This is an open book examination, so students can look up theory in their lecture
notes and other sources. I don’t think this makes the theoretical bits of questions
completely trivial - there is some collating to do, and anyone who copies out large
chunks of theory blindly will obviously waste quite a bit of time. Up to 6 hours will
be allowed.

1.

(i) A topological space (X,T) is a set X together with a collection 7 of subsets of
X, (called open) such that a) -c) hold.

a) X, peT
b) If U; € T for all ¢ € I, for any set I, then U;c;U; € T .
C) If U1, Use7T then UyNnUsy e T.
[5 marks]|
For the standard topology on R"™, the open sets are all sets U such that the
following holds. For any x € U there is € > 0 such that
B(z,e) CU

where
B(z,e) ={y: |ly — z[| <€},

and, if v = (vy---v,) then

[2 marks]

Now suppose that U; and U, are open in R". Take any x € U; NUy. Then
choose €; > 0 such that

B(@, gj) C Uj

for j =1, 2. Now take
g = Min(81,82).

Then
B(g, 6) C B(@,é‘l N B(g,é‘z) c Ui NUs,.

So Uy NU, is open also.
[4 marks]
(i)

a) For any € > 0, and any z € R, B((z,0),¢) is not contained in R x {0}. So
R x {0} is not open.

[1 mark]

b) For any € > 0 and any zo € R, B((20,0),¢) contains the point (2o, —3¢).
So

(z,y) e R?:y >0)

is not open.
[2 marks|



c¢) Take any (zg,yo) with zog —yo =€ > 0. Then

(o, y0) = (z,9)]| = V/(zo — 2)? + (yo — y)? > min(|z — zol, |y — yol-
So if |[(z0,¥0) — (z,y)|| < €/2 then

[(z —y) — (w0 —wo)| < |z — 2ol + |0 —y| <e.
Then |z —y—¢|<eand z—y>0. So

B((z0,90),¢) C {(z,y) : x>y}
and so this set is open.
[4 marks]
(iii) To get a) = b): Given V open in Y, for each z € f=1(V) choose U(z) open
in X with z € U(z) and f(U(x)) C V. then U(z) C f~1(V). So

V) =u{U(z) :z € f7H(V)}

is open in X .
[3 marks]

To get b) & ¢): VCY isopen & Y \V isclosed, f~1(Y\V =X\ f"4V).
[2 marks]

To get b) = a): given V CY and z € f~1(V), take U = f~}(V).
[2 marks]

Of course different solutios will use different strategies: but 7 marks altogether.
094+24+44+14+24+44+34+24+2=25
First part of question is bookwork, second part of (i) and part (ii) similar to homework

exercises. The equivalences in (iii) were mentioned in lectures but not proved - so this
is unseen.

2. (i) (X,T) is compact if for any collection {U; : i € I} of open sets (that is, in 7)
with X C Ujeru;, there exists a finite J C I with X C U;je;U;.
[3 marks]|

(X, T) is Hausdorff if given any z, y € X with y # x, there are open U, V in
X withzeU,yeV and UNV = ¢.
[3 marks]

Let [z] denote the equivalence class of x with respect to ~. Then X/ ~= {[z] :

x € X}. We define 7 : X — X/ ~ by w(x) = [x]. Then the quotient topology on
X/ ~ is the collection of sets

UcX/~n ' U)eT},

where, as usual,
oY U) = {z: m(z) € U}.

[3 marks]

(ii) For reflexive: x = z+0 so = ~ x. For symmetric: if y = z+n then z = y—n, so
x ~ y implies y ~ x. For transitivity: if y = x+m and z = y+n then z = z+m+n,
soif x ~y and y ~ z, x ~ z. We have 7([0,1]) = R/ ~, 7 is continuous by the
definition of the quotient topology and [0, 1] is compact. Since the continuous image
of a compact set is compact, R/ ~ is compact also.
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[3 marks]

If [z] # [y] then y # =+ n for any n € Z. So there is € > 0 such that
lt4+n—y| > 2 forall n € Z. Put Uy = Upez(z+n—e,x+n+¢) and Uy =
Unez(y+n—ce,y+n+e). Then Uy NU; = ¢, the U; are open in R 7~ 'n(U;) = U;
for j =1, 2. So 7(Uj) are open in R/ ~, n(Uy) N7w(Uz) = ¢ and [z] € n(Ur),
[y] € 7(Ua).

[3 marks]

iii) If [z1] = [z2] then z1Z2 and F(x1) = F(z3). So [F] is well-defined. To show
[F] is continuous, it suffices to show that [F]~1(U) is open for all open U in Y. But
[F]71(U) is open in X/ ~ & = Y([F]7Y(U)) = ([F]om)~Y(U) = F~1(U) is open -
which is true, because F' is continuous.

[4 marks]

(iv) Take A = 27. Then take
F(x) = (cos 2z, sin 27x).

Then F is continuous into R? and maps R onto Y because cos?t + sin®t = 1 for
all t. F maps onto Y because cos maps [0, 7] onto [—1,1] (all with sin positive)
and maps [, 27] onto [—1,1] (all with sin negative). F(z) = F(2') < cos2nz =
sin 27z’ - which gives ' = z+n or ' = —x +n for some integer n - and sin 27z =
sin 27z’ - which shows that z’ # —x + n for any integer n. So F(z) = F(2') &
xz ~ 2’ and [F] is well-defined, continuous and a bijection onto Y. So R/ ~ and Y
are homeomorphic.

[6 marks]

3+3+3+3+3+4+6=25

(i) is bookwork, (ii) is similar to homework exercises.
3.

An orientable C' manifold is Hausdorff topological space which is a countable
union of compact spaces with an atlas A of charts (U, ). For (U,¢) € A, U is an
open set, ¢ a homeomorphism of U onto some open subset of R for some n, and

M CcU{U: (U, € A}.

[3 marks]

In addition, if (U,¢) and (V,¢) € A with UNV # ¢ (in which case U and V
are necessarily homeomorphic to open subsets of R™ for the same n) then

wogo_l:go(UﬂV)—)iﬁ(UﬂV)

is continuously differentiable with strictly positive Jacobian at all points. If F =
(F1,---F,) : U(C R") — R" is differentiable, then the Jacobian J(F)(zo), for
zo € U, is the determinant of the matrix

OF[0x1(z9) --- OF1/0zn(z0)

OF, /0z1(zg) --- OF,/dn(zy)

[3 marks]|
(ii) g 0 @7 ! is defined on (0,1) by

p2001 (t) = pa(t, +V1 - 1) = =1 - 12
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which is continuously differentiable with positive derivative
t

v
for t € (0,1). Similarly

p30905 (t) = p3(+V1— 12, —t) = —/1 - 12, t € (0, 1),
has positive derivative ¢/v/1 — £2,

p10@5 (t) = pa(—t, —V1—t3) = /12, t€(0,1)

and
pro@s!(t) = pr(—V1—12,1) = =1 -1, t € (0,1).

So in all cases the domain of the transition function, are the same as in the first case,
so the transition funciton is C' and the derivative is positive everywhere.

[7 marks]
(iii) a) If
(0,1) + A((z,y) — (0,1)) = (pr(z,9), —1)

then

1+)\(y—1) =-1,
So 0 5

x
A= —— = ;

1_yap1(xay) 1_y

So p; is continuous on X \ {(0,1)}.To find the inverse function: if
= 2x
=15

then ¢t — 2z = ty. So t?(1 —2?) = t? — 4at + 42%. So if x # 0 we have 4t = z(4 +t?)
and

4
T = i1
This also holds when z = 0. Then
8t t(t% — 4)
ty:t— =
44 t2 44 t2
Sot=0 or
P-4
Y=41p

This also holds at ¢t = 0. So

4t t?2—4
0= (717
which is continuous. So p; is a homeomorphism.
[7 marks]
(iii)b)
2z

o7 )= — 2
Y41 Qol() 1_m



for 0 <z <1or —1<x<1,thatison ¢;(U;\{(0,1)}). This function is C*.
[2 marks]
(iii)c) Similarly to the calculation of A,

2 2x

= — .7;, = .
7 1erzoz( Y) Tty

and so
4z B 472

—g2 = 2z 4

p(z,y).p2(z,y) =

whenever z # 0. It follows that py op7'(t) = 4/t whenever x # 0, that is, whenever
t # 0. The domain of the transition function is {¢:¢ # 0}.

[3 marks]
3+3+T7T+7+2+3=25

(i) is bookwork. (ii) is an example similar to homework exercises. (iii) is some detail
from an example in lectures which was not completely spelt out at the time, and with
slightly different parameters. The calculation of the inverse function of p; is NOT in
lecture notes, although the answer is given for a slightly different parametrisation.

4.(i) Let
=(27)

el ol

and define 7(z) = A.z. Then

T(z):az—{—f andT,(z):a(cz—l—E)—E(az—l—E): 1_ .
cz+a (cz +@)? (cz+a)?
Also ) )
lcz +a|* — |az + ¢
1—|r(2)* =

lcz + al?

_ 1z|2(|c|? — |al?) + |a|? — |c|? + 2Re(cza) — 2Re(azc)

lcz + al?
_ 12
lcz + @2
So for any z,
’ O
1—|r(2)>  1—|z*
[4 marks]
So
_ [P 2ren) @] 2T (n@)n®)
ol = [ TS aE = ) e
[t ) _
‘/0 =P = 20
[2 marks|



So given any zy, 23 € D,
dp(z1,2z2) = inf{fp(v) : v is a path in D from z; to zo}
= inf{lp(A.y):~is a path in D from z; to 2o} = dp(A.z1, A.23).

[2 marks]
(ii) ' '
A5 (t) = 7' (£)e?® + ir ()6’ (t)e?®).
So
O] = 17 (1) +ir 8 @) > 7(1)].
So
Y 20 O] 0
i) = [ 2 [ et 1—(r<t>>2dt‘
W) gy )
= [ T = (/=)

= In((1 + r(1))/(1 = r(1)))-

[4 marks]

So the shortest path from 0 to z;, for any |z;| = r; < 1, is along the radius
from 0 to z1, and is In((1 +71)/(1 —r1)). If thisis s;, then

51 — 1 + 1
- 1-— 7‘1.
Then
ri(e®t +1) =€t — 1.
So
e —1
To = %0 + 1
[4 marks|

(iii) Given any 29 € D, we want A such that A.0 = zp. Take

1 1 20

w- e (s 7).
Let A; be similarly defined given any z;. Then (A;45").20 = 21 .
[3 marks]
(iv) For any geodesic £ in D (for dp) and zp € D with zo ¢ £, we can find
A € SU(1,1) such that A.zp = 0, and hence 0 ¢ A.£. Then the shortest distance
between 0 and A./ is the same as the shortest distance between zy and ¢. By
rotating we can assume that A.£ goes through points ¢ and ¢ on the unit circle, and
hence cuts the real axis at rightangles at a point ro. The circle |z| = ro then meets
A.£ only in the point ry and In((1+r¢)/(1 —rp)) is the minimum distance between
0 and A.Z, acchieved at ry with the shortest path being along the radius, that is the
along the unique geodesic segment from 0 to A./ which meets A./ at rightangles.
Applying A~!, the shortest distance between zy and ¢ is attained uniquely along
the geodesic segment from zy to ¢ which meets ¢ at rightangles.
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[6 marks]

44+242+44+4+3+4+6=25. This is essentially bookwork BUT the treatment is a
little different from what I shall do in lectures, when I shall treat £ (A.v) = £g(~y) for
A € SL(2,R) and then show £g(y) = £p(P.y) for a suitable Mdbius transformation
mapping the upper half plane H to the disc D. So the easiest route for the candidates
is to do some calculations similar to, but not identical to, what they have seen before.
If they simply copy out lecture notes i shall give credit but it will take them much
longer.

5. (i) Take any w € X. Then w = e* for some z € U, and
p ' (w) = {z + 2min : n € Z}.
Then p is a homeomorphism restricted to W,, = {2’ : |z’ — (z + 27in)| < 1} NU with

image V =e* : 2 € U, |7 — z| < 1} and inverse function w’ — z + 2mwin + In(w’ /w).
In particular, the image V is independent of n, and

p (V) = UpezWa.

So p is a covering map.
[3 marks]
M1(0) = 5/4 = 72(0) = 3(0) and y1(1) = 72(1) = vs3(1) = =7/4.
[2 marks|
We have 5/4 = (/%) and 5/4 +t/2 = ™E/2+6/9) 1 So 4, is a lift of ~;,
where
Y1(t) = In(5/4 + t/2) + int,

Y2(t) = In(5/4) + itw + ¢t 1In(7/5),
Y3(t) = In(5/4) — itm + tIn(7/5).

[3 marks]

So we have 7;(0) =In(5/4) for j =1, 2, 3, and 71(1) = v2(1) = In(7/4) + im,
and v3(1) = In(7/4)+im. So 71 and 2 have the same endpoints, but 3 has only the
same first endpoint as the other two, and a different second endpoint. A homotopy
between 7, and <y, is then given by

F(s,t) = e(1=8)11(t)+s72 (t)’

which does satisfy F'(s,0) = 71(0) = v2(0) for all s and F(s,1) = y1(1) = ~y2(1) for
all s (as it must).
[3 marks]|

However if two paths have lifts with the same first endpoints and diffenent second
endpoints then they cannot be homotopic (because any homotopy would lift to the
covering space - U in this case.)
[2 marks]
(ii). A topological space Y is path-connected if for any =, y € Y there is a continuous
map f:[0,1] =Y with f(0) =z and f(1) =y.
[1 mark]



Any points z and y in X can be represented in polar forms rye’® and riet®

for ro, 1 € (1,2) and 6y, 0, € [0,27]. Then write r9 = e*°, r; = e** for s,
s1 € (0,1In2). Then define

f(t) — e(l—t)50+t31+i((1—t)90+t91) .

Then f(0) ==z, f(1)=y, In|f(t)| = (1 —t)so+ts1 € (0,In2) and so f([0,1]) C X,
and f :[0,1] - X is continuous (because e is continuous on C). So X is path-
connected.

[3 marks]
(iii) A topological spce Y is simply connected if for any continuous map f:[0,1] - Y
with f(0) = f(1) (that is for any closed path f) there exists a continuous map
F :[0,1] x [0,1] = Y such that
F(0,t) = f(t) for all ¢ € [0, 1],
F(s,0)=F(s,1) = F(1,t) = f(0)( = f(1)) for all ¢, s € [0,1].

[3 marks]

If f is any closed path in U we can find such an F (a homotopy to a constant
path by defining

F(s,t) = (1 —5)f(t) + s£(0),
which works, because U is convex: the straight line segment between f(0) € U and
f(t)eU isin U.
[2 marks].
(iv) Since p(z + 2min) = p(z) for all n € Z and z € U, and p~p(z) = {z + 2win :
n € Z}, the covering group of X is
{z+ 24 2min :n € Z}.
This group is isomorphic to Z.
[2 marks|
A representative of the element of (X, 3/2) corresponding to n is given by

t s (3/2)e®™ 1 [0,1] = X.

[1 mark]
3+2+3+3+2+1+3+3+2+2+1=25

(i) is similar to homework exercises. Part of (ii) and part of (iii) are bookwork. The
rest is similar to homework exercises.

6a) We have
p~H([z]) = {z + (m,n) : m,n € Z}

and p(z + (m,n)) = p(z) for all m, n € Z. So the covering group action is
(m,n).(z,y) = (x + m,y +n) for all (m,n) € Z2, as claimed.
[1 mark]

For any zo, p(f(zo +m) = p(f(zo) so given zy, m, there is @(m) € Z2 such
that ~ }

f(mo +m) = f(zo) + o(m).

[2 marks|



Since ¢(m) € Z? is continuous in g, it is constant as a function of zy. So

flxo+m+n) = f(zg+m)+ ¢(n)
= f(z0) + ¢(m) + ¢(n)

Since we also have

we obtain
¢(m) + ¢(n) = p(m + n)
for all m, n € Z2, that is, ¢ : Z? — Z? is a group homomorphism
[4 marks|
Any other lift of f is given by z — f(z) + p for some p € Z2. Then

flz+m)+p=Ff@) +p+e(m)
for all z € R%, m, pE Z2. So ¢ is independent of the lift chosen.

[2 marks|
b) By induction on m, starting from m =1,

¥(m,0) = (ma, mc) (1)

for all integers m > 1. To pass from m to m + 1 we use ¥ (m + 1,0) = ¢(m,0) +
¥ (1,0). By induction on n starting from n =1,

$(0,m) = (nb, nd) @)

for all integers n > 1. We then have (m,0) + ¥(—m,0) = (0,0) = (0,0) and

¥(0,n) + (0, —n) = (0,0), which extend (1) and (2) to all integers m and n. Then
Y(m,n) =¢Y(m,0)+ ¥ (0,n) = (ma, mc) + (nb, nd) = (ma + nb, mc + nd)

for all m, n e Z.

[3 marks]

Then take
f([z,y]) = [az + by, cx + dy]

This is well-defined because
(a(z+m)+b(y+n),c(x+m)+d(y+n)) = (ax+by+ (am+bn), cx+dy + (cm+dn))

and am + bn, cm + dn € Z whenever m, n € Z. Then f is continuous because

f(z,y) = (ax+by, cx+dy) is a lift and continuous. (This uses the usual results about
quotient topologies.). Then we see that

flx+m,y+n) = f(z,y) + (am+ bn,cm + dn)

and so f, = ¢
[3 marks]

c)(i) o )
fof(z,y)=flz+3,~y) = (x+1,9).
So fo f is the identity.

[2 marks|



¢)(ii) By definition = is reflexive. We have f~! = f,s0 p2 = f(p1) & p1 = f(p2)
and ~ is symmetric. Since each equivalence class contains only two elements, ~ is
also transitive.

[2 marks]
c)(iii) We have

fmn).(z,y)=flz+my+n)=(z+m+5,-y—n) (1)
and

(m,n).f(x,y):((a:-l—m-l—%—y-l—n)

These are equal & n =0.
[2 marks]

Applying (1) twice, we have

F.(mo ). F-(m,n).(5,9) = (& + 2m + 1,y). (2)

[2 marks|

The centre of G is {(m,0) : m € Z} since any element f( ,q) does not compute
with everything.
[2 marks]
1+24+44+2434+3+24+2+242+2=25.
The torus example will be covered in lectures - in fact, it has already come up although
we have not yet started covering space theory, and there has been a homework example
with some relevance to this question. The Klein bottle will be mentioned briefly in

lectures. So the first example shoudl be fairly familiar to them, the second one not
so much so.

7.(i) az+b=2z < z(a—1) =b. This has asolutionif a #1 orif a =1 and b=0.
[1 mark]

In a group of covering bijections, only the identity map is allowed to have fixed
points. All holomorphic bijections of C are of the form z +— az 4+ b. So a covering
group of holomorphic bijections of C must be contained in

{z+—=>2z+c:ceC}.
If the group is cyclic with generator o : z — z+ b, b # 0, then ¢™(z) = z+ nb and

the group is
{z+—2z+nb:necZ}.

[2 marks]
This is the covering group for

PR eZ'/riz/b

[1 mark]

(ii) We have
az+b
cz+d

=z & c2+(d—a)z—b=0.

If ¢ = 0 then this equation has either one real root, or a« —d =0 and b = 0. Hence
there are no fixed points of z+ A.z in H unless ad=1 and a=d and b=c¢=0,
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that is A = £I. If ¢ # 0 then this equation has nonreal roots < (d —a)? +4bc < 0,
that is, & d? + 2ad + a® — 4(ad — be) < 0, that is, & (d+ a)? < 4, that is &
la 4+ d| < 2. So there are no fixed points in H < A # +I and |a+d| > 2.

[3 marks]|

The characteristic polynomial of A is
22 — (a+d)z + 1.

So the condition |a + d| > 2 is equivalent to both eigenvalues of A being real. Since
the product of the eigenvalues is 1, the eigenvalues are A*! for some real A # 0 and
the eigenvalues are distinct unless they are both 1 or both —1. If A # +1 then A is
diagonalisable and of the form
A0 _1
P (O O ) P

for some real invertible matrix P. Interchanging the columns of P and interchanging
A and A~! if necessary, we can assume that P has positive determinant, and can
then scale by a suitable constant and assume that P has determinant 1. If the
eigenvalues of P are both 1, then taking the columns of P to be v; and v, where
vy is an eigenvector of A and (A — I)vy = +v; we can ensure that P has positive

determinant and
_ 1 +1 1
amr(l A

By scaling v; and v, we can ensure that P has determinant 1. The case when both
eigenvalues are —1 is similar.
[6 marks|
(iii)a) Define

p2(2) = €%
Then

p2(Ba.z) = pa(z £ 1) = pa(2)
and pa(z) = p2(2') < 2/ =z+mn for some n € Z & 2/ = BY.z for some n € Z.
Also
pa(H) = {e¥™% : Tm(z) > 0} = {e’ : Re(t) < 0}

={z:0<|7z| < 1}

[3 marks]
(iii)b) Define
p3,R(Z) — 6—i(ln R)z/7r’

which can be defined for all z € C,and 0 < Im(2) <7 < < 0 < Re(—i(InR)z/7) <
InR & 1< |p37R(z)\ < R. So P3.R: U— A(R)
[3 marks]

Also, p3 r(2) =p3 r(?') & —i(InR)z/m+ 2nmi = —i(In R)z'/n for some n € Z
& 72 =2+ 2n7?/(In R) for some n € Z. So the covering group of A(R) on U is

{z+— z+2n7*/(InR) :n € Z}

[3 marks]
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Now z — log z maps H bijectively onto U. So we can take p1 r(2) = p3 r(Inz),
and py r: H — Ap is a covering.
[1 mark]

The covering group is

{z—=X"2:neZ}={z— B'(\z:ncZ}

for A > 1 such that In\ = 72/(InR).
[2 marks]
1+2+1+3+6+3+3+3+1+2=25.

Some aspects of this example will be covered in lectures and homeowrk - other similar
examples in homework and lectures.

8(i) Let v denote the number of vertices of G, e the number of edges and f the
number of components of S\ G (which are all topolological discs, by the assumptions
on G). Then the number v — e + f is independent of the graph G chosen and is the
Euler characteristic x(S) of S

[2 marks|
(i)
The pair of pants The torus minus disc
(ii)a) From the diagram we have f =1, e=6, v=4. So x(S)=1-6+4=—1.
[2 marks]
(ii)b) From the diagram we have v =4, e =6, f = 1. So. again, x(S) = —1.

[2 marks|

(iii) Take a finite graph G C Sy such that any component of S; \ G is a topological
open disc. Then any component v of 05 is a union of alternate edges and vertices
of G. So if v(v), e(y) are the numbers of vertices and edges of G in 7, we have
v(y) = e(y). Let Gy be the graph in S2 obtained by identifying the pairs of boundary
components of S; which are identified in S;. Then using G and G5 to calculate

x(S1), x(S2),
X(S2) = x(S1) = Y _(v(7) —e(7)) = x(S1)

v
where the sum is over one « in each identified pair.
[4 marks]

(iv) S\ 4 is a compact orientable surface-with-boundary. with either one or two
components, depending on whether A does not disconnect, or does disconnect, S. If

12



S\ A is connected, it has 2 boundary components, and te same Euler characteristic - 4
-as S. Soin this case S\ A4 is a two-holed torus minus 2 discs. Any compact connected
orientable surface-with-boundary is uniquely determined, up to homeomorphism by
its Euler characeristic and number of boundary components.

Now suppose that S\ A has two components 77 and T>. Then each of Ty, Ts
is connected and has one boundary component. Neither of them is a disc, because A
is homootpically nontrivial. So both 7} and T have negative odd Euleer chacter-
istic (since each has one boundary component). So one of them, say 77, has Euler
chacteristic —1 and is a torus minus one diec, while T5 is a 2-holed torus minus a
disc.

[5 marks]|

(v) If S\ (A; U Ay) is connected, it has four boundary components, and must have
Euler characteristic —4, and must be a torus minus four discs.

If S\ A; is connected and S\ (A1 U As) is not then either both components of
S\ (A1 U Ay) have two boundary components and Euler characteristic —2 - because
if the Euler chacteristic of one component is 0 then it is an annulus and A; and
Ay are homotopic - or one component has three boundary components and the other
has one. If two components have two boundary components and Euler characteristic
2 then they are both tori minus two discs. If one component has three boundary
components and the other has one, then the Euler characteristics are —1 and —3
- either way round. The components of S\ (4; U Ay) are either a two-holed torus
minus one disc and a pair of pants, or a torus minus one disc and a torus minus 3
discs.

The possibilities are similar if S\ A is connected and S\ (4; U A3) is not.
[6 marks]|

Now suppose that both A; and Ay disconnect S. Then A, disconnects one
component Ty or Ty of S\ A; - otherswise S\ Ay is connected. Now A cannnot
isconnect the one-holed torus 77 because 77 has Euler characteristic —1 and if
AbsubsetT; and Ti \ As has two components, neither compoentn is allowed to have
Euler characteristci 1 (since this give Ay trivial) or 0 (since this gives A; homotopic
to A;. So Ay C Ty and the two components of T\ A2 have Euler characteristisc —1
and —2. One component is a torus minus tw discs and one a torus minus one disc.

[6 marks]|
2+2+2+4+4+5+5+5=25
(i) and (iii) are bookwork. (ii), (iv) and (v) are similar to examples from lectures and

homework, with the examples in (ii) being covered in lectures at soem point - but it
is surely easier to teat from scratch.
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