
Dido’s problem

• This is probably the oldest problem in the Calculus of Variations.

• Dido founded the city of Carthage, in Tunisia.

• According to legend, she arrived at the site with her entourage, a refugee from a
power struggle with her brother in Tyre in the Lebanon.

• She asked the locals for as much land as could be bound by a bull’s hide.

• She cut the hide into a long thin strip and bounded the maximum possible area
with this.

• The maximum possible area bounded by a curve of fixed length is a circle. So
the city of Carthage is circular in shape.

• Dido’s problem is an example of what is called an isoperimetric problem.

• These are problems about enclosing areas with the same length of perimeter, or
enclosing volumes by surfaces of the same area.

• A very simple example is to find the rectangle with maximum area, given that
the perimeter is L – that is, maximize x( 12L− x) for 0 ≤ x ≤ 1

2L.

• These are important mathematical problems, usually not easy, and not the most
elementary in the Calculus of Variations.

• The Greek mathematician Zenodorus managed to show that the area of a circle
is large than the area of any regular polygon with a perimeter of the same length.

• James and John, the Bernoulli brothers, competed over the solution to an isoperi-
metric problem, each claiming that their solutions were correct, and that the
other’s were wrong.

• James’ work on this and other problems developed the technique of Calculus of
Variations and John later improved some of his solutions.

• But it seems that the first complete solution to Dido’s problem was given some-
what later, by the geometer Steiner, in the nineteenth century.

Dido’s problem is about maximizing the area bounded by a closed curve (x(t), y(t))
for a ≤ t ≤ b subject to the curve having fixed length. The area is∫ b

a

(xdy/dt− ydx/dt)dt

and the length of the boundary is∫ b

a

√
(dx/dt)2 + (dy/dt)2dt.
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Newton’s ship design

• In Principia Book 2 Newton talks about the best design of a ship, to minimize
the resistance.

• This is perhaps the first application of calculus to the Calculus of Variations.

• The shape of the hull is the rotation about the x axis of the curve y(x) for a ≤
x ≤ b.

• The problem is to minimize the resistance∫ y(a)

y(b)

cyy′2

1 + y′2
dy =

∫ b

a

−cy(x)y′(x)3

1 + y′(x)2
dx

over all functions y(x) defined for a ≤ x ≤ b, and for fixed values of y(a) and
y(b)

The Brachistochrone Problem

• This was the problem solved by John Bernoulli, and on being challenged by him,
also by James Bernoulli, Leibniz, Newton and l’Hopital.

• All the solutions were published in Acta Eruditorum in 1697.

• The problem is to find the curve joining (a, c) to (b, d) (d < c, a 6= b) along
which a particle slides in the shortest possible time.

• The time is given for a curve x(y) (or y(x)) by the formula given in the problem
of the Tautochrone, that is

T =

∫ d

c

√
1 + (dx/dy)2

2g(c− y)
dy =

∫ b

a

√
1 + (dy/dx)2

2g(c− y(x))
dx.

• The solution found by James was the closest to the modern technique of the
Calculus of Variations.

The cable problem

• This is the problem of finding the curve taken by a cable of uniform density when
it is at rest, and hung from two fixed points in a vertical plane.

• Galileo said that the curve looks like a parabola.

• The solution to the original cable problem is a catenary

C cosh(αx+ β).

• Leibniz, Huygens and John Bernoulli all published solutions.

• This was John Bernoulli’s first main result independent of his brother.

• His proof and Leibniz’ used calculus. Huygens’ proof was geometric, and less
rigorous.
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The mathematical formulation

• The sum of the potiential and kinetic energy of a uniform cable in shape y(x) or
a ≤ x ≤ b is constant, in the absence of external forces.

• If the cable is at rest then the kinetic energy is 0 and the potential area is maxi-
mized.

• So the problem is to maximize the potential energy

ρ

∫ b

a

gy
√
1 + (dy/dx)2dx

(where ρ is the density) subject to the cable being of fixed length, that is∫ b

a

√
1 + (dy/dx)2dx = L.

• Like Dido’s problem, this is a maximising problem subject to a constraint.

• Calculus of Variations Problems are about finding minimising or maximising
functions y for a function of the function which is an integral of the form∫ b

a

F (x, y, y′)dx

where y(a) and y(b) are specified.

• In some problems there is also a constraint: we only consider y such that, for
some fixed G, ∫ b

a

G(x, y, y′)dx = L.

• Minimising and maximising problems were a major impetus for the development
of calculus. The solutions of some problems about maximising and minimising
real-valued functions pre-date the formal introduction of calculus.

• As we know, a necessary condition for a point x0 to be a minimum or maximum
of a differentiable real-valued function f is that

f ′(x0) = 0.

• So one can ask what the generalisation of this is, in the Calculus of Variations
problems.

• The man who formalised this was Leonhard Euler (1707-1783), possibly the
most prolific mathematician who ever lived.
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Leonhard Euler (1707-1783)

• He was born in Basel, and brought up not far from there, in Riehen.

• His father, Paul was a protestant minister who had studied theology at Basel
University, and had attended James Bernoulli’s lectures there.

• He taught his son a bit of mathematics and passed on his interest in the subject.

• When Leonhard himself went to Basel University, where he, too, was supposed
to be studying theology, he made contact with John Bernoulli, who had now in-
herited his brother’s chair. Although John Bernoulli did not agree to give Leon-
hard Euler private lessons, as he requested, he did give him valuable direction in
his studies.

• In 1726, at the age of nineteen, Euler accepted a chair in St Petersburg, which
became vacant on the death of Nicholas Bernoulli II, son of John.

• Leonhard Euler delayed travelling to St Petersburg because there was a chance
of a chair in Basel also. But in 1727 he travelled to St Petersburg.

• He worked there for much of his life, although he spent 25 years in Berlin, from
1741 to 1766 – after which he returned to St Petersburg.

• He married Katharina Gsell, also of Swiss origin. Together they had thirteen
children, although only five survived infancy.

• At about the time that he returned to St Petersburg, when he was 59, he went
totally blind. Despite this, almost half of his mathematical works were produced
after this time.

• His vast mathematical output is still being edited. The Dartmouth College archive
at http://www.math.dartmouth.edu/ euler/tour has 866 published papers.

• Key publication seems to be no 65, Methodus inveniendi lineas curvas which
was published in 1740, which the mathematican Carathéodory considered “one
of the most beautiful mathematical works ever written”.

• The basic problem, as described in another paper 296 Elementa Calculi varia-
tionum, is to find maximum and minimum values of an integral∫

Zdx

where Z = Z(x, y, p) is a function of x and of a function y = y(x) of x and of
the first derivative p(x) = dy/dx.

• The integral with respect to x is therefore a function of y and p, and the problem
is maximise or minimise a function of a function.
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• As always in maximising and minimising problems, the method is to differentiate
the function (of y and p) and find the zero of the derivative.

To compute the derivative, if y+hη is a small perturbation of y with (y+hη)(a) =
y(a) and (y + hη)(b) = y(b) for all small h then η(a) = η(b) = 0 and∫ b

a

Z(y + hη, p+ hη′, x)dx−
∫ b

a

Z(x, y, p)dx

=

∫ b

a

(
hNη + hPη′ +O(h2)

)
dx

where
N =

∂Z

∂y
(x, y, p), P =

∂Z

∂p
(x, y, p)

But ∫ b

a

Pη′dx = [Pη]
b
a −

∫ b

a

dP

dx
ηdx = −

∫ b

a

dP

dx
ηdx

For this to be ≤ 0 for all small h and all η, (for a local maximum) or, similarly,
always ≥ 0 (for a local minimum) then it must be the case that

N =
dP

dx
.

This is a second order differential equation for y, and is the basic differential equa-
tion in the Calculus of Variations

The solution of the Brachistochrone problem
The differential equation is rather simpler if we consider x as a function of y. Recall

that in this case the integral to minimised is∫ d

c

√
1 + (dx/dy)2

2g(c− y)
dy

and the differential equation for x(y) becomes

d

dy

(√
1 + (dx/dy)2

2g(c− y)

)
= 0,

which means that
1 + (dx/dy)2

g(c− y)
is constant. This is precisely the same condition as we had for the problem of the
tautochrone. So the solution curve must be the same — a cycloid.
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