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of attraction is the method of Liapunov functions, which will be devetoped
in Chapter 4. Tn this section, we will establish some of the basic topological
properties of basin of attractions. Henceforth, all of our maps are assumed to
be continuous. We begin our exposition by defining the important notion of
invariance.

DEFINITION 2.2 A set M is said to be invariant under aunap f if f(M) C
M. In other words, foreveryx € M, O(x) C M.

Clearly every orbit is invariant.
Next, we show that a basin of attraction is invariant and open.

LEMMA 2.3

Let x* be an attracting fixed point of a map f. Then W¥(x*) is an invariant
open interval,

PROOF

1. Letx € W¥(x™). Then, f"{(x) = x* as n — oo. Now, f*(f(x)) =
FL" 1. Since f is continuous, f[f"(x)] — f(x™) = x*. Thus,
F(x}y & W5(x*) and, consequently, W*{x*) is invariant.

2. Let a € W*{x*) be a left end point. There exists an open interval
(x* — 2, x* + 2¢) € W¥(x*). For some k € Z¥,[f¥(a) — x*] < &.
Since f* is continuous, there exists § > Osuchthatz € (@ — §,a +
8) implies | f*¥(2) — f*(a)| < &. Now, by the triangle inequality, it fol-
fows that | f*(z) — x*} < | F5(2) — F¥@)| - | f*(a) — x*| < 2e. Thus,
f*¥(z) € WS(x*) and consequently z € W¥(x*), a contradiction to the
maximality of W¥(x*).

2.4 The Schwarzian Dgrivative

We are still plagued with many unresolved issues concerning periodic attrac-
tors of one-dimensional maps. The main question that we are going to address
here is, how many periodic attractors can a differentiable map have? In 1978,
David Singer [64] more or less answered the above question. The main tool
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used in Singer’s theorem is the Schwarzian derivative? introduced in Chapter 1.
In this section all maps are assumed to be at least C3, i.e., their third deriva-
tives exist and are continuous. Recall from Definition 1.3 that the Schwarzian
derivative S f(x) of amap f at x is defined by

i

"t x) 3 " %) 2
s£00) = Lt M(f,( ) . @n
&)y 2\ f(x)
Example 2.2
For x € R, find the Schwarzian derivative for the sine map Gg(x) = fsinnx.
SOLUTION Now, G:B(x) = fBncosmx, Gg(x) = —Brlsinmx, Gfé’(x) =
—Bn’ cosmx.
Thus,

3
SGa(x) = -2 5 (:frztanznx) <0 forall x e R.

Recall from calculus that a point X is a eritical point of a differential map f
if /(5 =0.

We are now ready to state the main result of this section.

THEOREM 2.4

(Singer’s Theorem). Let f : I — I be defined on the closed interval I such
that Sf(x) < 0 [Sf(x) = —o0 is allowed] for all x € I. If f has n critical
points in I, then for every k € Z*, the map f has at most (n + 2) attracting
k-cycles.

The proof of the above theorem depends on the following two lemmas.

LEMMA 2.4

Let ay, az, as be fixed points of a continuously differentiable map g withay <
a3 < a3 and such that Sg < 0 on the open interval (a), a3). Ifg'(az) £ 1, then
g has a critical point in (ay, a3).

2The Schwarzian desivative is named after its creator, Hermann Schwarz, who introduced it in
1869,
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PROOF  Since gla1) = ay, glaz) = ay, it follows by the mean value
theorem that there exists anumberd| € (ay, a) suchthat g'(b1) == 1. Similarly,
there exists a number by € (a2, a3) such that g’(h2) = 1 (see Fig. 2.6).

fix)

a, by ag by 8y

FIGURE 2.6
There exist a number b; € (2}, az) with ¢/(¢;) = 1 and a number »; &
(a2, a3) with g'(b2) = L.

Furthermore, since g’ is continuous on {1, b7], g’ attains its minimum value
atsome point¢ € [by, bz]. If ciseither &) or g, then g'(a3) is a local minimum
of g’. Thus, without loss of generality, we may assume that ¢ & (by, by) and
g'(¢) is a local minimum of g’. Hence, g”(c) = 0 and g"’(c) > 0. Because

Sgle) = %’((_Cf)l < 0, it follows that g’(¢) < 0. By the intermediate value

theorem, there is d € (b1, ba) such that g’(d) = 0 [since g’(c} < 0 and
g'(b2) > 0]. The point d is a critical point of g.

LEMMA 2.5
If Sf <0and Sg <0, then S(fog) < 0.

PROOF  Using the chain rule, one may show that

(fog) (x) = (f'(glxMe’ (x),

(fog)'(x) = (f"(g(x)) - g (x)* + f'(g(x)) - 8" (x) (2.2)
and

(fog)"(x) = (F"(g(x))) - &' (x¥ +3f"(g(x)) - g"(x) - &' (%)

S —
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+ f(glx) - " (x) . 2.3)

After some computations (Problem 11), it follows that
S(fog)(x) = Sf(g(x)) - [ (x))* + Sg(x)) . (2.4)

Since Sf < 0 and Sg < 0, Formula (2.4) implies that S fog) < 0. |

COROLLARY 2.1
If Sg <0, then Sg* <Qforall keZ*.

PROOF  This follows from Lemma 2.5 {Problem 13). i

We now give the proof of Theorem 2.4,

Proof of Theorem 2.4  Let I = [a, b], where @ may take the value of —o0
and b may be co, and let p be an attracting k-periodic point of f. Then, p is
an attracting fixed point of g = f*. Let W¥(p) be the basin of attraction of
p. If pisin (a, b), then W¥(p) is of the form (¢, d), [a, ¢), or (4, b). Then,
for each x € W*(p), g"(x) = Ff™(x) — p asn — oo. Furthermore, from
Lemma 2.3, g{(W*(p}) C W¥(p). Assume first that W¥(p) = (c, d). Since g
is continuous and W*(p) is the maximum interval of attraclion to p, it follows
that g must map (c, 4) into itself. However, g will not map the points ¢ or d
into (c, d) since both points are not in W*(p). Hence, we have three cases to
consider:

1. glc) =c,and g(d) =d
2. glc) =d,and g{d) = ¢
3. gle) = g(d), (=cord)

Casel: g(c)=cand g(d) =d.

Since p is an attracting fixed point of g, it follows from Definition 1.2 that
g'(p) < 1. By Corollary 2.1, Sg = Sf* < 0. Now, using Lemma 2.4, we
conclude that g has a critical point X in the interval (¢, ). It remains to show
that this implies that f itself has a critical point in (¢, &). This may be seen
using the chain rule as follows:

0=g'(%) = FUFA1ENFF2E) ... F ).
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FIGURE 2.7

(a)g(c):c,gd)zd,(b = d, d) = = e
@ 506 = s )5 gld) = c (e} g(c) = gld) = o,

Thus, ejither f'(Z) = Qor f/(fF) =0 ... or f/(f*1(F) = 0. But
since F(J) C J, %, £(£), F2(%),..., f&"1 (%) € J. This implies that indeed
F/() = 0, where y is one of the points &, £(%), ..., f*"1().

Case2: g(c) = d and g(d) = c.

Note that in this case gz(c) = ¢, g2(d) = d. Hence, this case reduces to
Case 1 (Problem 12).
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Case 3: g(c} = g(d).

By the mean value theorem, g’'(%) = O for some ¥ € (¢, d). Then, as in the
proof of Case 1, one may show that f has a critical point in (a, b).

In all cases, we have shown that if there are # critical points for f, then f has
at most n attracting k-cycles that are associated with finite intervals like (c, 4).

Let us now consider the case when W¥(p) = [a, ¢), then p must attract 4.
Similarly, if W¥(p) = (d, b], then p must attract b, The last two cases add a
maximum of two more possible attracting cycles. Hence, f has at most (n +2)
attracting k-cycles. |

Remarks about Singer’s Theorem

1. The above proof shows that if the basin of attraction J = (¢, d)yofa
periodic point p is bounded, then p must attract a critical point. This
remark leads to the solution of the following two examples.

Example 2.3

The map f(x) = 1 — 2x? on [—1, 1] has no attracting periodic points.
To show this, note that 0 is the only critical point. But the orbit of 0 is
0,1, -1, 1, —1,.... Thus, —1 is a possible attracting fixed point of f.
But, this is impossible because f'(—1) = 4 (Theorem 1.3).

Example 2.4

The logistic map Fj.(x) = px(1 ~x),0 < p =4,x € [0,1], has at
most one attracting cycle. As we saw in Chapter 1, for0 < p < 1,0
is the only attracting fixed point where the region of attraction is [0,1].
For I < i < 4, F,, has only one critical point -é- By Theorem 2.4, there
are at most three attracting cycles associated with intervals of the form
[0,¢), (c,d), and (d, 1] with 0 < ¢ < d < L. Since F,(0) = p > 1,
the fixed point 0 is unstable (Theorem 1.3); therefore, [0, ¢) cannot be
a basin of attraction. Furthermore, F,(1) = 0 and hence (d, 1] is not a
basin of attraction either. We conclude that there is at most one attracting
cycle (c,d) in [0,1] for a given ¢ € (1,4]. Figure 2.8 is part of the
bifurcation diagram of F,, which shows a window with six horizontal
curves. We may wonder whether this represents two attracting 3-cycles,
one attracting 6-cycle, or another combination, The above example gives
us the definite answer, namely, that this is an attracting 6-cycle. Moreover,
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sincé there is only one attracting 3-cycle, only one 3-cycle will appear in
the bifurcation diagram precisely at window 3 (see Fig. 2.9).
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FIGURE 2.8

The appearance of a 6-cycle. (This figure is a second generation computer
image.)

2. Ifthe basin of attraction for an attracting cycle is unbounded or contains an
end point, then this cycle may not attract a critical point, as the following
example shows.

Example 2.5

Let G, (x) = ptan™" (x), @ # 0. Then, G}, (x) = 1. Clearly G.(x)
has no critical points. Now, if |u] < 1, then x* = 0 is an asymptotically
stable fixed point wheré the basin of attraction is (—co, c0}. While if
@ > 1, then G, has two atiracting fixed points x] and x5 with basins of
attraction of the form (—co, ¢) and (d, c0), respectively (see Fig. 2.10).
Finally, if & < —1, then G, has an attracting 2-cycle {¥;, %2} with a
basin of attraction of the form (—oo, ¢)(d, oo) (see Fig. 2.11). f
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FIGURE 2.9

The appearance of a 3-cycle. (This figure is a second generation computer
image.)
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FIGURE 2.10
Basin of attraction of x} = (—oc, ¢), basin of attraction of x5 = (d, 00).
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)

FIGURE 2.11
An attracting 2-cycle {x7, X7} with basin of attraction (—c0, ¢) U (d, 00).

Exercises » (2.3 and 2.4)

1. Giveanexample of a polynomial that does nothave a negative Schwarzian
derivative.

2. Give an example of a continuous function f that has an attracting fixed
pointbutSf > 0. ‘

3. Sketcha graph of a continnous function that has two asymptotically stable
fixed points.

4. Let f be a continuous map on [R. Prove that

(a) if f(D)=Dbandx < f(x) < bforalix e [a,b), thena € W(b).
My if fB)y=band b < flx) <xforallx € (b,c], thenc &€ W(h).

5. Let P(x) be a polynomial of degree 4 such that all the roots of P/(x) are
real and distinct. Show that SP < 0.

6. Show that for any polynomial P (x) of degree at least 2, such that all the
roots of P’'(x) are reat and distinct, SP < 0.

7. Show that S f < Ofor f(x) = xexp(r(l — '—;-)), rkelR.

8. Show that the logistic map Fy, has no attracting periodic points if g >

2 - +/5.
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9. Show that the logistic map Fa(x) = 4x(I — x) has no attracting periodic
points.

10. Prove Formula (2.4).

11. Let Gp(x) == psinx for 0 < x < . Determine the maximum possible
number of attracting cycles of G, for0 < o < .

12. Let f be a C? map. Show that Sf = 0 if and only if f(x) = (ax +
&) /(cx + d) for some real numbers a, b, ¢, d.

13. Prove Corollary 2.1.

14. In the proof of Theorem 2.4, give a detailed proof of the existence of a
critical point of f in Case 2.4 where g(¢) =d and g(d) = c.

15. Suppose that Sf < O for a C> map of f. Prove that ' cannot have a
positive local minimum or a negative local maximum.

2.5 Bifurcation

In this section, we resume our investigation of the bifurcation phenomena
discussed in Sec. 1.8. But before embarking on such a task, we need to explain
what bifurcation really means. Roughly speaking, the term bifurcation refers
to the phenomenon of a system exhibiting new dynamical behavior as the pa-
rameter is varied. As we have seen in Chapter 1 (see Fig. 1.25), the logistic
map Fy,(x) = px(l —x) undergoes a period doubling at an infinite sequence of
values of the parameter & : fuy, (o, i3, ..., where o] =3, s =1 + J6, ...
Note that for the fixed point x* = “T“l F ;“ = —1. Similarly, if {X), %2} is
the 2-cycle of Fy,, (or the fixed points of FZ,), then [F2, (¥;)) = —1. This is
a trademark of a period-doubling bifurcation that is always associated with the
appearance of a slope of —1.

The logistic map F,, undergoes another important type of bifurcation, com-
monly called saddle node or tangent bifurcation. This bifurcation is associated
with the appearance of a slope of 1. Now, it can be shown that period 3 ap-
pears at /i = 1 4 +/8 & 3.8284 (see Saha and Strogatz [59] for an elementary
derivation). Figure 2.12a depicts the graph of Fg for p < ji(p = 3.75). Here,

F& has only two fixed points that are fake 3-cycles; they are fixed points of
F,. Figure 2.12b shows how period 3 appears when p = fi at which Fs



