘in (X,T) {4.9). Then there oxists & ninimal distal trassformatlon group
(Yi,T),.A coﬁpact Lie group G1 and a c;osed subgsoup Hi, such that Gi acts
freely aﬁdtjointly cbntinuously on- Yy, |

(E'S)t = ss(yt) for all g€ Gy, ¥ 3 31, =T,

[\G g"lﬂig = *\3, snd the follow1ng diagraw is commutative

8c Gy

for 1L €1 <€ r2

Dinazram 1.2(a)

Ty

so that B, = (Y S ARTLA- LT ?,sYy) ie a fibre undle (3Z.1) for 1€ 4 ¢ ¢
and the X s and Yi's are manifulds.
Dim xi+l,> dim X1 vnlees dim % = G (in whichn case X is Iinite).

1f dim G,/E, = r, then dim G, < ry(ry+1)/2 by 2 resalt of 110].

(iv) Gi/Bi jg connected for i 2 Z)and Gl/H1 is connected if and only 3f X

is connacted.
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{v) (A uniqueness prOperty ) Let (X, T) 2 (X,T).

Let (X' T7) denote the trivial transformation group and let (Y l,T) be a

»T)

maximal almost periodic extension of (Xi,T) in (X',7), and let (X' T)<’(Xl+l

so that (by 4.9) there exist T-isomorphisms ?i (0 €1 % ) such that the

following diagram is commutative:

Diagram 1.2(b) .

.
Xy - . y X§
t -
T&J’ ' w
xi-l g%ﬂ ) 7 Xi-l

et Yy, 6f, B, TRT @é, (1 €4 1) bear the same relation to Xi. ¥j,
as Y,, G4 Hyy 91, 4 a, (1«41 £r) bear to xi,lr. in (diii).

Then there exist T-isomcrpbieas 3?1. (Yi,TJ‘-§ (Y',n;, anxd topological gioup
jgonorphisns °<i:Gi-——~+ Gi carrying Hi onto Hi suck that
)] i(g y) = o (o) (y) for eil y € Y,, g€ Gy, and such that the following

dingram commutes:

Diegram 1,2(g)

&
- . Tt
g. ¢
V . AV o
X, 3 > Xy
m, i
b D "
X1 7 X

1.3 In (13 Bronstein proved, among other things, & siightly different

o

formulation of theorem 1.2(L1)=(111) with the hypothesis that X have finitely
many arcwlse-connected components replaced by the hypothesis tnat X be

locally connected; neither of these conditions on X implies the other.
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Bronstein seems to use in the proof the foliowing: if (¥,T) < (X,T) for (X,T)
minimal distal, theﬁ dim Y <€ dim X (which, of course, foltows from 1.l), but
this result does not seem to be stated i L 1] as either a trkeorem or an

assumption, which is part of our justification for duplicating some of Bron-

stein’s work.

Ash A similar theorem to 1.2 holds if the hypothesis that X have finitely

many arcwise-connected components is omitted, and the hypothesis "r eyl " is

added, whérel
T € ) if and only if there exists a compact K < T such that every
neighbourhood of X generates T,

Roughly speaking, the second version of (1.2) is obitained by reylacing

the words "manifold" and "Lie group®, wherever thzy occur, bty "finite-dimensional

space” and "finite-dimeunzicnal group" respectively, and omitting all reference

to fibre bundles. This second version of (1.2) wili not be proved here.

32. Preliminariec on Dinersion Theory

It seems heluvful to list here various proéercicn 0¥ covering dimension
_which ¥ill be used suhéaquently, particularly in the proof of the Addition
Theorem 1.1 (see € 6).
Covering dimension is defined on the category of coapact Hausdorff
spaces (11}, [12].
2.1 Covering dimension 1s a topological invariant.
.2 If Y is a closed subset of X, dim ¥ <dim X.
2. For x ¢ X; let dim;(xo =—inr{§im U: U is & clcsed neighbcgrhood of x%.

Then dim X = sup din (¥) (1] 11.6-11.5)
xeX

2.4 Max (dim X, dim ¥) <dim XxY < dim X + dam ¥ ([21] 26.4).
2.5 Dim [0,11® = n ([12] chapter 1V).
From 2.5, 2.3, 1t follows that the covering dimeusion of a manifold is tke

game as the usual dimension.



=5-

2.6 IfDis a partia.uy ordered net and ({x. 7\“,. {r § P is an inverse
-&

system of compact Rausdorff spaces with inverse limit (x,%ﬂﬁde) then

dim X € lim sup dim X .
6D

gdé Preliminariea on Fjbre Bundles

The relevance of fibre bundlee to the study of minimal distal transformaticn

. groups follows,'of course, from the Furstenbgrg Structure Theorem (4.7). The

definitions given here are considerably less general than tae customary oues,

but are used for simplicity.

%.,%. Definition ®= (Y,¥%, X,u,H F,g,v) is a fidbre bundlz {or bundle} if:

(L) Y,¥,X are compact Hausdorff spaces and 7, ¢, Y are continuous surjestive
| maps.

i1) @ is compact Lis, H € G ls closed and N z Hg*: {ai.
geG

(ii1) @ actsvfreely cn the leit of ¥, the action (g,y) —> gy Dbeirg
jointly continuous.

{iv) The following diagram commutes:

Diagram 3.1
Y v X (= 1I/G)
N
5 v
v
¥ (= YE

X is caliled the base of the bundle, G the grouv of th2 tundle and H the isotrcuy
subgroup.

If H is triviel, ® is a principal bundle, and we write ®= (¥.X,G,7).

3,2 The above definition of fibre bundle is essentially the same as that of
1173 Chapter 1, §2, because cf the following, whica will be used in thes proof
of the Addition Theorem 1.1 (see [9 JTheorem 1 in § 5.4).

(1) It Y, 9, X, G, Hyw, ¢,V satisfy (3)-(iv) of 3.1, then for each y € Y
] El
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if V(y) = X, there exists a compact neishbourhood U o7 x ¢ X, and a zontinuous
one-to~one map 3:: b——~—+¥ such that Y+« = jdentity on U,
(i1) Let V =v 3(U). If > : V—> G is derined by NI Go(V) = v,
then %(g.v) = gon(v) for all g ¢ G, v e V, Xis continaous, and
Vv x>»:V ———95 X é: is a homéomcrphism of V ognto UAx G.
(111) N3 (V) — G/H = {Hg ;B ¢ G§ is weli demneﬁ by:
7;(?v) = §>(v) (ve V), and is cuntinucus, and

-

WX N2 ?(V)-————gv X G/H is a homeomorphiem of the neighbourhood €(V)

"of §(y).ont04 U x G/H.

3.3 Lemma If &= (Y,W,X,é,H}ﬁ,Q,V) is a fibre 5undle, then

dim W € diz X + din G/E. '
Proof By 2.2 and 2.3, it suffices to ;how that given w <€ %, there evisis a
closed neighbourhood V ¢’ w such that:'

"dim V & dieW{V) ¢ dim G/H.

By 3.2, w has a neighbourhzod ¥ homeomorphic to W(V) x G/H, so that

dim V = dim{v{V)zG/H) (2.1)

€ dimmV) + dim &/H  (244).

‘3.4 We now define three different types of iscmorphisn of fibre bundies. This

may seem cumbersome, but for the justification see ¢9. lsat-isomorvhisa,

‘essentially tho type generally used in fibre bundle ta20ry, is essential.y

the same as gguivalence of tundles as in [17]. Roughly spealiing, 3rd-iscmorninism

is necessary because we shall usually regard the base srace of a bundle as
the phase space of & transformation group, and shall want to considexr certain
transfofmation-group-i;omoéphisms of it.

" Definiticns Let ® = (Y;Q,X,G,H,W,Q,V) and B ={Y',W',X',G',H", [ Y9ty )
be two fibre bundles.

a)® and &' are 3rd-isomorphic under (F,«) <{write (J,4) ¢ @*—45y) if o is

a topological group'iaomorphiem of G onto G' carrying H onto H', and

¥ : ¥Y—> Y 18 a homeomorphism satisfying:
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T(g.y) = ol(g).O(y) for all y e ¥, g € G-

Note that ¥ induces homeomorphisms of W onto W' and X onto X!

. (‘f’l; ?2’
say) such that the following diagram comzutes:
Diagram 3.4
Y 3 5 YO
(4 J/f’
‘¥ ¢ > W
] ' B -
T - [ﬁ
X D 7 X!

%) @ and @ are 2nd-isomorphic under (@,%) if (,«) : & — 8 1s & iri-iscmore-

phism, X = X', and the wop @, in Diagram 3.4 is thé identity.

¢) 8 and ® are lst-isomorphic under & if @ = G', B = H', X = X! and

(®,1) @{——4(3'1& & 2ad-igomorphism, where 1 cenotes the identity lsomorphism,

5.9 Definition The vprodest bundle with base X, group G and isotropy subgroup.
H is the bundle (XxG,XxG/H;X,G,H,F,?,Q), where the action of G on XxG is

given bys

g.(x,8")

(x,8') for all x ¢ X, g, & < G
T (x, Hg)

H

X, V(% &) = X, $(x, g) = (x, Eg).
- T )
3.6 Theoren (See [17] 11.6) Any bundle with base ;117 fwhere I is any indexin;

set) is lst-iscmorpkic to a product bundle.

g i4 Preliminaries on mransformation Grcups

4,1 Definition Throughout this work, we shall be c¢cnsidering transformation

groupé {t.g.%s5) where ihe phase space X is compact Hausdorfi ard T is an
arbitrary topologlecal group acting on X (on the right) such tha* the map

(x,t)— xt is jointly continuous.

.2 Definition If (X,T) ie a factor of (¥,T) and Fe (Y,7) —>(X,T) is
the factor homomdrphism, write (X,T)-<;(Y,T). (The suffix T will rréquently :
be omitted.)

4.3 Definition Given'a't.g. (X,T), write E(X) for the envelopping semigroup
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of X. E(X) is5 a compact Hausdor{f space when given the Lopology J or oolntw1°v
convergence. Write (E(X) T) for the caronlcal t.g. with phase space E(X) and
group T E&]_Chapter 3)e
4.4 Let (X,T) be a minimal distal t.g.. A refereice for the following is [i}].
(Note that [13] deals with left, rather thap rignt, t.g.'s.)

(a) For any x € X, the map “x 3 (E(X),T) —3(X,T) is a T-homomorphism unto

x,T), where ﬁg(p) = Xp.

(
() (1,,JP‘ *s~a—gr@&p;in~whichwbhe following. maps are continuouss
p—ap (p, q ¢ E(X)),
pr———pt (t in the image of T in E(X), p ¢ E(X)).
(c) Let s be the weakest topology on E(X) making the map ¢ continuous, vhere
¢ : (E(X)xE(X),lpxlpi—~—7ﬁ(x) 1s.giVen by ¢(psq) = pq-l. Then 6~ ¢ 7,

P
(d) If H is a subgroup of E(X), (E( )/H,jp) is Hausderff if and only 1f K is

- closed, where B(X)/V = § : p e E(x)}.
Define (Hp)t = H(nt) (t e mT)..
Then (E(X)/FE,T) -< (E(X),T), where §(p) = Hp. '
(e) It (Y,7) < (B(X),T), then 1f e is the identity of B(Xj, let & = T (e) .
E la a dkc*osed subgrovp of E(X) and the following diagram commutes:
. Diayram 4.4
.(E(X),T) P
’ T
I ]
| |

l .
(Y,T) «——>—— (E(X)/H,T) Op
1(p) ——wu— Hp
(£) EB(X) can be identified withn the group of T-isomorrhisms of (E(X),T'. For
conslder the map p +—3 Lp where L (q) = pg (g ¢ E(X)).
() Similarly, the group of T-isomorphisms of (B(X)/ can be identified
with L/H, where L = {p e E(X) 2 pH = Hp? (so L is 6 =closed).
(h) For a o -closed H § E(X), define alg(H) = %f & CfE(X)) : L;f = r} (see {f£))
so that alg(H) is a T-lonvariant (i.e. tf ¢ alg(H) for all f & alg(H), t € T,

where tf(p) = f(pt)) C.-subalgebra of C(E(X)).
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For a T-invariant C*-subalgebra Q of C(E(X)), sefine
gp(O) = {p & E(X) t Lpf
5UbEroup of E(X).

1

£ for all f ¢Ct 4 . Then gr(Q) is a;rQCIOSed

We have alg(gp(CL)) (. and gp(alg(H)} = H (use Uryssohn's lem:ra and
the Stone-welerstrass Theorem).

4.5 Definition A minimél t.gs (W,T) is a qhotiunf—zroun—extension or (X,7)

if there exists a compact topological group G with closed subgroup H ‘such that

f\g’lug = §e%,;and_a,minimalwtvgwu(Y,T) such that G acts freely oa the left
geG '

of Y, the action (b,y)h~n-9gy belng jointly continuous,
(gr)t = glyt) forall geG, y €Y, te T, and such tiat the following

diagram commutes:

Diegram 4.5 Y "" > X (2 Y/6)

W )

In this diagram and all subsequent diagrams, if the objects in ihr diagram
ar: phase spaces of t.g.'s with respeét ta a greup W, and the arrows dencle
T-homomorphismse..

We also say (W,T) is a ¢/H-extension of (¥,T). If G s Lie, finite etc.,

’ -

we say (%,T) is a quotient-Lie-groun—extension ate, of (X37). IL H 1s ir.vizl
» J y

we say (W,T) is a group-extension -of (X,T)

Note that if G is Lie,(Yo,Wo,Xé,G,H,H.Y,Y) is a fibre bundle (3.1) for
any closed Xo € X with Yo,z Y-l(xsk ¥ o= v‘i(xo). '

4.6 Let (i, T) <, (¥,T) with (W,T) minimal. The following are equivalent

conditions for (W,T) to be an almost periodic {a.p.) extension of (X,T) ([2]

(1) Given an index ¢ on W, there exists an index $ = &(g) on W such that.
((wl,wa)e & and U(wl) = ﬁ(wz)) imply ((hlt,wat)t < for all t ¢ Tj.

(1i) (W,T) ts a quotient-group-extension of (X, T)e

nsl
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For (1ii) and (iv), we make the additional assumpcion that (W,T) is distal,
and choose G-closed subgroups H, G, .of 2(W) (4.3) such that the following

diegram commutes (see 4.46)):

Diagram 4.6 C .
P © (E(W),T)

] .‘\\\\\\\\;

Y/ H,T) ¢y (i, 1)

=2}
-]
~
=3
—~
&=

V)

Gp (E(W/6,1) %, 1)

(1i1) N{G) < H, where N{G) 1s the intersection 0% the G=closed Ghneighuou"hocﬂs
of the identity in @ (i{3) ie a group)
(iv) (G/H »9) = (G/H,7] )~

4.7 We shal.J. use tne following formulation of the Furstenburg Structure
Theorem (see (2] Ciuspter 15, and [3] for the elimtnatlon of the assumpr.ion
ot quasiaeparabllity)
. ”heorem

(a) wvet (X,T) be a minimal distal t.g.. Let (Y,T)fé (X,T). Then there exis®s
(z,T) with (Y,7T) 'j (5,75 < (X,T) such that (Z,T) is an a.n. exteasion of (7,7).

{v) 1f (Y,7) < (X,T), then by transfinite induction on a), thers ex’siz an
ordinal ~ and { (%, T): osﬁsdg)‘- '{n(a){:'o'sg £ e oL & satlsfying:

>

(1) (XD .<"»; (X,,T)," 0spsrset.

(11) ﬂp,.aﬂu =Thy , 08peve s Mog=,

(111)  (X,,?) = (T,1), (X,T) = (X,T).

(iv) (x_,,.T) is a proper a.p. extension of (Xs,T) for B eote

(v) 1fp is a limit ordinal, (X,T) is the inverse limit of {(x6,T)§
4.8 In 4.7b), (1iv) can be replaced by:

(iv)? (xﬁu »T) 1s a proper quotient-Lie-group-extension of (X55T) s
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This will be proved in 5.1-5.3. It was shown by Hrunstein in Ll}. However,
a slight error in the proof led to the conclusion that one could assume that

(X T) ¥as a GMl/HPﬂ-extension of (XB,T) (pﬁx) where G)+l wes either a

ﬂ+l’
connected Lie group or finite. Thig is not true: for example, if T is an
arbitrary group, and (X,T) is a minimal distal t.g. where X is & Klein bottle,
and (Y,T) is the trivial t.g., then it is not possible to choosge i(x ,T)}o" .
. £ «(;e-

- puch that all the groups GP+1 (p <= ) are connectad Lie or finite. e omit

the details. i R

'3_2 Given a minimal t.g. (X,7), there is a natural correspondence.betueen
gactors of (X,T) and T-invariant C*-gubalgebras of ci{x), and any two factors
associated with the sawme subalgebra are isomorphic [2].

If (X,T) ie minimal and (¥,T) <f“(x T), then there exists (2Z,T) such tha*
(y,m <;‘(Z,T) <}L(X,T) (Wianz =T.), (Z,T) is an a.p. extension of (Y,T),
and the éuﬁalgebra of C(X) corresponding to (2,T) is at least as large as that
corresponding to any other a.p. extenmion of (Y,T) in {X,T). (3,T) 15 called

the maximal almosi reriodiz extension of (Y,T) -in (X,T) [21.

4.10 Definition ‘Let (X,T) ve minimal distal, ard {Y,T) the trivial factcr.

" 1f, in the trans{inite inducilon procedure of 4.7p) we take (Xg,1,T) to be
the maximel a.n.Aex*enéion of (Xﬁ,T) in (X,T), then we obtain the smallest
£p % {lﬁj. tBevc 3

satisfying (1)-(¥) of 4.%p). This & is called tke order of (x,-;).

ordinal « for which there exlsis a syavem {(XP’T)

'gé On Ouotﬁent Group-Extensicns

In his section, various results on goutient-group-extensions (see 4.5
for definition) are eollected together. 5.1-5.3 contain tne proof ox tae
modified Furstenburg Structure Theorem (4.8). The main result is 5.5, which
concerns the "uniquenssa" of a group-extenaion associated with a given qdétient-
group-extension. '
5.1 Lenzma Let G ve a compact topological group, and H a closed subgroup.

Let N, << G with G/N Lie &nd'ﬂﬂl # H. Then there exists N<d G with N < Nl'

1

ano{ m (jh‘HNﬁ’b.,
C}CG



G/N Lie, HN ¢ HN, and /) g~ luNg = N.
. geg

Proof Choose x ¢ (G\H)(\BNI, and let £ bdea finite-dimensienal representation
of G such that €(x) # S(h) for any h ¢ B (€ exists by Urys . ohn's lemma and
the Peter-Weyl Theorem [15] Section.jj). Put NZ = Nl n Ker € 4, and put

N = N g N g,
gea

. 5.2 Lemma Let (X,?) be a minlpal distal t.g. and let (Y,T)“é (X,T). Then

thez:e~ex4rats~(zr'l‘~).~vpirth~(.!l,-’E):-éiZ,T)-<’(X,T) and (2,T) a quotient-Lie-group-

- extension of (Y,T).
Proof By 4.7@) we can assume (X,T) is a G/H-extension of (Y,T) for some compact
topological group G. By 5.1 (with Nl = G) we can find N < G with G/N Lie.

Gng-lHNg = N and HN $ Q. Then M gEN/NE™ =iN§)and we have the following

EcG/N
commutative diagram:
Diagram 5.2 : : '
 —— Y} | Y ( £2/6 T (2/N)AS/50)
N . A
N\ . .
\ /

2/H) —————3 /BN (% (2/N)/(BR/HY)

So (Z/HN,T) 1is a quotient-Lie-group-extension of (Y,?), and

(1,1 % (3/8N,T) < (x,T).

5.3 Let (X,T) be a minimal dista; t.g., and (Y,T) ‘fﬂfx,T). By using 5.2 tu
obtain a quotient-Lie-group-extension (xﬁ+l’T) of (YA,T), find *y transfinite
‘induction a system {(Xﬁ’T)ZSOsgsu Xﬁ(_,,,ioﬁ!u,“ satisiving (i), (1i), (1i1),
(v) of’h.KS) and (iv)?® of.h.8. Hence 4.8 is proved.

5.4 It follows from 5.1 that if (X,T) is minimal, and a finite a.p,» extension
of (Y,T), then (X,T) 15 a quotient-finite-group-exiension of (Y,T), hence a
covering of (7,T). » .

5.5 The Xollowiné proposition holds without the assuxption that the (Zi’T)

(1 = 1, 2) be distal, but the proof of this will not be given here.




Proposition Let (Zi’T) be minimal distal (i = 1,2) and suppose we have thé
following commutatiﬁe diagran:

Diagram S.5a)

Z : ZZ
S, \
<————‘r—-——)X -
/ : X
( =2./H,) ' > eYZ(—Z/L)

" where G is (as usual) a compact topological group acting freely and continunously

and H, is a closed subgroup with M g H, ;8 = $el.

geG,

on Zi’

Then there exists a T-isomorphism & : (Zl,T) ———a(ZZ,T) and a topological

group isomorphism o : 4,—3C, carrying H, onto H, such thaf

Q {gz) = Mks)(ﬁ(z) for all 2 € 2, and g € Gl’ and such that diagram 5.%a)
remalns commutative when Lhe arrow zl_ﬂi_,zz ig inserted.
Proof 1. Define §i : E(Zi)-—-—eE(Yi) as follows (see 4.3):
For p ¢ E(Z;) and 7 € T, define y(?ip) = fi(ip), whenever ?i(z) = Y.
Then ii_ia well-defined. To showk?i.is one=to0=-0nc: . '

"Let p, q & E(Zi)‘and suppose ?i(p) = ?;(q). Then ?i(zp)»ﬁ fi(zq) for all » & %, .
Fix z € Zi. For each g ¢ Gi) there exists hg [ Hi such thaf gap = hggzq
(because §,(gzp) = ¢, (82q))-

-] ¢«
i.2. 2p H;g = Yey.

[

(g'lh g)zq, i.e. zp = kzq, where ke /g
g ’ £¢G.

L

i.e. 2zp = zq, and hence, since = is arbitrary, p = q.

§,': E(Zi)~———aE(Zl) i a T-iscmorphisz and (clearly) a group isomorphism.

2. Let (Yiyi,jp) denote the semigroup of (not necessarily continuous) maps

from Y1 to Yi’ with the topology‘jp of pointwise convergence. Consider tng
Y, Y, - -1 ' ~ .
map Yl 1y Ya 2 given by hp——a«fdv@ . The restriction ? of this map to

E(Yl) is a T-isomorphism and group isomorphism onto E(Ya). 3y L.hf), it is
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possible to find g-closed subgroups G:'L’ H:!L 34 E(Yi), aad T-homomorphisms T

such that the following diagram commutes:

i

Diagram 5,5b)

w
p E(Y)) < -%f—— E(Y,) P
( AN\& . . "‘/
x/“
>y ey 14
,/’);WYI < ’ s F;\\\;\
. -/ A4 ‘( : o : ? g
Bp  E/E g m| 0 By
v (_fi I -
6fp  E(Y)/0} e Xy ¢ >— X, E(Y,)/G5  Gip

3, Let Ti(e) =y (e tne identity of E(Yi)) and choose z, & %, sucn that

§1(zi) = ¥y Now define §, : E(Zi)————ﬁzi by o'i(p) = ;P (p & E(Zi)}.

Then §106‘i = Tia?.:

Then 4.4fe) implies tue ‘existence of a T-isdmorphism "I{i and KJ?_ ( a G-closed

subgroup of E(Yi))' suck thet the following diagram commutes:

. Diagram $5.5¢)

P B(Y,) & identity SE(Y, )
bt i i
_ §T
“
E(Z, )
i
| | ql N
g v \L.._
Eip  E(I,)/Kjs % > ?1 T,
’ g_l
e ~ o/
H'p E(Y,)/H' « & Y. 2 3,/1)
i SR U : i 179
Tw,
e
) - =
Glp  E(Y,)/G} < > Xy (% 2,/Gy)

k. Let Li = {p & Gi : pKj = Kipg. Then (Lj'_/Kj",:\p) is a group and a compact
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Hausdbrff space, and i&entifies with the gioup of T-izomorphisws of E(Yi)/Ki'
whose transposes léave C(E(Yi)/Gi) invariant, with the topology of pointwise"
convergence (4.4g) and(h)).

Minimality of (Zi’T) implies that Gy idenfifies with the group of
T~isomorphisms of zi whose t;anBDOSes leave c(x ) invariant. Hence there
axlsts p'l H (Li/Kj'_,,\p) -——Q, (& group L:mmorphinm and homeomorphismn, su thai

(Li/Ki,t&) fé, in fact, a topological group, and ﬁi is a topological group

1somorphisn) such that:
P4 (Kipa) = ﬁi(Kip).?i(Kiq) for all p< L!, g ¢ E(Y,).
Since C(X ) 1s the fixed algebra of Gib C(E(Yi)/Gi) must be the fixed

algebra of L'/K and hence L} = Gf by 4.46h) .

i’
1.6, K! <1 Gi , ) _
' ﬂ -1
Since ﬁl(K /H') = E., we have Kl & H!g.

geG’
5. We have §1: (E(Yl),lﬂ) m——a(E(Ya),]p) is & grovp isomorphism and hureo-
morphism, where @(G') = G, %KH' = Ht,

2* 2
Rence, since Kj = N.g” H K%K ) =
5eG'

-~ — "
Then ¥ induces a Tuiaomorphism @ (E(Yl)/K?, T) ———?(E(Y )/K'“TJ
" and a %opological group isomorphism ¥ : (Gi/K! )———4=(G'/h',3 )
] - . i
such that @(Kipq) = K(Kip).@(xiq) for all p € Gl’ 0 & E ll).

Then define £, ol by ¢ d: 2, —3 %y O =T,0Q¥]

2
s G 8, W = Byl opTt

]

§§ and ¢ have the required properties.

5.6 Cé. sllary Let (X,T)'< (Y,T), where (¥,T) is a G&/E-extension of (X,7T)
and (Y,T) is minimal distal. Let (X,T) < (W,T)=< (¥,T). Then there exists a

c¢losed subgroup L of Gy, H €L <G, such that the following diagram commutes:
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Diagram 5.6
2 ~A;;/§ ( =2/G)
////\W ( = 2/1)
Y (=2/8

Proof By Proposition 5.5 and 4.6, we can assume (Y,T) = (E(Y)/H',T) and

(X,T) = (E(Y)/G*,T) where G', H*' are U'-closed subgroups of‘E(Y) with
 R(6*) € H'< G' (see h.h and he6)y @ = (GY/E,T ) = (GV/K,9), and
K = (BV/K',1.) = (H'/N',S), where N' = N\ g lH'g.

p R geGI

In this case, (¥,T) = (E(Y)/L',T) for some L', Hf < L' < G' (4.4), and we can

take L = (L'/N',3?) a (LY/NY 0). .

5.7 The following proposition will be.needed in the preccf of the Manifold

Structure Theorem l.2:

k|

~

L]

Proposition Let {(W,7) be minimal distal and (X,T) -<ﬁ(Y,T) <§T(W,T) (5, W,
x i, p
where (Y,T) is a quotient~iie-group-extension of (X,T) and (W,T) is an a.ps.

N-extension of (Y,T). (1.e,TI£l(y) has N elements for cae, hence all, 7 & 7.,

Then (¥,T) is a quotisnt-Lie-group-extension of (X,%). |
Proof By 4.6, 5.5 and repealed application of 5.1, it euffices to prdve (W,Tj
is an a.p. extension of.(X,T).
Use the folloﬁing standard notation: for an index £ on a uniform‘sfa;e
2, let BE(z) = {z' s (zy2") éi.i R
The proof is analogous to that of theorez 3 in {161,
Y is a G/E-extensién of X, say, where G is compact Lie. Chcose any oper

v, < ¥ such that nil!o is a homeomorphisz (5.4) and such thac there exists a

homeomorphisa of the forms

m, z N 3 ﬁl(wo)-—-ﬁ'ﬁ(wo) x U where U is open ir G/H (3.2(1i1)).

Write £ = (rran)‘,l\(rr(womu) and g = ((r,xN)e )7 (W )xv).
Find open Ul'é U and an open neighbourhood U2 of e ¢ G such that Uan < U.

To complete the proof, it suffices to prove the following:



A SN AR e Dl Db LA Dkt

A
17—

5.7.) Suppose glven an index £ on W such trat ﬁ,‘Bi(w) is a homeomorphism
+  onto || (B (w)) for all w & W. Then there exists an jndex & on G/H

such that B (u) for all u € G/:l and:

2
(g(ix} x By (u))).t <‘BE(g(x u).t) for all x eT(W ), ve Uy, t ¢ T,
For if 5.7.1 holda, then it follows fron t.hv minimality of (W,T) that 4.6(3

is satisfied, i.e. (W,T) is an a.p. ,extension of (X,T).

L

Suppose gn.ven such a3 € . Choose an index z on Y such that

B, W (wet)) € n (B (w.t)) for all we W, t€ T (Ilo] 1emma 2). Since (Y,T)

is an a.p.' extension of (X, ’l‘), choose an index 8 on G/H such t.mt.

5.7.2 f({xyx By(u)).t < Bi.(f(x,u).t) for all x ¢ (W), t & T.

Now choose an index § on G/H, and a connected neighbourhood V S, of
e ¢ G such that B;(u) c uv ¢ Bg(‘ii) for all u €G/R.

Fix x ¢ H’(W ) and u & Ul. Then uV < U and :

(g x5 x Bs(u))) tc(g(fx} xuv))t s @ l((f({v“; x uVl.t)

o 1 TLC(Exg x By ) & FTB(Gru)et)  (By 5:7:2)

kll

=l _ o ;
< My Wlbt(g(x,u).t) < Bz(g(x,u).t) v U, ....L;JI)}N
. .
N disjoint open se:s

Since g(x,u}.t & (g({xﬁ x u¥)).t and V is connectad,

" g({xy x Be(u)).t ¢ c g($xy x uV).t < B (g(x,x..) t) as required.

+

§6 Proof of the Additién Theoren: 1.1

6.1 The hyputhesis 1s that (X,T) is minimal distal, and (l T) -<r(x,T).

Using 4.8 (twice), choose ordinals Ly ¥ 5 (g o) end a systam

E ﬂ' R Fad - nave
i(xﬁ’T)O’:§£~.J.2-’ .( ("‘)O‘.—§&“‘€°"}S of factors of (X,T) such tual

[IN

(L) {X 'l‘)-—( (X4sT)s Os(ss‘{ oLy
P

4
< oly -

(11) T Ty = Ty 05{33‘64_ § s, W =T,
(111) (X ,T) is the trivial t.ge, (X, ,T) = (1,T), (Xdl,’l‘) = (X,T).

(iv) For B Ay (xgﬂ,r) is a Gpﬂ/}{;u-extension of (X{.,J,T), where Gp+l is

compact Lle, and O lﬂﬁ_lg = jed (4. 5).
BGGP+1




. , o ,
(v) 1If (315 a limit ordinal, (XF’T) is the inverse limit of i(xa,'r)*\ §<p’

Write ng = dim GP/HP for ﬂ not a limit ordinal, £ 70, and np = O for
p & linit ordinal. |

The Addition Theorem will'be proved if it can b2 proved that:

8) dim Y= 2 B, b) din i My) =T np forall y & ¥
o<psu, ‘ ) oofsety
C¢) dim X = X ne (where these sums are interpreted as oo if they do not
ooty

converge).

Only b) will be proved: ¢) is proved in the same way as b) with ¥ repnlaccd

" by the trivial factor and o, by O, and a) is proved in the same way as b with

Y replaced by the trivial factor, oL, by 0, X by Y and «, by o, .

6.2 Proof of 6.1u) Fix y ¢ Y. For o/ < < #, we shall coastruct by

trensfinite induction closed setis QP énd homeonorphisns g'JPsuch that:
. . . - . é_ . .
(1) Qpc_.xP, ﬂTPkQF) = Qg o, <¥ P oLy .
' ng |
(11) &, : QF—-)F o,1] is a homeomorphism (where fo,11° = {e} »wy

o(|<15(_1,
definition) such that the following diagranm comnmutes for 7S<§ H

Diagram 6.2a) . T\'is
. B
. .QP . y Qq
Y\ Yy
~— g = e
i [o,1] > | {o,11
dREsp P ve o, <6
. nb . ng — -‘ns
where we ragard .ﬁ 10,1] as N 0,11  x fl [o,11 4 and p _, is the
ohebef Lebed Jebshd ¢

patural projection.
, C -1
iii) di = dim T A
(1i1) dio Q, nle (32
Ther, since 1t is clear that dim Q, = > a; (by (11)), 6.1b) will be

} o <8P
proved by putting p= & 5 in (4ii).

-} :
Case B =aly + 1 Clearly \'5'( (y) is homeomorphic to Ga+1""¢+1 Bence find
) Ve

Y 4}

. n
a closed subset Q - 4 of 17~ '(y) homeomorphic under some (fd, \to [0,11 ""’l,
\ R .

d;"‘nl

Now suppose QK’ (ﬂ)‘ bave been constructed for o(,<‘6&(>.
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vaseg = ﬂ + 1, some YD )

By 6. l(iv) there exists a minimal distal t.g. (ZP’T) and continuous
surjective maps §; v such that the following diagram commutess

Diagram 6.2b) o .

v L v o pn
.ZF Ix'l( =&5/qﬁ)
- . .X}_( = ZP/H{”)

Then (v~ (Q Y, txP Qn)s Qs Gps By, n&P, ?,V) is a fibre bundle (4.5,3.1)
and by 3.6 there exists a homeomorphism
-1
(T % %) 2 (0 —— R, x 6y/Hy). o
Now let Nﬁ, < /H‘; be a closed subset isomorphie to IO U under ".1,; » BAY,

and let q, be the iuverse image under (il X ) P) of (@, x N).
3y
Let SJF Q -——————)T Jo, 1] ° be defined byCﬂ3 =g30,'4<§/p)<-‘ Px)\f,_.,).
n<<$'p
Clearly (i) and {§i) of 6.2 hold, and dim Q_ = 2 n,.

_o(lx‘o‘:fﬂ

By considering the fibre bundle

’ . . -1 ’ -~ .-1
\ (“,‘PO“)) v, 0 PJ<Y)’ L-'} (¥)s G!Qs H;S)nqp. »$,Y), we sce thf_lt

e

dim T\:‘.;l(y) < dim 7

< A y) + dim GF‘/HF (by 3.3) < < =n,, and hence:

Mf&: ]

dim [ "1(y) - n,, since Q < ri y) (2.2), and sc (1ii) is setisrfied.
“p Gessp T P ‘

Case A a 1imlt ordinal, B > oty
¥ T

Define Q3 = M T '1(Q3)»

, ' oe¥<g ¥
Define @ Qq — 5T, 1]
P o<t
<sgp
pdﬁo cD (z) = Py e 1JF(z) (z ¢ q ) for all ‘fﬂB .
Then Cff, ig well-defined and a homeomorphism. (1) anae (ii) of 6.2 are clearly

satisfied, and clearly:

'Z_ n; = dim dim TT (y)e
<5< P QF
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But by 2.6, dim [T, "}(y) € lim sup dia niy) = Y m,, and (i1) is
g ¥p ¥ odctap

satisfied.

© 6.3 Corollary to the Addition Theorem  Let (X,T) be minimal distal. Let

(Xl,T) denote the maximal a.p. factor of (X,T). Then X is connected if and

“only if X, is connected.

1 S
Proof If x’ig connected, clearly xl is connected.
__COnvacaelyr;suppoée—X-iswnotmconnected.-For Xy ¥ ¢ X, define x ~ y if x
-and ¥ iie in the sanxe ccnngcted component of X. Then ~ is a closed T-invariant
equivalence relation on X, hence induces a factor (X/v,T) of (X,T). By thé
Furstenburg Structure Theorem (4.7), (X/~,T) has a non-itrivial a.p.. factor
(Y,T), which, by the Addition Theorem-l.l, must be~0~diﬁensional; henee

totally disconnected. But Y is & continuous image of Xl' Hence Xl is po%

connected.

7 Proof of the Manifold Structure Theorem 1.2

7.1 Throughout this sestion use the notation of 1.2.

First note that, since, in 1.2(1), ¥, like X, has finitely many afcwise'
connected éomponeﬁts and hence, like X, satisfies tkie h&potheses of the thecreé
it suffices %o p}ove X 1is a manifold, which will follow from 1.2(ii) and (iii)
(since each Xy is there proved to be a manifold). |

(ii) will follow from (iii) (qim Xi+1 > dim Xi) and tge Afdition Tﬂeor:m
{dim Xi < dim X for all 1).

In 1.2(17),_ "Gi/Hi connected 1f and oaly if X is connectedﬁ is precisely
6.3. 1.2(v) follows from Proposition 5.5.

Thus we only need to prove 1.2(iii), and that Gi/Hi is connected for 122,

which we proceed to do.

7.2 Suppose (inductive hypothesis) that Xi, Yi, Gi,‘Hi,fTi,gi,\)i have been
have been constructed for i < s < order(X) satisfying all the conditions in

1.2(114), and with Gi/H1 connected for 2 €1 < s. Let (xs,T) be the maximal
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a.p. extension of (xs_l,T) in (X,T). Let Ye, G, HS, st is,\ls be such that

s
the following diagram commutes (4.6(ii}):

Diagram 7.2

Y

& xs-l (= Ys/Gs}

Suppose also that (1 g_lﬂgg = iéﬁf“ -
g=G
)

¥e Know that Gs is non-trivial, and it is easily seen that xl 1s not fini.e.

Hence, to complete the proof of (iii) and (iv) of 1.2 for X , ¥ , G_, H

s* s s8*
s §g» Vgs 1t will suffice to prove:
(a) G, is a Lie group (for thenm Y_ and X_ will be manifolds by 3.2).

(b) 6,/B. is connected 1f 3 2.

73 Prodf of ?2.2(a) If 88 is not Lie then there exists a strictly cecreasing

N, i< BN
ko 5

sM141 S and GS/Ni

sequence iNiﬁ of normsl subgroups of G, such that I N

. ~ r & s} . -
is Lie (5.1), whe;e din us/HShi < d;w Gs/HNi+1 < dim uS/ES< e by the

- Adaition Theorem 1l.1l. Yslﬂsﬂl is a manifold for eacn i (3.2). We obtain the

required contradiction to Gs not being Lie from the following lemma:

Lemma Let (W,T) be minimal distael with W having finitely maay arcwise-
connected components, and let (V,T)«<Tr {W,T), with V & manifeld. Then it is
not possible to find a strictly iAFreasing sequsence {(vn’T)i::O of factors
- of (w,T)vsucn.'t‘nat (V,,T) = (V,T) and (V,T) is a finite a.p- extension of
(v,n). .

Proof Suppose for contradiction that such a sequence exists. Replacing T by
a syndetic subgroup, i(Vn,Tﬁ by a proper subsequence and W, Vn by one of the
connached components of W, Vn if necessary, we can assume that ¥ is arcwise-
connected. We can also assume (W,T) is the inverse iimit of {(Vn’T)}' Then
(W,T) 15 an a.p. extension of (V,T), hence a G/H-extension of (V,T) for somse

compact topological group G. Fix v & Vs ThenTT"l(vo) is infinite and totally
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discoonected. Since n’l(vo) is homeomorphir to‘G/H, it is also compact ani

perfect, hence uncountable. Since each V, is a finite cover of V (5.4), a lcop

in V based at v will 1ift to a unique path in W Jjoining v, (a fixed point in
'l(v }) to another point inm T~ (v ), and a homotopy between two loops lifts

to a homotopy between the corresponding paths in ¥ ([9] Chapter 6 Theoren h)

Since i 1(v ) is totally disconnected if wy, WyE o (vo), a‘path in ¥ joiming

LS to ¥y cannot be homotopic to a path joining w to '2 if the endpoints are

restriotgghto W (v ) and ¥ 3 v . Hence the funaamental vroup of V¥ (based

,vo) is uncountable. But this is impossible since V is a compact manifold.

7.4 Proof of 7.2(b) If B 3 2 and GS/Hs is not connected, then defing an

equivalence relation ~ on x by:

(x ~ y) if and only if (ﬁs(x) = [ (y) and x and y lie in the same corpected
component of;v rs(x),. .

Then (X /v,T) ig a proper finite extension of (X 1,T), so that (xsﬁv,T) ig (5.7}
an a.p. extenslon oi (xs ov T) - which contradicts (Xs~l’T) being thsz maximal

a.p. extension of (X 2,?, in (X,T). Therefore G S/Hs must be ‘connected.

'§§ Index of,Nota**on a“d List of Vundamental Groups : . o .

In this sectiun we.give a 1ist of tne symbols used “rom now on to dencie
the indicated standard (topological) groups and topolcgical spaces. Tnere felilew:
(8.3) a table of fuadamentel groups which isvsufficient {or praof *hat most
of the topological spoces mentionned in 8.2 are of distinct tcpclogical typez.
8.1 Note If X is a topologica; space and ~ 1s an ﬂcnuvalence relation on X,
X/~ will denote "the space. of equivalence classes witnh the quaticnt topoiogy.

For x ¢ X, [x] will denote the ~-equivalence class of x; square brackets will

gt

11

be used without mention of the associated equivalence relation, if it is thoug
that no confusion can arise. In particular, Tx 1l will often denote the orpit

of x under the actior of some group on X.
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8.2 List of symbols
An Group of permutations of il...n} wich can be written as tue
product of an even number of 2-cycles (s0 ja\ = (n!)/z)
Aut(G) The automorphism groun of a topulugical group G.
C The field of complex numbers.
D, (n » 2): Dihedral group of order 2n, <8, b 3 a® = v° =1, ab = ba_1>,
. ‘As a subgroup of s0(3): the group gererated by the set
— eow- 2T/ —sin 28T/ O - ' j o 1 o\\]
-—si‘n 2rr/n cos 2rx/n O] 3 r = O...n = 1L v 1 0 0 \ ‘\'I
0 0 1 0 o0-3/ l\
GL(n,R) Group of real m x n invertible matrices.
GL(n,Z) Group of matrices with integer coefficients and determinarts i l.
K ) Circle group {ze [\ \z.\ _12& (group operation being multipilicationl
As a subgroup of S0(3): cos® siagl O
» -sin6 ¢cos® O '.(‘)é(R
. 0 ' 0 1
ks & suigroup of SU(2): (% O} 3 e K
o i(o A.‘;\
' KX ¢oe X X ‘n~dimensional torus.
n coples _
K x_%5 7, is identified with aut(K) = {1,€% , wnere €(e) = -1,
K % %, = {,0) ke K o=1 orizs.
Multiplication 1is defi'ned by (ky,6y) -k, 565Y = (hyoq (5)s 6165

As a subgroup of 50(3), K x_ 2, is the growp generated by the eet:
' cos® sind O o 1 o\
-sin0 cos® 0] : 8¢k Uity o O
o 0 1 o o ..1}
As a subgroup of S0(3) X%y (10.7(1ii)),
K xszi = [(x,6) s ke K as a subgroup of S0(3) and o ¢ 2,28 a

subgroup of Aut(s0(3))




K3/¢
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" (6 is an automorphium of X% of ovder r.} This denrotes the orbit
spaca of K3 under'the free action of <67 delinced by:

aei/r - '
& . (kyskpky) = (o kys 6 Ckysleg)).

(s® < K)/a

%i//r r This denotes K?/g‘ where & corresponds to riy Fio : '
(11 12) (r . \e GL(2, Z.)
-\ Tap . al “e2 ]
: ! (See 10.8.)
(K x sa)/v . "~ denotes the equivalence relation (k, x) ~ (-k, -x).for
kcKand x& S (see 8.1). -
KB This fenotes the Klein bottl(e'KZ‘/a« whare (i ,k,)~ (-ky k30
N/rn (nz 1): N denotes the Lie group of matrices: |
1 x ¥y
/0 3. 2| :x, 9,z €IR} | tne group operatica beiné
i \0 ‘0 1 T ~matrix multiplication.
f; denotes the subgrous f1 my ma/n\ | » ?
0 1 oy Ty, My, ms e 2
0 0 1/
Where no confusion can arise, [i,y;z] denotes tne element:
S y\ .
[‘noxz’ of N[ T -
0o o 1/ | : . '
0(n) Group of real orthogonai n x p matricce.
p® (n 3 2): n-dimenaional real prujective plaﬁa 8%/~ where %~ -X.
I® The fieid.of real ﬁgmbers. ’
st (n 3 1) {(xl ceex, de R_!"l: :{_—i 'x;ﬁ = ].& .
5, ' Group of permutations of %1...n} (s0 ‘Snl = nl),
su(2) {(37/—: f\,/ﬁed, lx|‘+t/n‘=(IK
.(Sa x W)/~ ~ denotes the equivalence relation (x,%) ~ (-x,-k) for x ¢ SZ,

k¢K. This space 1s homeomorphic to (K x SZ)/~ .

R denotes the equivalence relation (x,k) = (-x,k'l).

“~
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K7/. whore~ is the equivalencs relatioa: S

l,k—l) .

' -1 -1 -
(kl’ka)k}) ~ ("'kl;kz 1k3) -~ '(kl’—kZ’k} )"’ (-kl,-kz 3

K3[~ ‘where ~ is the equivaience relstions

-1 2, -1 -1 ,2,.-1
(kltka’ks) ~ (—kl’_ka ’ks)"’ (kll"ka,klk3 ) ~ (’kl‘,"}"a ’klk3 ).
Group of integers.
Cyclic group of order n (a : a® = 17.
As a subgroup of SO(3): the group generated by:

/cos 2n/n_'sin 2%/n__ O

-pin 2r/n ecos 2r/a O
0 : 0 1l
As a subgroup of su(2): the group genera:ed by: /éZJi/n 0 \

) | { o e—2ﬂi/nl] ]




8.3 Table of Fundamental Croups

Space Fundamental Group Number of homomorph-
isms of fundamental
roup into:
Z, [y By 1B Dg
K3 23 8 27
3 - . 1
/K{/.Lo . .\Za.;h,c;_nh_;_b,}n,,_ag:_c la, be. = ch 813 48 |
0 - , ) i
’ \
3 - .
y(l 0) {a,b,c: ab = ba, ac = ¢ la, be = ¢b7 819 36
0 -1 : :
3 - |
y(l 11) (a,b,c: ab = ba, ac = ¢ lab, bec = cb 7 L 19 b 24
0 - . ;
&0 L \ -1 -1 |
(-l -1 la,byc: be = cb, ba = ac ", ca = ac 07 219
3 - , _ . ‘
K01 a,b,c: be = ¢hy ab = c.la, ac = ba » L1318 i
(-] o) . |
3 i ;
K1 4\ Ca,b,cs be = b, ba = ac, ca = ab ¢V 213 ;
'\1 1 . ‘ A :
LA La,b,c: ab = b_la, be = c'lb, ac = ca 813 _;6'
, — - ‘ ™
W, <a,b,c: ab = cd &, bc = ¢ 1b, ac = ca > 413 1§ i .
N/r\l <a?b,c: ab = ba, ac = cab, bc = cb 7 4 {9 x-2 : 13
N/““2 La,b,c: ab = ba, ac = caba, bc = cd Y €19 530;
N/r} {&,byc: ab = ba, ac = cabs, be = ¢cb? 4 7 rzx(j,r};
N/[‘n(nzbr) da,b,cs ab = ba, ac = cab®, bc = cbY rax(n,r%
s° x K v
(5°xK)/~ Z
2
P" x K VARS Z2
bR -
(ST*RY/~ Z x 2. |
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Notes on table

(1) (n, r) denotes the highest common factor of n and I'.
(11) It can be shown that Sax K and (SZxK)/M are not homeomorphic, even
though they bave the same fundamental group, and similarly for Pax K and

(82xK) />

£€9 On the String of a Minimal Distal Transfcrmabion Group

First we need some detinitiona (9.1-9.2):

9.1 Definitions A string (Q,l...ﬁ ) of bundles is a flm.te sequencs Of
" bundles @i = (Y ,xi,xi l,ei,ni,ri, V) (Le i< n) where X is a one-point
set. n is called the length of the string, which is denoted by & y SaYy.

1t G> ((B ces (B ) 48 another strlng with (i') = (Y848, X! l’Gi’h
then 55 and & are igonorphic uunder (Q'l.,.., & , ""d‘n) 1f there exisi

3rd- inomorphisms (3.4) (& .:L ): Oy —————?@ ‘such that the following diagram

commutea.
Diagranm 9.1 @
b 4 b A —, 1!
14) ] 7 “i+l
[
\.?LM V..'_"
\L Vg ,
X — X§
‘1\ N
¢
<. S
D
. = *
I —> 1

. 9.2 Dafinition Let 65 = (@l... (&r) be a string with:
e, (‘Ii,xi,x oG By e84y v,) (1£1 1)
® 13 n-allowable 1f each Gi/Hj_ ig connected, dim G, /51 > 1 ana

R = f:l 4im (01/31) { = dim Xr)'

® 1s allowable if ® ia n-allowable for some n.
9.3 Use the notation of the Manifold Structure Theorem (l.2): this theorem

ghows that given a minimal distal t.g. (X,T) where X is & compact connected
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n-dimensional manifold, we can associate with it an n-allowable string
(Byeee &, ) = ®(X,T) where r is the order of (X,T) (4.10). There ig some
choice in the strings which can be associated with (X,T) in this way, but

any two choices are isomorphic as strings. Morcover, 1f (X,T) % (X*,T), then

% X,7) ¥ B(X%, T). Therefore we have:
2.5 Definition Given & topological group T, a string P is admissable if b

is H(X,T) (up to igomorphism) for some minimal uistal t.g. (X,T) where X is -

a compuct connected topological manifold. »

® 1c aduissable if & is T-admissable for some T. Clearly (9.3)
admiaéahle strings are allowéble.
9.5 Later (9. ?) ve give a complete list: of Z-admissable and Kradmissable
n-allowable strings for n < 3, and hence obtain a coarse classifi caticn of
minimal distal Z- and ,~actione on compacp connected manitfolds of diménsicn <z,
it is easy = but rather tedious, so we shall not do it - to give a curplete
1ist of the admissable n~allowable strings for n < 3, by using the results
of §§10-11 and snalogues Of the results of §12. However, we list (9.6) the
compact connected manifolds of dimension < 3 whichk car be phase bpaces el
mjnimél distal group'uctions for some group. it is clear that such a list 15
& “corollary" of a list 0f the 1sohorphism.classes of admissable strings.

Clearly the prodlem of finding the isomorphisn ciagses of strings

(@ eos & ) with & = (Y, 5%, 5% 198508y T.5%5 WYy Y (L€i<% r) is iunductive
1770 7L-1 i

on the length of the strins and related to the foilnwing tws preblems:

(1) Find the pOssibilitles for {(Gl,ﬂ 5kl‘l$r up tu isomorpnism ($10).

(11) . Having found xi—l’ Gi’ find the lst, 2nd and 3rd-isomorphisn classes

i!
of bundles with base xi_l, group Gi and isotropy subgroup Ji. 1st-igcmorpkisz
classes &re glven inh§11. 2né¢- and 3rd- -isomorphlsm classes are easily deduce:

from tnese.

9.6 Manifolds of dimemaicn < 3 amupporting minimal distal acti.ns of some

oup: (for notation see ,8 §10) =

Actions of order 1 (almost periodic): K, K* s st . p* f Kg, _ESU(Z)/Zn (2 1),
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50(3)/D,, (n 3 2), so(3)/A4, sov)/sw so(3)/A5, 5% K, P%x K, (5% K)/o .

Actions of order 2: K° s KBy K> s K/( -1 O‘)’ K/<1 O) % ) ’ %0 l) ’

0 =1 0 =1 1 -1

‘K/(o 1\? K/( _0 s Su@yz, (n3 1), s0(5)/p, (nx2), Np, (n3 1),

-1 0/

s2x K, P2x K, (S%% K)/~ 5 (S2% K)/m

Actions of order 3: K7, x/( , h/(l , K/l 0) N/p (m3 1), W, W
0 -

) If = ((Broeo (& ) is an n-allowable string for n < 3 and
1

&4 = (yi,xi,xi_l,ei,ai,wi,?i,vi) and ¢ = ®(x,T) for some T, then ¥, = G,

and T acts on G1 by right multiplication on Gl of a ﬁomomorphic image (in 3))
of T. So if T is abeliaz, Hy is triviel, @ is abelian and X, = Y.
Therefore, in tahblus A and B we 1ist the n-allowable strings (n ¢ 3} of

length 2 apnd 3 for which Gl is abeiian and Hl is trivial, stating which of

them are Z -admigssable and which are IQ-admissable. Fach line in the tables =

" except AL - represents exactly one isomorphism clase.

The tables are intendecd merely as a summary of information and can only

be understood in conjuncticn with $£10 and 11.
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. Table & (order 2)
ain 5, |t (6,,E,) (420 LB, (1) Cx, I-adnissf-adaiss
X, §12 §13
| 2| | (g, \18) N(K) 1.4 K 8.2 Yes No
A2 "'_ "l (Kx 2,,2,) KK,3,) Y. " n
a3 w}lon " | KK, %y €) nlkg » " n
MRS | xx®,a,6) w| &4 o b.8,12.6"
5| | "|(so(3),K) 3(S0(3),K) o | kxs? 8.2 Yes |n
a6] _n | ni(so(3)x sPoskx B, ) | W(SO(3),Ke2,) . w| " ol o e
Az e om)ow TR0 K e, ¢ (ksDA n| |
aa| | ni(s0(3),kx, 3,) X(50(3),kx 2,) v |kxp? wl ol
ca9| v Bk, ) B 11.7| &2 wl o e
DN I I NEEE! W |, m n | :_ "
ay » | ez, L oggxz, 0 11.7,113 K2 R L.
a1 nfn | om | gE g m1:107,00.3| /0, 0L M | No' o
Ay n e o 1°(k1,-k2,kgl) 11.7 K7/1 oy " | Tes  |res
- (o -1}
U U R NCNEIR N ey 11,7 /5 o
Y I
. : L
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Table B~
(ﬁ&l,(gz) as in: (GB’H3) _ (Bj : )(3 N Z-ndnl ai. .7
(gee table A) ’
Bl A (x,{13) o 1.7] X 8.2| TYes
B2, A2 " " " " " w
B3 Al " 43!!’ nz 1l " N/(.\n’ nzl} " " 1
Bb A2 " ] : 0 on " No
B5 AL | (kx,3,,3,) | Lxg%; 11.7,11.3| K v | Yes
BE fo— " Mo oo N 11‘?,11.3' ) " "
B? AY " DaXgZoo nzl 11.7,11.3 N/(Cp, n}l " Yo ;
B8 A2 " " 11.7,11.3 " " Yes ;
-1 i
BS AL " 3,k ks ) 11.7 ""3(1 0y " " i
- : \O - ! !
B10O A2 " o B} ] " " l " ,
= =1 A 1] " ' ] ‘
Bl1 Al n jo(kl, k..k3 ) " ! ;
Rlz2 A2 : n " 1 " " \
: ! E3 - :
B13 Al L L(-kl’ka"‘zk;s ) " % 0 \ " v i
L o-1
Bl4| A2 ’ " " , " PRI
BlS|. AL " 1T,y n 2E
B16 A2 . W L " ! " " % 1
. . 3/ ) ‘
B17 A3 (x, 13) X6, 11.9 K/1 o " '
' o -1
B18 " ] «X&l ‘ " %1 o " " ‘
o 1 1} 4
B9l " (Kx,Z,02,) | KBo%el> 11.9,11.5 "/21 0 "1t
) : 0 -1 .
B20 " " Xy %75 11.9,11.3 {ﬁ(l 9 " " f
: 11
B21 " " | -}a)’o 11.9 ;53/1 O\ " "
Lo 1)
. -l ;
B22 " " R ¢ Teppmwg]oxg ) 9 W " "
’ 2 -1 [ 11}
B23 " " k@o( {kl’-ka] ’klk} y o \ ”2 . " ‘
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9,8 Notea (1) None of the strlngs of tabie B are W - -admissable (213).
(ii) In A4, A can be ascumed to ‘be one of the groups of 10.8, and g e 4.

For 0, Te A,'}((K s4,9) and 34(K WA, ) give ri ¢ to isomorphic strings if
and only if there exists 1) & Aut(k®) with nan™t = aanayont = T

(i11) In Ak, j{(K sA;,6) sives rise to a Z-admissable string if and only
if <74 A and Ay 18 cyclic (12.6) . ‘

Q}g On CO_:{xj_e_cied Irreducible Pairs

In‘phis section we give some lsomorphism clasées of irreduclitle pairs
(G,H) (definitions 10.1 ~.10.2) - this information is needed for finding the
isomorphism classes of strings (9.1) and can doubtless be found elsowhere,
bgt is co}lected together for convenient reference.

10.) Definition An lrreducible pair (G, H) consists of a compact Lie group

G ani a closed subgroup B such that N g~ Hg 1el.
gcG

(G,R) ia connected if G/R is connected.

(G,H) is group-conrected if G is connected.

10.2 Definition Irreducible pairs (Gl,Hl) and (GZ,HZ) are isomorphic if

there exists a tépolbgical group isomorphism of G1 ontQ GZ which maps gl onie
B, (written (G,H;) % (6,,H8,)) . '
10.3 The following lemma gives the relationship between connected irredacitle
pairs and group-connected 1rreduc;ble pairs. The proof is straightforward and
will be omitted.
Lemma {1) If (G,B) is & connected irreducible pair, then (Go, Hr\Go) is a
group-connected irredﬁciple pair, where G, denotes the identity componeni
of U.

GE = BG, = G, and the map Hg}——-—a(sfﬁGo)g (g ¢ Go) defines a homeo-
morphicx of G/H onto Go/(H/\Go). ‘
(11) 1f, for h ¢ Hy; g ¢ Gc’ @h(g) = hgh'L,,the map hb——ﬁEh iz a topological
group isomorphism of # into the subgroup S(GO,H N Go) of Aut(Go) of v

automorphisms leaving 3“.50 invariant, where Aut(Go) is gliven the topology




of pointwise convergehée. So identify H with {gh: hcxliﬁfi S(GO, Ii nGo).
(1ii1) Suppose, furtber, there exists a subgroup S; = Sl(GO,Hr\GO) of
S(GQ,H/NGO) such that each element of S(GO,H/\GG) can be uniquely written in
the form xy, where x ¢ 5, and ye HnG = S(Gc,szGo) (which clearly bappens

if HNG, is trivial). Then write A = 5,0 H < 8(¢,HN &)« A is finite and

(G,H) = (G x A, (H NG )x A) where G X A= g,) 2 B <8y ¢ LY ana

multiplication is defined by (gl,C') (ga, ) = (&161(5 ), “l“Z"

(Av) If AlJ.B_Q_Az_ﬁle_iinlﬁ}emﬁilbatoups of Aut(C)) then (G x Ry 58y ) E (G x AlsA,

if and only if A4 and A, are conjugate in Aut(Go).

10.4 Detailed proof that the list of 10.6 is exhaustive will not be giver,

but the following facte ave used:

-

(1) 1f (G,B) is an irredncible pair and dim G/H < o then dim G < n/{z+1)/2 15C3
(i1) A compact connecved Lie group is isomorphic to one of the.for:

(S x T))Z' ¥here S is semisimple compact connectz¢, T is a %orus and % is a
finite cenﬁral subgréup with S n2 and Tn 2 trivial ([8] Chapter X111 Theorenm ..
(1i1) Given a compact senl-simple Lie algebra‘% , there is a unique compact

simply-connected.connected Lie group G with Lie algebra C& (up to L80worpLisTi;

Fd

”

and if 6, is another conneated Lie group with Lie algebra Q}, then G, ¥ 6/2

for some finite central subgroup Z of G [5].

(1v) A compact semisimple Lie algebra is a direct sum of compact éim;le Tie
algebras, which have been completely classified [;5}.

(v) Any t“'al subgroup of a conmpact connected Lie group G is contained in

a maxinal torus, and any two maximal tori are conjugate ([81 Chapter X11l.L}.

.

10.5 oafinition If G is a compact Lie group, and H 1s 2 closed suugroud,

end 2= N g-lﬂg, then [G,H] will denote the irreducible pair (G/2,E/2).
& @
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10.6

,
we

le pairs (G,H) with dim G/ £3,

Low list the group-connected irreducib
weing the notation of 8.2. |

(1) (%,{1y)
(11) (x%,113)
(111) (80(3),K) =
(iv) (s0(3), Kx 2,) [su(2),M]

{3 =w} G35

SG%}}%%K~£EZ§)*—&B-homeomorphic to PZ:

(v &, {13
(vi) [s0¢2),2.]
(vii) (50(3),D,,) ¥ Tsu(2), lm] (n32) wher
by the set {'e“i/“ 0 ) ( 1\\?
lo /") 7\ ol

(viii) (so(}),Aq), (50(3), 5, ), (80(3), As) A

respectively are conju

Gy >

0, /4 is.pomeomorphic to szx K. If n 7

igomorphlc to Ah' SL’ Ab

(ix) [su(2) x K; 2} ; whore 32! =

If n =
st(2)/2, .
(x)
sz K.

(xt) [sU(2) x K, vz],‘

[su(2) x Ky M x §14] where M is as in (3V

{33 -

f(u u)
3,

where ® =

G/E is homeomorphic to (Sax K)o~ o
(xt1), [su(2) x s0(2), vy) » waere '
homeomorphic to st(2), equivalently to S
(xiil) [SU(Z) x SU(2), V'] where V,

homeomcrphle o SU(Z)/Z , equivaleatly to 50(3)

10.7 Let (G',H')'be one of the group-connected jrreducible pairs of 10.6(1)-(3

and let S{G',H') .—.-{(QQAut(G')‘: gt = H'Y 5

=V, u {(u, -u) 2

= {SU(Z) Kj) s0(3)/K is homeomorphic to Sz.

e qu

11 subgroups of SO(3)’
gate ([7 1 chapter 2).
\:%exi (nz 0).

0, &/H is homeomorpa.c to

Yo G/B s homeomorphic to

CJ -
L]
bt
—_—
.

Ne xisu?"‘ %

91(2)% . G/H is

-

i

HERH

v & su(z)ﬁ. a/E is

and to Ps °

s0 that

where M ig the subgroup generated by the set

ie the subgroup generated

4 < S(a,E") (10.3(3i)).
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For each such (G',H'), we define a Sl(G',H') <~ 5(G',H*) such that each

element of S(G',H') ¢an be uniquely written in the form Xy (x ¢ H', ¥y ¢ Sl(G',H'))
and hence show that 1f (G,H) is a connected irreducible pair with dim G/H < 2,
then (G,H) = (G x A, (EnG ) x A), for a finite A < $14G,H nG) (10.3(4i3)).
(Go’Hr’Go) being (up to isomorphism) one of the pairs 10.6(1) - (iv). .

(1) (6,HnG.) = (K, 15) 8, (K, §13) = S(K,113) = Mut(X) = \1, 8 = 2,
-] :
K

where £(k) = (k ¢ X).

(1) (6,806 = (BI0) 563, 1%) = 563,10 = dut (9

Aut(Ka) & 6L(2,2) (8.2) where the isomorphism is given by:

. a b _fpa b oc d
& — (c d) where ¢ (ky,k,) = (Kjky, Kik3).

(1ii) and (iv) (GO,HJ\GO) = ($0(3),K) or (SO(3),K xszz)

All automorphisms ot SO(3) are inner, so that Aut(S0(3)) = S0(3). Under
this identification, S(SO(}),K) = S(SO(}),K‘xsza) = K x 2 < 80(3).

wnery

(1) (8,,HnGy) = (5003),1) 5,(50(3),K) = {1,85 % 2

010
1o )
090 -1/

(V) (G ,ENG) = (SO(3),K x.7,)  5,(50(3),K x.2,) 1s trivial.

- A.+J \
fKuiJ\ (=13 g0
¢ 1is the inner automorphibm corresponding to (

10.8 1In order to completely clazsify the connected irreducible pairs (G,H)

for which (G,HnG ) = (83,{R), it resains to find the conjugacy classes

it

of finite subgroups of Ant(Ka) T 6L(2,7) (10.3(iv¥) and 10.7). I am indedtea
to my father, D.Rees, 16r finding the conjugacy classes, although he says

¢he angwer must be known. Note that:

(a) If uecGL(2,2) has finite order then u zust have order 1, 2, 3, 4 or 6.
(Consider the minimal polynomial of u, which must have intezral coefficients.)
(b) A finite subgroup of gL{2,7) 18 conjugate in cL(2R) to a subgroup of
0(2), which is, of course, isoworphic to K xSZ2 ([6] Theorem 16.9.1).

(a) and (b) imply that a non=-trivial finite subgroup of Aut(Ka) must be




A
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isomorphic to z, or DZn (n=2, 3, 4 or 6). It can be shown, further, that

the conjugacy classes of finite subgroups are as fellows:

(1) (1) (trivial subgroup) (i) (51) ] (v) <( 0 1)> ~ g
(iii) <((1) _g)> - -1 -1 >
(iv) <(g.J _ﬂ\/

. (vi) <(01 1»§ z, (vii) \/{(1) -})‘7 > 2

i}
=
o

.(viii) <1, (1 -g\»] -~ T (%) "<2_1) , (‘{ é»
(1x) ( (1 1\ ] =% (xi) <C(1) _i) , (91-(1)‘»

0 6t DR T

n}

1"
o

§11 lst-isomorphise Clanses of Fibre Bundles

In order to determine the isomorphism classes cf strings, it is uecessary
(9.5(11)) to find the lst-isomorphism classes (3.4) of bundles:
(a) with base K, group G aﬁd isotropy subgroup ﬁ,,uhere {G,H) is & conrected
jrreducible pair with dim G/H < 2. (For the possibilities for (G,H), see §10.)
* Sez 1l.4. A A
(b) with dbase KZ; B, 82 or Pa, group G aﬁd isotropy svdogroup H where
(6,B) = (K,{1}) or (K xs’za,zz). See 11.5 - 11.10. _

This is Just a matter of collecting together known results. lst-~isoworohism

classes rather than 2nd-isomorphism classes are given (the latter would in

‘some waym de ROTE con¥enient) mainly because lst-isomarphism is the type of
isomorphlsm usually used in fibre bundle theory.

The notation of $8 will be used throughout this section.

I should like to thank E. César de Sé, M. Zastwood, J. Eells ard D. Epstein
for helpful suggestiouns and discussion. .
11.1 %e define a gonplete lst-isomorphism invariant % ¢ 6193320)1

(1 =1, 2, 3 or 4) for each of the following classes (fj of princlipal
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bundles, where (Di ig the glven range space.

(1) ([1?] 13.5) él(X,G) is the set of principal tundles with base X (a
compact connected panifold) and finite group G. Let ® = (¥,X, G,i) € 61(x,a).
Fix xoe-'_ X, Yo € Y with Tr(yo) X, 7 is a finite ¢overing map, hence

determines (with Xg» yo) a homomorphism %\B :\\1(){) -—> G, where nl(x) denntes

the fundamental group of X. Two homomorphisms in Hom(Wl(x),G) are said to

‘be equivalent if one is the conposition of the other with an inner autonorphism

5f G. (j) (,6) 15 the g6t of equivalence classes in Hom (ﬁl(.\:),G).

X(B) is deflned to be the equivalence class of (g, and A 3 €,(X:8) -'-—53'31()(,?::

thus defined is independent of the X 5 ¥, chosen for each B ..

(11) ([_—lﬂ 18.5) C" (G) 385 the set of principal bundles with base K a&nd group
G. @2((}) is the set of conjugacy classes in G/G , wnere G ig the component
of the identity in G. i

Let = (Y,K,G,m)} % .fZ(G). For (91’ 8, € K , let {{eiel; eieaézS .
denote aeiﬂf 29 < @ < «Q?‘Z‘ . ‘ \
Define V, = %‘{e-}l-"/h,e}i"/h‘ﬁ and V, = {{ei"/‘*,e“ﬁ/“ﬁ.

Diagram 11.1(a)

Cnocose maps (.gi $ Vi-——-—a,.‘l with Ne@ = jdentity (3.2’ and (?l(j) = & 2(i).
Define gl 5 3 ‘J N Va———é G by (5’ (x) = gl 2(x) .Lf'z(x) for zll 2 € \l1 fa} ‘J?_.
Define % (@) to be the conjugacy class in u/u of G.z . (-i).

(a) The,definitions of ’l on ﬁl(:\,G) and on (G }, for firits O do mot
quite coincide on fl(K,G) 0 62(0)’ but there is a natural corresporndence

between the two definitions, and in any case no confusion should arise.
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(b) It follows from (11) that a principal bundle with base K and group K

must be a product bundle. Hence ([17] 11.4) a principal bundle with base

K x [0,1] and group K must be a product bundle.

(1i1) and (iv)
(f is the set of principal bundles with base G and group K.

tfk is the set of principal bundles with base KB and group K.

05 = 25 = 30, 1V . |
;_ﬁ—“*a%—v_.——{{_ PR L7 T 1“/4}2; £k, V= {fe}~iﬁ/4’ 91174 ng -
s=' {“JSIK," T:{—lﬁxx. Sol{‘?:VlU v,

(iv) Recall that KB = {Lkl,kajz (k) k) & K% 75 4(8.2)'.

o 7
Let v, = [k,ky] ¢ by € e 1_“/‘*, eILT/81Y oy e k3.

1 =
Lot ¥, = EEARER §§ I8, LV, ke kg .
Lot S = {[1,il ¢ ke k§, T =§0,k] s ke K
/ So KB = V; U Ve
Dispram 11.1(b) ' A e A

At
VinVy

Vl . V.aVy
This dlagram represents how V1~and Va are relatea for both (iii) and (1v).

It B = (LXK E €, (1 =3o0rk, sothat X = k2 or KB), choose
mapatfj : V —>Y (=1, 2) with ﬂw?d = identity (see (11)(b)) and:

c_h!s = ?2\5'

Detine &) o * v, 0V, — K by ?l(x)

sl,zﬂx)xgz(x), x eV, NV,
Then 51,2|T is.homotOpic to:
(411) (-1,k)+—> k° for a unique n ¢Z -

(iv) [i,k) P k2 for a unique né Z -



Define .XS £) by (iii)X(G&) = n .
(iv) x(®) =0 if n is even and 1 i_f'n is odd.

X 1is independent»of the cholce of ?l' ()0‘2.,

11.2 We "“define" a 1lst-isomorphism invariant X on the class 65()() of principal
bundles with group K xszz and base X, for a fixed compact Hausdorff X.
Suppose b = (Y,X,K xszz;V). Let Y/K denote the orbit space of Y

" under XK < K x.Z,, and Y

a ?
2 ¢ 22"1)

2 Y —3Y/K the orbit map. Let & = (Y/K,%,2

. and G’Z'
Define %X (B®) = (&1,&2).

(Y,Y/K,K,VZ}, where vl“\}a_=\7 °

it

It is simple - but tedious ~ to give a more rigordus definition of X

making 1t a lst-isomorphism invariant on 55()(). But X is not a comnigie

invariant and does not map onto any simply defined domain. However,X will bve

& help in determining the lsi-isomorphism classes of bundles in 85(}().

"Non-surjectivitv" For an example cf how one deternines when & cecuple (&_l, @2)

of fibre bundles is nct in the image of X, see 11.8«

Non-completeness ror an exampie of how one determines how many lst-igonorprism

"classes 1n (‘fs(}’.) bave the same image under X, s2e 11l.10.

"11.% Definition Given a prircipal bundle % = (Y,X,K,7), define
®x 2, = (Y x Zoy ¥, X, K x.3,, 2, m,$€,Y), a bundle with group K x 7,,

as follows:

.y

the action of K <K xszz cn I X ZZ is defined in terms of the action of
EonY for & by k.(y,1) = (key,1J

ko(ys€)

il

(k“l.y,a) for 211 y ¢ Y, k ¢ K, where Z, = {1;2{.
¢ acts on I X 32, by to{y,) = (¥,%5) for all ye ¥, &Selpe
Viy,o) = ™My)e  S(yy) = 7.

Note that if (% is a product bundle, 80 1is & x T
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11.4 lst-isomorphism classas ofbundles with base K

We wish to find the 1st- ismnorphicm classes of bundles (Y,W5 ;G,H,i, §,V)
where (G,H) 1s a connected irreducible pair with dim G/B & 2. S0 (10.6 - 10.82

(G,H) = (G x_A, (En G, ) xBA), where A is a finite subgroup of Aut(Go) and

(G, BN G,) = (K,{13), (k3,§13), (50(3);K) or (50(2), K x,2 5
. Fix (G H) = (G XA, HYx% A) and Gt A. The 1st-isomorphicm classes are

given by the bundles WLG, B! JA,5) = (Y(5) W(a), K, CaButly 8,v) (= K(Gsh,9)

oT‘}((‘G‘“‘K"K)—Dr—}rtG—“HH—Or (G ,A) or (G, depending on which of H',
Ay ¢ are trivial) where &  runs through the A-conjugacy classes in A, and
the principal G-bundle ussoclated with y(GO,H',A,LS‘), which is an element

of 82(6) (11.1), is mapped to & under™X.

-

Define ¥(7) = K x (GC' A/AV), where A' = (Y and A/AY = {U’J s Te &Z} R

There is & natural lert Gnaction on GAx AJAY,

%y

Let r = order of & . There is a natural left Kxezz-—action on K. Define
left G-action on K vy (go;‘r,).k = F(U).k for all g ¢ Gs Te As k & By
where F t A —K X 2;2 Ls some chosen homomorphise for which

| ((f) = (eani/r 1) (always poasible for tne A's b2ing considered) .

T
i
b

-

sfipe action of G on Tlg) by & (k,x) = (g.k,&.x} for all g ¢ G,

xc—Gox A/ ‘
r

A
=
M

Defire ¥ : I{s) —> K by vy((1,T) .(k,go,A')) = K far all T &5 k

g, ¢ G e (v iz well-defined.)

Define G ¢ v, —>1(e) (see 11.1(1«)) by f&(el ) = (el /¥ 1,40

for S0/4 <Q < 11W/4 -

> Y@) by ¢ le ¥y = (et IR/r 1,a0) for "L s8¢ 7T/ b e

33

Q2 Vo
Then &, 2(—1) = (1,0) as required (see 11.2(11)).
y
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For definition of w(r) and € consider the different possibilities for (G,H):

(G,R) = (K x_A,A) ‘where A = {13-or A = 1,83 ¥ 2, where S(k) = kF (x e K).

R (K) and KEK,2,) are the product bundles.
Ky Dp0E) = (K2,KB,K,K X %,,%,,1T,$;V) Where ¢: KP——>KB is defined bty
Sk, sk, ) = [kl,kz'] (see 8.1, 8.2)

(G,H) = (h X A 4)

‘ ' '}L(KZ,A,A') (K x A/AV,K ,(y K,k X AyhysEs ¥) where €3 Kx A/A'-->'K3,/s

ssweTT=derimed by S C(I, T s(kysk,ik 58! ) = [cl,kz,w}] for all ky, ky, kg€ X
and T A (see 8.2 for dafinition of KZ’/O—, and 8.1).

Kjk i1s homeomorphic to the unique KB/q in the list of 8.3 for which a is
conjugate in Aut(K%) 0 7.

(G,H) = (50(3),K) or (50(3),K x,25)

34 (80(3),K) = (K x 50{3), K X s?, K, S0(3), K,Ty: $ys Vp) and
1< (50(3), ¥ x,2,) = (i x S0(3), K x p2, K, SO0(3). K x 7y T e-, v,)
are product bundles where § and € are defined by
gl(k’ (uij)) (k, (1! 1:,11 2"113)) .gl 4 A X SO(}) ey K. X S
Qz(k, (uijj) (k»’ [( 1‘ Iulath',B)}) gz et K x s‘)(:”) "“"“—7K x P

(See 8.2 for the daflnit‘on of p° , and 8.1. )

"

2

(G,8) = (50(3) % 2,8 x.B5)

A (S0(3),K,2,) = (K x 50(3) x Zps ¥ % §2, 50(3) x By K 2850 Wy $5Y ) 18
the product bundle. ' o

Y (30(3),K,2,,%) = (K x 50(3), (K x $2Vas & SO(3) £ Zyr K XD o §570

“pas $: K X °0(3) —3 (K x 8 2y/~ defined by: '

' i ©
¢ (k, t'u, [k, (nn, 12,\113)wa where, if k = e, Wy € S0(3) is

Y

defined by (o = cos@ 0 siné

0 i 0
-sing O cos@j
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11.5 'lst-lsomorphism classes of bundles with base S2

We state the results without proof. (See [17] 18.5.)

(1) Bundlesg with eroup K

The distinct lst-isomorphisa classes are given by Sn {n e.Z);

n =20 @o is the product bundle.

"Fixn 20 £ = (sU(2)/3, S5, K, 7).

The action of X on SU(E)/Zn is defined by:

o 1/
k. Zn{ull ule\ = &4 /k ’ o_._l/n) (ullhula‘)
©o\Ya Y22/ \0 & Ya1 Y22

Diagram 11.5

S2 1s given “gylirdrical coordinatss", so Sa = (('l;l)XK)t;{P,P'é.

Using these cocrdinates, ™, t SU(Z)/Zn —_— 52 ig defined by:

- 10 TalH ' A fed). ‘
T (zn (\Fe - f-ro }) = [ (1-2r,62 Y, 02 <
1 -1® : - .
fi-re § [ P \ N
P' 9 1‘ = O
. 2 .
For n% 0, Jg-n = (su(a)/zn,s ,K,ﬁ_n) where Fop = My ‘and tiue actica of

K on SU(Z)/Zn is defined by:

; -1/n A \
(ull Uy 5 (k 0\ fuy; ¥y,
. = n

k.2 \ \
l/r'(
: 0 kY \ugy vy, )

\.a1 a2

.

(ii) Bundles with group K xszz

The distinct lst-isomorphism classes are g;ven by &nxsza, ny Q0 (see 11.%)
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11.6 lst-isomorohisn clasces of bundles with basc 'Pz

He state the resulis witinout proof.

(1) Bundles with group K

There are two lst-isomorphisn classes of buniles, denoted by § ana ¥,
? is the product bundle.
91 = ((S x Kl Pz, K, i), ihere K acts on (S x K)/~. by
K. [xl,kl] Yxl, ] for all Xy ¢ 52, k, ky € Ko
ot (52 K) for——> P2 d5-defined by iT([x,k]) [xd.

i

(1) Bundles with grouv K x.Z, -

The 1st-isomorphism classes are given by bundles denoted by ¥ ox'~2'2.’

Q 1%,%> (sea 11.3) end \9;1 (n 2 0)e
57_'—0_ o (52x X, (Px K, P2y K X 25 250 T, g, V) (see 8.2 ror
definition of (5%x K)A&s Ve’
Action of K & K x 3, on S°x K s defined by
' 2
ko(y,k;) = (yl,kk.l) (y, ¢ 5% k k, & K).
Action of €e%, <K %%, on g2x K is defined by
T (k) = (0K 1y,
s 52 K — P2 is defined by V(x,k) = [_'x} (xe 8%, ke K.

' 2
? (Su(a)/zan; SO(K)/DZ 9 P $ K X z’a! Za’ ﬂ ’ )21 » \/an)

..._-

Action of K om SU(Z)/Z iz as for g?_n {(11.5), and \/2':1 is as "-au for gan‘

Action of ¢ ¢ 3, € K X Z2 cn SU(Z)/Z 1s dafine by.

s 7 P11 Y12 { 21 Y22
S fam\upy ups ) T Zan{-uyy ~uy;

1.7 1la sono"ohism classsa of bundles with base Ka

(1) Bundles with group K : use g O 63 —_— ®3 {11.1).

X(H) = 0 This gives the product pundle, denoted by 3 o
X(R) =n § O A bundle with this characteristic 1s jn’ defined as follows.

For n » 0, define r_n'z My, (8:2)




wlyly e

. >
and let ‘)n = (N, K Ko W)

“Action of K on l‘i/[‘n is given by e‘znlt.[x,y,z] = [x,y#t/n),z) .
\'l'n : N/('n.._-} KZ is defined by f ([x;y,z]) = (eanix’ezniz)-
Define Q3 v '"“"’)N/\n' i=1,2 (11.1(iii)) by

Cfl(ezwix al\'iz [«,0,2], .’ﬁ‘ 5 X < 8

(ea"ix.ez"’iz) = [%,0,2], ~&<x<3i.

€, (x?,3,) --—»@ (k2,2 ) (11.13.

€

(11) Bundles with group Za: use 'X

To

016852, = Bon(T, (63),2,) = f,, RS
—“l(K ) = <a, ¢ ab = ba7,

a and b are the homotopy classes corresponding to the paths t »«——’r(ea"’it,l)
and t Q—-_—;(l,ezm’t) (t € [0,1]) respectively.

o omi_ 1 2 i ) iy _ _ .

We define a bundle ®3 = (X7, X5, Z5y V) with ’xc@l) =1, (1= 1...5).

Ql(a) :"’I'l(b) =1 : 65% is the product bundle.

W 2 2 e s 2 2.
‘Tza(a) =T, TZZ(b) = 1 3 Xl = K%y ?_-(kl,kz) = ( kl,KZI, Vl(kl,kz) = \kl,ﬁsj
n3(a) = 1, 15(b) = € : x{’. = K2, €.(ky) = (ky,oky), v;(ki,ka) = (i), 55
N -

N,(8) =, (03 =2 x‘l* = K2, E.(kl,'.ka) = (kg -k, 3, v‘l’(kl,ka) = {kly0k] k)

4
"1.6. we find lst- 1aomorphiam classes of bund)es

(1i1) Bundles with group ¥ X, Z, : use 1- defined on Ffs(Ka) (11.2}.

@i = (Y, Y/Zz, K 2K x Za, Za,ﬂ s § ,\?loyz) in terms of the bundles
i ]
(&1 = (xl,x »%5,V)) and ‘?’a = (Y,xl,x,vz). Complete proofs will not Ye

given.

")((551) = Tll :30'63 hag baae Kaz Za..I** can te shown that the only possibllit‘as
up to lst-isomorphism arej X2, » 0320 (11.7(1), 11.3).

X(o’Sl) = qz, |5 Or qu It can be shown that 632 aust be jo (11.7¢4)).

The action of £ e Zz <K xaz‘2 on K3 determines ® up to lst-isomorphisa, and

can be taken to be as follows:

-1 -1
rx(&él):na i.(kl,ka,kj) = ('kl’ka'k; ) ¢ gives bundle ‘lo(«kl,ka,k3 )
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. 3 ) "‘l
or &o(ky,k,,k ) = (- kl,ﬂa,ka } 1y : gives buadle jo(wkl,ka,mzk} )
-1, L=1
S (kl’kZ’k Y = (kl’"‘z"j Y : gives bundlef‘,o(kl,—ka,m3 )

___*_._’31
or i.(k.l, ) = (kl,—k ,k1k3 ) : g:.v«.s bun:le J (:cl,-k "'l 31)
X @) =, ;g.(kl, ey) = (~kl,-k2,k31) : gives bundle J -k ,- 2,1;}1)'

-1, . . -1
or s,(kl,ka k) = (-kl,-—kz,kl oK 3 ) s gl.ven. bundle __\o(-ltl,—xa,klkak} )

In each case Y/Z is homeomorphic to }/( ) and }% 1 0 res.pcctively.
. i =1 . 1l -1

11.8 As an example of the method used in tixe calculstion of 1l.7(1ii), we
“show that 1f X(®) =7, and @2 ='}0, then up to lst-isomorphism, the acticn
of £ on K3 must be:
o (o ke) = (=K gko koT)  or (=K ks ko1
MRS R -2 ) 1272873 S 23 °.
It can be shown that ths actlon of ¢ .must bc of the form:
2rrial 2719 O?wias) ( 2ni 1, e Z"iea, eaxri(f(&l,ea) -63))

where £ ¢ C( lR_Z,\Q-) has f(:91+—g,8 ) = £06,6, ) (modZ\ = £(&,8; +1).

1t can be shown taat if -and 2 are assoclated with lst-isomorphic
1 2

bundles if there sxists @ e c( ‘L ,\Q.) with:

@ (8,41,6,) =‘c§(91;:92, (mod23 ‘s"é’v‘%ﬂ’ and !
eznifz(ﬁl,é’z) - Zn‘i(f (6’1,8 ) -q(&-h- 8 3 ~L§(51,@2,)

? { g h| ! \
i.e. 52(91,02) = fl(el’QZ) - ‘f(al*‘z,az) - %(91'02) (mOd ‘Zl =

Given rl, we can choose a suitable Cp((; ol ) (rl’/‘l,é' /2 - ch’l/a +[4/L

(o = o or 1, (3: 0 or 1) 50 that 12(191,02) = Q or 32 ss required.
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11.9 lst-iaomofchism. élasses of bundles witn bsse £3

(1) Bundles with sroup K : use X ¢ C’b-——>9£' (11.1).
A(B) = 0 This gives the product bundle, denoted oy ':)d'jﬁc.

X(®) =1 This gives X6 = (x’/(_‘l o\» KB» Ky W), where tne action of X
G - -

1s defined by k[l kyk;) = [eplti] o Gk ks K€ KD
T s %1'0) —>KB 1s defined by [T (lkskyikd) = [k;,%]] ¢
11/ | : - S

~(11) Bundlos with goup z, : use X : €, (%B,2,) ———A;@l(xs,za) (11.13.

(D, (x8,2,) = Bon(l) (KB),2,) = 3110k Iy §
nl(KB) = <a-’ b : ab = b—].&?v
Wit

a and b are the homotcpy classes corresponding to the paths ¢t v le

Ry
and tr—-—_—’a[l,eaﬂit} (i 6[0,1]) resp'ecti‘vely'.

Wo defime a bundlo @} = (x},xB,2_,9%) with (B =7 (i = 1eat)

. g = EsRBsa5Yy vy = = teech)e

() =1,(®) =1z (5] 1g the product bundle.,

)"2(8) = E, qa(b) = l s xi = KZS' E'(klska) = (-4.21,]‘(; )s =~ l(kl’ka) = E'I;"‘I:j
M ' . 3 ] [ .3 f - . ‘ ._2 3
) 7) E(a) = 1, 7;3(1)) =% Xl = KB, Z.Qﬁl,kai = [kl," of 2 \/l( ikl’kai } = {41. X5

y‘l'(a) =7h+(b) =3 3 xl]t'= KB, i'[kl’kaj = S_kl,—kasly ‘y"{( E’»I:kz]) = [kly“':{

(1i1) Bundles with group K xéza : use ‘2(5 defiped on fsif’.a} (1i.2).

i.e. we find lst-isomorphism classes of bundles
&,

X (@1) =7[l . It can be shown that up to isomorphisa, tne only possibilities

(Y,?/ZZ,KB,K xszz,za,ﬁ,g,)’lu\'lz) in terms of the bundles

i

2 . ) . 5
(Xy,K ,za,vl) and ,552 = (Y,xl,x,vz).

g » - f 4 z

for @ wre k@ x 2, and y@lxszz (11.9(L), 11.3).

’X((;’;l) :7]7 : It can be shown that &2 must be jo (11.7), and then the
G ———— R

only possibility for £ ia ‘y@é = (87, x3,_l o\s KBy K x 25, 25,07, 6, ¥,
0 -1>
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whera‘,the action of K x Z2 on i(5 is glven hy:

3 Loy =1 -1
k.(kl,k ) = (kl,kz,kk3), "(kl’kz"(j) = (koK 2% Y.
v is given by V(kl, a,k ) = [kl,kzj
X ($1) =ﬁ} : It can be shown (11.10) that (x%a zust ve K&, - not j(ﬁl -

up to lst-isomorphism. Up to _lat—isomorpx‘iém, there are two possibilities
for ® , determined by two possible’actions of 2on Y = KB x Kz
s [k l"] k ) = ([kl,-kz] k *) : givea bundle .}:@o([kl,_ké}'kgl)

or - ([—kl ka] ky) —,Qkp-k;l kk;1) @ gives bundle FBy iy 1a K.

‘:E/'z.2 {5 homeomorphic to~ wo, wz Tespectivaly (see u.Z, 8.3).
¥ ( O> ) ..7'2! : There is a natural correspondence of thLe possible bundles
with those for 723, thero.’tore they will not be listed.

11,10 As an example of the method used in the calenlation of 1l. 9(iii), we
sketch the proof that if '7.(.051) = ?23 then .Cbz must be j(@% up to lst -isomor-

phism.

Iz {%2 is Tkﬁl’ then there exists a homeonjorg hism € 3 K%—l G\ - 1(’4
) \

such that £2 = identity and the following diagram comzutes:

Disgram 11.10

rki)‘(é, ]

ji]

K3/<-1 o) 5 ffey lepokg) e (L it ieg])
11 '

)
WI
H-
.
AV
—}

KB 2 [ieg, k] v— > [sy.-k,]

1.e. ¢ 1g -of. the form.
[Znix aﬂiy zwiz] [erix 211(:{4@)’ 2ai(v(x,y) - z)-
where W€ CUR.Z, 1) and :
w(x,y + 1) = W(x,y) mod £
-2y + Y x+g, =) :_}(x,y) + 3 mod £
W(x,y+) = w(x,y) modZ (since £ 2 = identity).

By cousidering a suitable function M(x,y) = p{x,y) + ax , We can assume:
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Wy (% + by -y) - 23' W (6y) 50 W (2,5 + 7) =’+1l(x,y) +d, some dc .,
Let?(l(o 0) = c. Evaluatlﬂg'@ (3,3) in twc different ways, we see 4&‘

cannot exist.

§12 £ -admissabdbility

12.1 ¥We use the notation of 8.2 throughout ihis section. Denote a t.g. (X, 2)

by (X,t) where t is the homeomorphism of X correcpoiding to 1¢&Z . In this

aection wo prove (without full details) that the n-allowable strings (n < 3)

_are Zf;admxssable or not as'recorded in tables A and B of §9. 12.2 = 12.6 are
devoted to showing that the strings for which ﬁmm—Zpadmissability is ciajmed
in tables A and B are indeed not Z-admissable. 12.7 - 12.16 a;e dcvotea to

.reducing the problems of 2-admissability of the reméinin: strings to problems
concerning the existence of minimal group extensions of certain t.g.'s, and

12.17 - 12 18 are devouted to solving these problens.

12.2 Definition For a homeomorphism g of K , let “«g) be the unique \r*J)

in GL{2,2) such that & is homotopic tos

r r r
' 11l 1”2 21 22
(kl,ﬁa) k———a(kl ks s ky ky )

Taen det r(y) = gl'

*

12,3 1f (k2,t) is minimal almost periodic, it is immeciate that det ¢(t} =
12.4 If (X,t) is & minimal gistal t.go witn 2 (X,t) as 1n &1, A2, A> or tadiz k

it is clear that t 3 XX wmust be of the form:

Al (kyakey)t CI gk )i5)

A2 It

1

Gk, gl k5T

Gepoka ,
[xy, gliy)s,] - for all ky; kp € K.

A3 [kl,aa‘):

il

In each case, o = eawlﬁ, wﬁere p is jrraional, and g ¢ C(K,K).
For A3, g(-k;) = g(ky) for all k € K. |
Therefore, if @é(Ka,t) is as in Al, det r(t) =1, and if GE(Ka,t) ic as
in A2, det r(t) = -l.

12.5 The following lemnq shows thal the strings of Ale, BL, R7 are not




4 -admissable, and will help prove tre Z=-adnissability of tue strinzs AlO,
85>, B3. ,
- F _ J o= 2 ’ e 4 . 1< .2

Lemra For n 27 0, let J = (N/(‘n, K ,K,r{n) ve as in 11.7. Let ¢ : K®—> X
be a homeomorphism,
(1) det r(cf) = 1 1f and only-if @ exists as in the commutative diagraz 12.5
with @(k.x) = k.(P(x) for all x ¢ N/j, k ¢ K (action of K on N/ as for

. jn). N ¢
(11) det r(g) = -1 if and only 1f { exists as in diagram 12.5 with

D (k.x) = kK™ . P(x) for all x (—:N/f‘n, k ¢ K.

A Diagram 12,

N/r, 2 > Mo
T, w,
X2 s gt

¢
roof It suffices to show the buadle (N/pn,Ka,K,Nnacg') («here the acfic:x of
K on N/{\ ia as for :‘;n) 18 lst-isomorphic toJ it det‘ r(g) = 1 and te "‘j"n
if det r(@) = -l. By the First Homotopy Covering Theoren ([l?-} 11.33 it
suffices to prove this for § cf the form: ‘

¢ (k) = (klﬁl?kérlas klralkataa), (ryy) € 6L(2,D).
But this is a straightforward coamputation.
12.6 Leaza The string. o' a4 corresponding to 3¢(K2?A,G)_is Z ~adailssanls
only if <>« A and As> 1s cyclig (see tadle A).
Proof Suppose (Kj/o-,t) is a minimal distal t.g. with @(KB/J,t) tne strirg
vof AL corresponding <t6'3{‘(K2,A,6‘). Then (KB/’{,t) < (Kjx Y V/ED] ,s) where & is
a minimal distal homeomorphism commuting with the actlon of Kast (ll.&).v

Fix ved. Write 1 = (1,1,1,<67). _}_sme K% r<s? for some m, by the
minimality of s.

18% & (1,1,1, N¢s2}e”  for all 9 ¢ <
xR0, 1,1, <67 ¢ K2x 7 167 (see 11.4).

Therefore T_lr\T € <57 for all pe <67, Té Ao
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Therefore <«s?< A. Clearly A/<s? must be cyclic.

12.7 Definitions Let (Y,X,G,V)'be a principal bunale (3.1) and let t be

a pomeomorphisa of X. Let Hom(Y:X;G,V,gljdenote the set of homeomorphiscs
of Y such that: .

(1) (g.y)s = g.(ys) for all g €G, y ¢ Y.

(11)  (X,t) <, (%,s)

Write Hom(¥:G,t) for Hom(Y:X,G,V,t) if the definition of X, Varve ‘clsar

Trom the contexts - : e

Let Fom(Y:G,t) & ¢ o Let ¥ be metric, and note that all metries om ¥,6. |
respectively (giving risekto the rignt topolozies) are eqﬁivalent.’Lét Hom(¥:3,t
and ¢(Y,G) be giveﬁ supremun metrics (any two such metrics on Hom(Y:G;t), .
c(Y,G) respectively are equivalent). ihen Hom(Y:G,tY is a complete met;ic
space and is lsomorphic {es a metric sface) to:

{: e C(Y,q) : f£(g.¥)g = gf(y) for all‘y ¢ ¥, g& G 3 which is in turn
isomorphic (as a mefric epace) to C(X;G) if G is abelian, or 1if (Z,X,G,¢) is
a product bundle. In the latter case, for a homeomorphism t of X, the elsment
of Honm(XxG:G,t) gorreaponding to I € C(X,G) is de¢noted by £¢ if tnis natétics
caunot‘give rise to éonfuaion, wherei

(x,gjaf = (xt,gf(x)) for all xé& X, & ¢ G.
If Hd G and t* ¢ Rom(Y/E:G/H,t) then define:
Bom(¥:G,H,t,%") = Boa(¥:&,t) n Hom(T:H,t')

so that 1f s ¢& Hom(Y:G,B,t,t'), in particular tne fcllowing diagram commutes:

. Diagram 12.7 . R '

y Y : —57 y

gy

ylg /B »1/d (ylg

N N l

/6 (vl




o

If t is minimal, let A(Y:X,6,V.t) (or M ¥:3,%t)) ve:

is & Hom(Y:G,t) : s is minimal §.

If t, t* are minimal, let PYY:G,H.t,t') = »{(¥:G,t) N Hom(¥:G,H,t,¢t") ‘

12.8 Definitions Let & = (Bq..- H) be a string (9.1) with

Gy = (Yi,xi,xi_l,oi,ai,rri,gi,yi) (1L «41 «~r). Let t be a minimal ,distalr
homeomorphisa of X. with &(xr_l,t) = (%, ... r—l)°

Detine D (Y _: £,t) as follows: & ¢ (Y :G ,t) 16 in (Y : $,t) if and

onty—if & l:;u—%::—&-—rherrxrirthe unique homeomorphism maxing the folicwing
— -

. diagram commutative:

Diagram 12.8 )
Y 5 Y
r r
Sr : - 9,.
e - \ M ’ u - v ~
) (Y =) X > X, (% t/8)
vnr ‘ \Tr \
L !

(Yt/cr %) xr-"l ’ xr-l E Yr/cr)

Let L_< G, and t' =« VL”x/Lr:Gr/Lr’t)'

Dafine (Y : 3,t,t') = Or: &,t) n Hom(Y :G ,L ,t,t*).

12.9 Using induction, & ~admnissability of strings of tablzs A and 3 i;; implied

P

by the fcllowing proposition,; which we shall spend the rest of ths aection

in proving using the notation of 12.3 (and of 12.7) throughout.

Propositica Let & , t; %% be as in 12.8, and Lr = Gro’ the identity ccmponent
of Gr’ and suppose B is one of the strings of tebles A and B for which
7 -admissabllity is claimed. Then:

O - ,t,t') is dense in Bom(Yr:Gr,Gro,t,t').

For all the 7 -admissable strings of tables A and 3 except AlQ, 33, 28,

préo[ of Z -admissability is achleved by reducing the problem to a similar




A

52~
prcblen concerning miniﬁal extensions and strings ;n.wnich tie final bundie
(3 is a product bundle with connected group and (possibly non- ~connected)
base (see 12.17 for statement of the reduced problem). First (12.10 - 12.11)
we deal with the strings of A}O, B3, B3.
12.10 Lemma If 65 is one of the strings A2, A3, A5 - A8, AlO, All, Al3, Al4,
B3, BS, B22, B23, then MY :6,,t) = O(Y:B,t), so that '
MY sa, Gro't £) = (Y 38t ).
Proof r.e,r”a_e_mu_i.afrr.)_am.,;upp_ose s ¢ (Y3 B,t).

We shall assume ® is ome of the strings of table A (proof is similar for
B3, B8, B22, B23). So r = 2. If s ¢ 6)(Y2:@ ,t) then the phase space of the
paximal almost periocdie factor of (X su), where (Xz,u) < (Yz,s), must bte
YZ/L where 1 Ly $ G, ard 1, <L, < Gps. with H; = L, if Ld/H is finite (5.5,
5.6,5.7)s In the particular cases considered, this implies H L hence

(xa,u) 1s almost periodie, B is trivial, G is abelian and X, is a torus -

which is not true for the strings of A2, A3, A5 -~ A8, ALC, AMl, Al3. Al4-

12.11 If & is the string of 410, [2)6.19.2.6. implies Hom(Y : Gr,G“O,t ,£%)
= MY 36,6, b t+) and hence by a simple argument the same is true of the
strings of B3, B8. By 12.10 tnis implies propositioa 12.9 is proved {or tas

st-ings of 410, B3, B8..

12.12 Now we need some definitions:

Definitions (i) If £-€ C(X,K), f can be uniquely written in the i{arm

1b8(k,) . ' ]
£ky) = klpce . where p e £, ¢ &K and ~(h(kl) %, = G, h €& C(X,1k).

1h(k1)

L]

Dofine P 5 C(K,K) ——> C(K,K) by Pf(kl) = e
(11) 17 f¢ C(KZ,K), f can be uniguely written in the form:

11(k,) +in(k, k)
. . 1 1272 WL
f(kl.ﬂa) = klpﬂzqe , where Ih(sl,az; dk, = 0.
eih(kl,ka)

Datine ? : G(KZ,K) —> C(KZ,K) by Pr(k ,k,)

(111) For £ ¢ G(K,K¥) or C(K2,KT), define Pf = (Pfy,...PI) 18 £ = (f..c00-
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(1v) If B is a finite set then c(k5x B,K") ie isomorphic (as a group, with
pointwise multiplication) to c(k®, (Kr)B) under the =ap:

£ —> (2 where f,(k) = f(k,b) (k¢ K%, be¢ B).

b)beB
Using this isomorchism, define P : C(k°x B, K¥) —= C(k®x B, K') for s = 1, 2

(v) In each case, P is a continuous group homomorphism with respect to the

unifora tOpoldgy. and P2 = P.

12.13 Definitions (4)  For X a compact Hausdorif space and G a compact gzroup

a_gnnupwc*ia.said-xcbbe;anmautomotnhism zroup of (X,8) if C acts freely on

X and acts as a group of automorphisms on G, both actions being on the left.
(11) If C is an automorphism group of (X,G), let Ol denote the closed
subgroup of the group C(X,G) (pointwise multiplication) defined by:
O = {2 € 6(X,6) : f{c.x) = c.2{x)" for all x ¢ X, e Ch.
(11i) 1If C is an automorphism group 6f (X,G), define Rc s C(X,G)—7 C(X,G)
by (Rcfj(x) = f(c.x) {ce C). ‘

If X = K5 B (e = 1, 2 and B finite) and G = X", C is said to be a P-iz-

variant automorphism group 1if RcP = PRC for all ¢ ¢ C. If this condition

18 satisfied, P((lc) < O‘LC.

17.14 Suppoée ® i one of the strings AL - A9, All, Al3, AlL, Bl, B2, 325,
B6 . ' ' 2
(1) The pripcipal bundle detined by the action of Cro O Yr is a product

bundle. Recail (§10) that we can assume G_ = G_ x H, wheére H, is a finite

subgroup of Aut(Gro) in these pafticular cases, Thuz H_ is canonically

isomorghic to Gr/G;o,_xhich acts on Yr/Gro {and commutes with t'). Therefore
. ,

Rr is a finite automorphism group of <Yr/Gro’Gro

3

(11) Tnere exists rl & C(Yr/GrO) such trnat Hom(Yr:Gr,Gro,t,t') = {3, f ¢ C}g
where we can take fl £ 1 except in the case of the string of Al3, when

B

c(Y /G ;0 ) = C(KZ,K) end we can assume PE, T 1. O\ ., = {f,0, ¢ f,¢ Sl &
ro*"ro 1 CCHIL 1 2 2

(111) If B is one of the strings of Al - Ak, A9, All, Al3, Al4, Bl, 32, 35,

B6, then H, 1s P-invariant.
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12.15. If ® is one of the strirgs of B9 - B23 then the proof of 12.9 for 3
reduces to proving:

(Y, :8,t,t8') n fas £ € 0.} 1s denss 1v Hom(Y_:G_,& ,t,t")n{s if « 2
where:
(1) & is the string of Bl,.B2, B5 or 36.
(11) C is a finite P-invariant automorphism group of (Yr/Gro’Gro) such that

the actions 0of C on Yr/Gro and Gro commute with those of Hr, and CHr acts,

freely on Yr/drb' Henco QHr is a finite P-invariant automorphisnm gréup of

(SN ' _

12.16 Lenma If § is one of the strings Al, A4, A9, Bl, B2, B5, B& and

B, € Hoa(Y :G ,t,t') then a sufficient corndition for s_¢ 0 (Y_: 8,t,t*)

f r’Gro f

is that 8ps be minimal. -
Proof We indicate the proof oniy when' & 1is one of Bl, B2, B5, B6. For tke
strings ﬁl. B2, B5, PR, we can assum 3 i$ Bl. This follows from the fact
‘that if @(k%,u) is == in B2, BS, or B6, then B {k°,u) is as in Bi.

Hence suppose & 15 the string of Bl, 50 that t = t' : K33 K2 is of
the form: (kl,kz)t = (gzkl,g(l«:l)ka).J g c C(F,X),
and (kl,ka,k:‘))s'f = {tklgs(kl)ka,f(ki,ka)kj).

Suppose 8p¢ is minimal. By ﬁA] Theorem 1.1, this ¥s true if and oply ui -

there Lls no ccntlpuous solution & to the equation:
(12.16.1)  @((ky,k)8) o(PECk k)" = §Cky k) for any m & > t05.

If this equation cannot hold for Pf, it alse canaot hold for &, so thal

6, 1s mininal.

£ .
) k7
Suppose & & ®(Yr‘(§jt)‘ Then (5.5, 5.5, 5.7) (¥ ,s.) = (YB,SI) = (K),sf)
must be an almost periodic extenmsion of (X,«) where o deunotes the homeomorgnic
ky > d ik (k@ K)o
Hence (Xs,sf) is a G/H-extension of (X,4) where there exists a groun L
with B4 L ¢ G and L/H ¥ 6/H = K (5.5, 5.6). This forces (G,d) = (X%, U3).

This means there exists a ainimal homeomorphism s' of K3 of the form:

(kl’kz’kj)s' = (dkl,_l(gl)ka, m(kl)kj) with m, 1 ¢ C(K,K), and a homeozorpnis



éﬁ of.K3 of the form:

B (ky,kpnky) = (kyyplicy Niny gy(kyslipdg), where & C(KR), @3¢ c(x%,5),
‘such that & : (KB,sf)—~—-a(K3,s') is an lsomorphism.

This implies Cf}((kl,ka)t).f(kl,kz) = qg(kl,kz),m(kl)

and hence (Pq})((kl?ka)t).Pfikl,kJ) = P“B(kl’ke)

which contradlcta (12.16.1) havlngjno continuous solution.

S0 8¢ XY, &,t). QuE.D.

12.17 -The previous paragr&pha,'i;wparticuiér 12.14 - 12..6, indicate that

the proof of 12.9, except for the strings Al0, B3, B8 (see 12.11) 15 a
consequence of the following proposition, which is analogous to a result of [4}.
Proposition Let t be a pminimal distal homeomorphisa of X. Let G be a cumpact
connected Lie group and let C be a figite automorphism group of (X,Gj) {12.13)
such that c(xt) = c(xt) for all c.& C, x & X, Let s, denote the homesmorphiss

of T = X x’G defined bys

(x,g)sf = (xt,gf(x)jo

Then QL N ff : s: i3 minimala is dense in-Q where Q0 is a clozed subseat
of C(X,G) of one of the following forms (see 12.12, 12.135:
(1) O\ = O '
(1) X = K°x B for s =1 or 2 and B a finite set, G = x* and

0= Qg n{f: f=Pry where Cis P-inveriant.
Proof Tne following are true:
(a) Given an open co;er {vl...vnﬂ of G, there exists an integer ¢ such that
Arw e ivl..:vnﬁ (¢ = 1...p) then € = LR
(b) Given I éd and €70 thereexists S >0 with the follo«ing propercys
if x, ¢ X ie fixed and u : F—> G satisfles d(u(y),f(y)) <$ for all y € F
ghere F is a finite set with c.Fn F = ¢ for all ¢ € G, then there exists

v e QL with viF = u, and sup a(v(x),f(x)) <€ , where d iz a nmetric on G. -
: xeX .

(a) is proved in [L] Proposition 2. For tne proof of (b) when r is as

in (1), cee lemma 12.18. The proof of (b) when (. is as in (ii) is omitted.




Now fix Yo = (xo,lfe Y. For U open in Y, let
. 9
E(U) = ff ¢ Q {—yosrn: ny 030 U 3 ¢§. Using (1) and (ii), us2 an

argurent similar to that of [3] lemma 2 to show that E(1) 1s dense in C(X,G).

¥ opel

Then note that ir e Qe S¢ is minimal’j: M =(0), hence is dense in 7L,
' . in Y

since Y has a countable basis of open sets.

12.18 Lemma (b) of 12.17 is true for ( as in {i} of 12.17.

nggt_.Asaumﬁ¢!i$hpuﬁhloéewprsenqrality that the metric 4 is C-invariant.

"o

Chooselé‘7 0 and S{g) (% « G) such that:
{g s d(s,s')<5ﬁ g s(g) ¢ ig' d(g,=") 42’./2&, where S(g) is
‘homeomorphic to R™ for some n.
For y ¢ F, choouse Uy, an open neighbourhood ef y, such that:
f(Uy) < igv 3 d(g', f{y))< ; ﬁ , and ﬁy N c.Uy = ¢ for c ¢ C.

If Vo= eeyy (yl ¢ F), define Uy = c.Uyl,

For ye (U ¢.F, dofine v (y) = c.u(yl) if y = coyy forceC, ¥y ¢ F
ceC v

vy(x) = f(x), for x in the beoundary of Uy,
nd extend v_ %o function v 2 U s(f such that v C.x) = &,v.-{%).
a . . a funct y 7 (£¢y)) ¢ Cy( ) e

Then define v = vy on Uy {y ¢ C.F)

£ otherwise.

§13 Reoadmigeudbility

13.1 The different tjpes of minimal distal £ -actions 0# comvact connected
- topological manifolds of dimension‘S 3 were obtalned »y Brons*ein [11, thouan
not quite in ;hé form given here.

13.2 Clearly ia (with thq usual topology) ¢an only act minimally on a
connrcted aspace. Then the following lemma, quoted by Bronstein for rougnly
the samo purpose , and easily verified, shows tnat all the strings in tahles
A and B except forA9, A10, Al3, Al4, are not \% -adoissable.

Lenra (6] Let (X,R) be & minimal periodic t.g. and (¥,i) & =minimal almost

periodic extension of (X, ). Then (Y, R.) is almost perlodic.
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(Note that an almost periodic action of R on K mast he periodic, heuce tne
lemza implies a distal action of (R on a 2-dixensional manifold must be
almost periodic.)

13 The strinz of AlO is [ -admissable.

)
B (X,”) 1s the string of AlC if and only 4if X = N/~ (8.2), and the
Z n
action of R is gi#en by: A
X, 752]t = [x+at,y+bt+act2/2 rxcteg, (x,2), z+ct] for all x, 3, 2z, t ¢ i,

where a and ¢ ¢ {l are rationally independent and thé function

(t,x;,2) r—— gt(x,z) is jointly continuous, with:

Br,g(Xs2) = By (x,2) + gs(x+at;z+ct)

gt(x+l,z) = gt(x,z) (mod Z) = gt(x,z+l) for all x, z, 8, t €I,

For proof of minimality see, for example, [2] 6.19.2;6. Proof taac
Q_(X,\'rz) is the string of Alo is analto‘gous to 12.10.
13.4 We. outline the proof that the string of A9 is i -admissable. (The proofs
for Ll}; All,t are siniliar.) ‘

Ir @(KB, ) is tue steing of A9 t;he.n the action of R is of the form:

k.)

2 ‘Tigt\ kl" < )

B)t = (kledﬂ'i&t, kaea"_lbt’ kje
and t¢ R, wnere a, b ¢ K are rationally indepencent, and if

NN
2‘riat,k2e2“b”)

€ Kand t, 58 ¢ £ .

(kl,kz,k for all kl,kz,x & K

3
(i, k50t = (ke then g, (ki) = gt('r‘i,kz)vas((kl,.kz)tj
for all kl, 2{2

A necessary and sufficient condition that (Ks,l‘z) be ..izinimal and that
@(K},'&) be the string of A9 is that there exist no continuaus szlution
f e C(KZ,K) t¢ the egquation:

2eiat dWI(mgt\dl,xz)+~t;

. —
.(..}l:.li.'_’}.i. f(ke ’ kzeanibt) = f(kl,‘oza).e for any
me Z2~(0) and »e £,

: 2riglk,,x,)
Writing f(x;,x,) = klpkaqe 1 2_ (g ¢ C(I\’a,tﬁ)), the condition becomes

that trere is no coatinucus solution f, & C(Ka,ill) to the equation:

2rlat ., 2wibt, . . W
13.4.2) rl(kle » Ky ) = fl(Kl’ka) + gt(kl,ma) +p#t for a“,//c .
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t
Let g, (k),k,) = § b((k),k,)u) du.
By choosing h with suitable Fourier coefficients, we can ensure that

there is no continuous solution fl to (L3.4:2)

§ 14, Appendix.

In this appendix we give details of results which were omitted from
81 - 13 for the purpose of brevity, since those sections were

submitted for publication:

unnecessary {(i4.1l - 14.2).

(ii) We give the general "finite-dimensiorad" version of theorem 1.2
(see 1l.4) with such details of the proof as seem necessary (14.3 - 14.12).
Note that the assumption "T €T3 " (1l.4) is not neéessary after all.

(iii) We show that in theorem 1.2, the hypothesis that X have fini£ely
'many arcwise-connected components can be replaced by the hypothesis

that X be locally connected (14.13 - 14.1L) (see 1.3).

14.1 For the proof of the more general version of proposition 5.5, we
need the following facts about distal extensions. A reference is fé]. '
For a group T, there exists a universal minimal set (I,T) such
that (I,T&) is a compact Hausdorff topological semigroup with dense
subgroup T, where jp denotes the topology on I,the identity of T is an
idempotent of I, i = uIrpgs no non-trivial ideals and:
a———>pa  (py a € D) 1 b—>at (qe I, temD

are i}p—continuous. | |

1f (X,T) is a minimal t.g. then there exist universal minimal
‘distal and almost periodic extensions of (X,T) denoted by (X*,T) and
(x¥,7) respectively.

(x,m) < () < (x*,1) < (I,T).

(X,T) can be regarded as i[}]x : pé€ I%, where fp}x is the v ,-equi~-

£

valence class of p & I, where “«X is a closed T-invariant equivalence
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relation on I.

Write GX = {g ¢ G 2 [g]x = [d]g where G is}the subgroup Iu of I.
x+ Now let (X,T) be fixed.
(a) If (Y,T) is a distal minimal extension of (X,T) with (X,T) <<u'(Z’T)’

Then Gy, < Gy ) and Gyp < G

: -1
then g +—> [ép]Y maps G, onto 7 r(fply).
. . -1
Hence (GX/Gy,jp) is homeogorphlc to (W u([u]Y), Ip).
(b) There exists a topology 6"§'jp on @ (6 would be called the
T (C(X*))=~topology inY:ZI) such that each of the following maps

(GX,GO —_— <fo6) is continﬁous ([2] 11.17):

P — ap p——>pa  (py a € Gp).
(GX/GX*,G') is compact T,.
(¢) For a 6 -closed H, Gyw < H < Gy, define:

alg(H) = 3£ € C(x*) : £(np) = £(p) for all he¢ H, p& I.
Then alg(H) is a T-invariant C*-subalgebra of C(X*) containing C(X).
For a T-invariant C*-subalgebra O, ¢(X) <€ O & ¢(x*), define
ge(Q) = § b € Gy 5 £(hp) = £(p) for all £eQ , p¢ 1.

Then gp((X) is a 6 -closed subgroup of Gy o
alg(gp(Q)) = O and gplalg(q)) = B ([2] Ch.13).

(d) For a ¢ -closed B, G,, < H< G G

X x* ¥
(GX/H,S“) = (GX/H,f}p). For a 0 -closed H, G

< H 4if and only if
gr < HEGy, Gyw < H

if and only if multiplication in G /H is Tlp—cuntinuous in each

variable. In this case, the left-action of (GX/H,jp) on (I/H,jp) is
continuous in each variable, where I/H = {Hp T pe IS . Since
(I/H,]p) is compact Hausdorff by (cJ), this implies tne leit-action
is jointly continuous ([18]).

14 .2 Proposition Proposition 5.5 is true without the assunmption

that the (Zi,T) be distal.

Proof As in 5.5, we construct ? s B(Y )—~——9E(Y2). Let J. be a

1 1
minimal ideal of E(Y,), and J, =§(J;). In a similar manner to 5.5,

we can make (Zi,T) a factor of (Ji’T) so that the following diagranm.
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commutes: -

. | € N

Diagram li.2 Jl > J2
\/ N
Zl ZZ
N @ ~
1y 7 I
\L C(” \-L"‘
v . o
2 > X2

. ol |
is a normal 6 -closed subgroup

Using the notatibn established in 4.1, G 2 G ({2] 11.19 -

11.21), and Gyr 4 Gy , 50 Ny = G; Gyr
1 1 i 1

pf GYi contained in Gzi.
4 § = f - \ | B 3 - b S
VWirite G = G‘i/Ni’ HY = CYi/Ni, Ki = GZi/Ni’ (#i,T) = (Ji/Ji,_)o

" Then {G!l,lp) = (G1,5).

Since (wi,T) ig the maximal a.p. extension of (Xi,T) in (Ji’T)’

Qg induces an isomorphism of (Wl,T) onto (WZ,T). Now proceed much

aé in 5.5.

14.3 The statement of the general nfinite-dimensional® version of
theorem 1.2 is obtained from the statement of theorem 1.2 as follows:

Replace the hypothesis tnat X have finitely many arcwise-connected

components by the hypothesis that X have finitely many connected
components., Omit the sentence "These hypotheses..-.topological
' manifold". Omit conclusion (i). In conclusion (iii), omit the words
"so that (Bi = (Y ,X,,K;_;»Gys8;,T;,5;,Y;) 18 a fibre bundle (3.1) for
1€ i< i,
Replace the words "manifold" and "Lie group", wherever they occur
in the statement of the theorem, by "finite—diﬁensional Space" and
finite-dimensional group" respectively.

The proof of the new version follows the lines of the proof of 1.2
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once we have proved the following:

14.4 Proposition Let (X,T) <, (Y T) <5, (2,T) (Mypoiy =00 ) where

(Z,T) is minimal, T’l (x) is connected (x ¢ X), (¥,T) is an a.p.
extension of (X,T), and (Z,T) is a finite a.p. extension of (Y,T).
Then (Z,T) is an a.p. extension of (X,i).

For the proof we need a sequence of lemmas. Proofs of the easier

ones will be omitted.

14.5 Lemma If (X,T) < (v,m) < (Z T) where (Y,T) is a flnlte a.p.

extension of (X,T) and (2, T) is an a.p. eytens1on of (Y,T), then
(2,T) is an a.p. extension of (X, 1),

14.6 Lemma For proposition 1lh.h, we may assumeiT_l(x) is connected

§Xe2 X).

14.7 Lemma Let G be a compact topologiecal group, H = G, and suppose

"G/H is connected. Then if . GO denotes the connected component of

le G GRX = HG_ = G.
A Q o]

I14.8 Lemma Let G be a compact connected topological group. Let A be

a finite group acting freely and continucusly on the~com§act

connected Hausdorff space X such that G identifies with the orbit space
under the map § : X — G. Suppose 9(xo) = 1. Then X can be made a
topological group in such a way that X, is the identity and § a group
homomorphism. The group stfucture is the unique group structure on

X making X, the identity and S a group homomorphism and the maps

q }—>Pq continuous for each p € X (alternatiﬁely the maps qb—> ap
continuous for each p & X).

broof G is the inverse limit of the net (3G .ps 71 pop) OF

compact connected Lie groups. Letﬂ’n : G — G be the limit map.

Let fn = T 0% Tnen for each x & X, €-18x) = N ?~lg (x)
neD

For an index « on X, let B (x) = ¢x' ¢ (X,%') & oo
o %
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Let U, (x) = \ ) B, (x")

?(x’)—@(x)

Choose a symmetric index & on X such that if ?(xl) = g(xz) and
. SUSU& —
(xl,xa)c y then x; = X5¢
Choose a symmetric closed index £ on X such that (xl,xa) e T

implies (ax,,ax, )c § for all a€é A.

There exists n ¢ D such that €~ 13 (x) < U (X) for all x ¢ X,

Define ~ by x~, x' (n z @y) if and only 1f?~(x) g (x') ‘and

(x,x')€ ¢ . This is a closed A-invariant equivalence relation on X.
Write X = X/~ . A acts freely and continuously on X by
e, - [,

Define y 3 L Gy by Ln([x]n) = fn(x).

Define 6£ 1 X—> X byv6h(x) = [k:L‘and G Xm———erxn (n € m)

" by 6£m<[k]m) = [x]n. Then the following diagram commutes (nos m<n):

-
X = > X e > X
S \[ T, Tn
v T i L
n , mn
G > Gn —>Gm
Write x = [Xo]n' Then 6;n(xn) = X (m< n). For each n> n,

there exists a unique topological group structure on Xp naking X
the identity and'fn a group homomorphism. Then each ng (m € n) is
a group homomorphism. Then (x,Eshﬁ ) is the inverse limit of the
net (%X‘H nem ) of groups, hence X can be given a topological

group structure such that each 5' is a group homomorphism, and X, is
the identity. Then each )n = Lnaéh is a group homomorphism, and § is
a group homomorphism.

The uniqueness statement of the lemma is the "unique lifting

theorem" for covering spaces (see, for instance, [19]).
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14,9 Proof of proposition 1lh.L.

Let (X,T), (Y¥,T), (Z,T) be as in the statement of proposition
14.4. Use the notation of 1h.1l.
Let G' = Gy/CGy,, H' = Gy/Gy,, L' = G /Gy,

Then (G'/L';Sp) is connected and H'/L' is finite.

Put N' = é:g,g'lntg. Then (G'/N',3) = (G'/N'S).
N'/(N'AL') is finite. Put M' = 7\ n"Y(N'aL')n. N'/M' is finite,

~ neN!

since N'/M' acts effectively on N'/(NL').

We can assume that M' < G', from which it will follow that

M .."‘lr [P

1L B
For let R' = {g & G ; gM' = M'gi. R' is ¢-closed, and since N' « G',
R' is of finite index in G'. If necessary, replace X by X*/R', Y by
X*/(H'A R'), and 2 by X*/(L'A R').
Now let B3, Bé be the groups containing M"such that Bi/M' and
) Bé/M' are the']p-connepted and 6 ~connected components of M' in G‘/M'
respectively. Then Bi = Bé = B', say (14.10), and B' is 6 -closed.
Write G = G'/M', N = NY/M', H = H'/M', L = L'/M', B = B{/M'.
G inherits 6 - and jp—topologies from G'.
To prove 1lh4.4,we only have to show the maps:
q——>pq and qplb——3qp (p,é & G) are t%—continuous (14.1(d) )«
('B,jp) is a finite cover of (B/NDB,f)P) = (B/N nB,CY;). 14.8
implies there exists a topological group structure on B making 1 ¢ B
the identity and the naturai quotient map (relative to the originAl
group stru~sture) B —> B/(N» B) a group homomorphism. The uniqreness
clause of 14.8 implkies that the topological group structure is the sanme
as the original group structure. So (B,Jp) = (3,6) (essentially 14.1(d)-
see also [2] Chs. 11-13).
Bd G, S0 b —>a Tpa (B,jp)-—_~9 (B,lp) is continuous for each

& e L.

G = BL = LB (14.11), so (G/Lgsp) = (B/L,jp), and the maps:
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(6/L,3)) —> (6/L,3)) 2 Lg —>Leg'

(G;3p) — (G/L,Up) : g —>Llg's (g, 8" ¢ G) are continuous.

Hence ([18]) the map: |

(G/L x 6,7 x).) ———>(6/1, J) ¢ (Lg,8') 1> Leg' is continuous.
Let C(G/L,G/L) denote the topological semigroup of ‘]p-continuous

maps of G/L into itself, where the multiplication is compoéition of

functions and the topology is the topology of uniform convergence.

Let ¢ —>C(G/L,G/L) = g!——;<?g be defined by (Lg')?g_: Lg*g.

Since this is a continuous injective homomorphism of G into

C(Gfﬁ;efﬁ}7~muitipticatibn‘iﬁ“G’is?3p—continuous in each variable,

as required.

14.10 Lemma Let Bi,

Bi/N' and B'Z/N1 are the ﬂp—connected and ¢ -connected éomponents of

Bé be the groups containing N' such that

M* in G'/M' respectively. Then Bi ='B5.

‘Proof Clearly Bi < Bé and N'Bi = N'Bé. So Bi is of finite index in

Bé. To show B} = Bé, it suffices to show Bi is ¢ ~closed.

Use the notation of 14.1. Let (W,T) = (I/M',T) where

1M ={M'p : pe I§ . (W,T) is a distal extension of (X,T),
say (X,T) <c(W,T). Let (V,T) = (W/~ ,T), where %, ~ w, if and only
if‘%(wl) =X (wa) and w,, v, lie in the same connected component of

' is 6=closed as

1€ (w,). By 14.1(a) and (c), Gy = B}, so that B}

required.

1L.1)l Lemma BL = LB = Go.

Proof B/N is the connected component of the identity in G/N. So (14.7)
BH/N = G/N. S0 BH = HB = G. So BL is of finite index in . So G/L is
a finite union of cosets of B/L, which are ¢-closed, hencéjp—closed.

So, since G/L is jp—connected, BL = G

14,12 In[?d] an example is constructed of a minimal t.g. (X,T) with

totally disconnected phase space such that (X,T) is a finite group
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extension of an a.p. factor, but (X,T) is not almost periodic.

14.1% Proposition. Let (X,T) be minimal distal and let X he finite-

dimensional and locally connected. Then X is a manifold.
Note. This was proved by Bronstein in,{l]. As I was unable to
understand the proof, I include one here.

It suffices to prove the following lemma, by analogue with 2 7.

14,14 Lemma. Let (W,T) be minimal distal, with W locally connected ;

and connected. Let (V,T) << (W,T), with V a manifold. Then it is not

possible to find a strictly increasing sequence {(V T)g n=1 such
that each (V ,T) is a finite extension of (V,T) and (W,T) the inverse
limit of }(v T)‘) | |

Proof. Suppose for contradlctlon that (W,T) is the inverse llmlt

of a strictly increasing sequence %(Vn)Tjs as described in the state-

ment of the lemwa. Let U & V be a simply connected open set. Since

each V is an open cover of V, by passing to the limit we can find a

map ¢ : U —>0 1(U) with Tes = identity. Then T (U) is

homeomorphic to U x G/H (3.2) where (W,T) is a G/H-extension of
(V,T), and hence G/H is totally disconnected, infinite and perfect.
It follows that no open subset of F—l(U) is connecied, contradicting

the fact tnat W is locally connected.



