13.

i4.

I5.

f6.

[o.4]
) Let Jy = {x e 7:6"(x) e J}and A = () 7. Show that if
Nl
(5 +2+/3)

¢ < -«——4—»~, then A isa Cantor set,

- 5-F2
Prove that the map G is chaotic on A for ¢ < —(b—+~4—\-/§2.

Prove the nested intersection theorein: Let 7, = [a,, by 1 be a nested

sequence of closed intervais, j.e., I O by foralln e ZT, such
oG

dy = |b, — ayl, thend, — Qasn — 0. Then, Iy contains exact]
Y

. n=(}
One point.

Prove Theorem 3.17.

Let f:R— R!peac! -map and I, I, be two disjoint closed bounded
intervals. Let 7 = I, Ul and assume that FEY o I for i = 1,2
Assume also that { £/(x)] > A > | forall x e Inf=Yn.

[o.e]
{(a) Prove that A = ﬂ ;o (1) is a Cantor set.
k=0

(b) Define s : A —s ):;’ as the itinerary map (3.22). Show that /1 is
a conjugacy map.

{c) Show that £ is chaotic on A,

that if

Chapter 4

Stability of Two-Dimensional Maps

Is evolution a matter of survival of the fittest or survival of the most
stable?

A M. Waldrop

ey

4.1 ‘Linear Maps vs. Linear Systems

Recall from linear algebra that a map L : B2 — R2 is called a linear

transformation if
L L{Uy + Ua) = L(U)) + L(U3) for Uy, Uy € B2
2. LeU)=al(NforU e R2and ¢ € B.

. . . 2
Moreover, it is always possible to represent f (with a given basis for R*) by

a mafrix A. A typical example is

xY _[fax-+by
L v/ cx +dy

which may be written in the form
X ab X
+()-(:2)C)

L(U)=AU,

or

4.1}

s




136 4. STABILITY OF TWO-DIMENSIONAL MAPS
where U = (r) and 4 = (a b .
¥ cd

By iteraling L, we conclude tihat LYU) = A"U. Hence, the orbit of U
under f is given by

(U, AU A, ... A", ) (4.2)

Thus, to compute the orbit of I/ , it suffices to compute AU forn e .
Another way of looking at the same problem is by considering the following
two-dimensional system of difference equations

x(n+1) = ax(n)+ by(n)

Y +1) = cx(n) dy(n), (4.3)
or
Uln+1) = AU(n) . 4.4
By iteration, one may show that the solution of Eq. (4.4) is given by
Un) = A"UW) . (4.5)

So, if we let Uy = U(0), then L™(Up) = Un).
The form of Eq. (4.3) is more convenient when we are considering applica-
tions in biology, engineering, economics, and so forth. For example, x () and

y{n} may represent the population sizes at time period # of two competitive

cooperative species, or preys and predators,
In the next section, we will develop the necessary machinery to compule A"

for any matrix of order two. The general theory may be found in {22, 23, 371...

TR TR ey ——
4.2 Computing 4"

Consider a matrix 4 = (aij) of order 2 x 2. Then, P{A) = det(A — AF) is
called the characteristic polynomial of 4 and its zeros are called the eigenvalues
of A. Associated with each eigenvalue A of A a nonzero eigenvecior V & R2
with AV = AV,

Example 4.1
Find the eigenvalues and the eigenvectors of the matrix

a=(17) 0
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SOLUTION  First we find the eigenvalues of 4 by solving the characteristic
equation det(A — AT} = Qor

2-1 3
1 4—2

=0

which is
M —6L+5=0.

Hence, A; = 1 and A3 = 5. To find the corresponding eigenvector Vi, we solve
the vector equation AV[ = AV} or (A — A1) V| = Q.

For A; = 1, we have
13 vigy _ {0
13 Uzt - 0 ’

Hence, vj| + 3vz; = 0. Thus, vj] = ~3v31. So, if we let vy = _1, then

vir = —3. It follows that the eigenvector Vi corresponding to A, is given by
-3

Vi = 1

For Ay = 5, the corresponding eigenvector may be found by solving the
equation (A — A1)V, = 0. This yields

(72)()-6)-

Thus, —3vj3-+3v3; = Dor vy = vgs. Itisthen appropriatetolet vy == vyy = |

and hence V5 = (}) |

To find the general form for A* for a general matrix A is a formidable task
even for a 2 x 2 matrix such as in Example 4.1. Fortunately, however, we
may be able to transform a matrix A to another simpler matrix B whose n?h
power B" can easily be computed. The essence of this process is captured in
the following definition.

DEFINITION4.1  The matrices A and B are said to be similar if there exists
a nonsingular! matrix P such that

P lap=pn,

TA matrix P is said to be nonsingular if its inverse P! exists. This is equivalent to saying that
det P s 0, where det denoles delerminant.
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We note here that the relation “similarity” between matrices is an equivalence
relation, i.e.,

1. Aissimilar to A,
2. If A is similar to B then B is similar to A.

3. If Ais similar to B and B is similar to C, then A is similar to C.

The most important feature of similar matrices, however, is that they possess
the same eigenvalues.

THEQREM 4.1
Let A and B be two similar matrices. Then A and B have the same eigenvalues.

PROOF  Suppose that P~'AP = ofr A = PBP™! letibean eigen-
value of A and V be the corresponding eigenvector. Then, AV = AV =
PBP~'V. Hence, B(P—!V) = A(p~! V). Consequently, A is an eigenvalue
of B with P~!'V as the comresponding eigenvector,

The notion of similarity between matrices corresponds to linear conjugacy,
which we have encountered in Chapter 3. In other words, two linear maps are
conjugate if their corresponding matrix representations are similar. Thus, the
linear maps L, Ly on R? are linearly conjugate if there exists an invertible map
it such that

Lich=hol,

or
hloLioh=10,. 1§

The next theorem tells us that there are three simple “canonical” forms for
2 x 2 matrices.

THEOREM 4,2 :
Let Abe a2 x2 real matriv, Then A is similar to one of the Jollowing matrices:

L (5 2)
2 (53)
2 (57)
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PROOF  Suppose that the eigenvalues A1 and A7 are real. Then, we have two
cases to consider. The first case is where A| 3 A,. In this Case, we may easily
show that the corresponding eigenvectors V; and V; are linearly independent
(Problem 10). Hence, the matrix P = (Vi, V1), ie., the matrix P whose

columns are these eigenvectors, is nensingular. Let P~IAP = J = (; ;: )

Then,
AP =PrJ. 4.6

Comparing both sides of Eq. (4.6), we obtain
AVi=eV g1, .
Hence,
AVi=eV) + gV .

Thus, ¢ = A éndg ={.
Similarly, one may show that f = Gand h = Az2. Consequently, J is a
diagonal matrix of the form (a).

The second case is where A 1 = Az = A. There are two subcases to consider
here. The first subcase occurs if we are able to find two linearly independent
eigenvectors V) and V; corresponding to the eigenvalue A. This subcase is then
reduced to the preceding case. We note here that this scenario happens when

(A—~ANV =0forall V € B* In particular, one may let V| = (é) and

Vg = ( (I))’ which are clearly linearly independent.

The second subcase occurs when there exists a nonzero vector Vo € R such
that (A — AV, 5 0. Equivalently, we are able to find only one eigenvector
(not counting multiples) V| with (A-ADV; =0.1n practice, we find V3 by
sdlving the equation

(A=ADVa =V .

The vector V3 is called a generalized eigenvector of A. Note that AV) = AV
and AVy = AVy ++ V1. Now, welet P = (Vy, Vo) and P~1AP = . Then,

AP=PTJ, 4.7

Comparing botl sides of Eq. (4.7} yields

J= (gi) : “.8)
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The matrix J is in a Jordan form.

Next, we assume that A has a complex eigenvalue A = « - if. Since A4 is
assumed to be real, it follows that the second eigenvalue A3 is a conjugate of
Ap,thatis, Ay = — i, Let V = V| 4 ¢ Vs be the eigenvector corresponding
to Ay, Then,

AV =,V
AV + V) = (e + iB)VL + V) .

Hence,

AV =aV -8V
AVy = V) +aVy,

letting P = (V|, V) we get P~ AP = J, Hence,
AP =PJ. (4.9)

Comparison of both sides of Eq. (4.9) yields

« f
J = (—ﬁ oz) . .10

Theorem 4.2 gives us a simple method of computing the general form of A”

for any 2 x 2 real matrix. In the first case, when P~IAP = D = (JBI ;)2 ),

we have

A" - (PDP—-I)r:
= pptp-t 4.11)

Al o
- | -1
-r ()

In the second case, when PT1AP = J — (g i) then

At = pjnp-l
] P nkﬂ—l _ 412)
=p ( 0 ) P, (

Equation (4.12) may be easily proved by mathematical induction (Problem 1 1).
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In the third case, we have P~1AP = J — _a 5) Letw = arctan (8 /a).

Then cosw = a/|A), sinw = B/1AL Now,.we write the matrix J in the form

_ aftal B/ Cos® Sinw
7= (—ﬁ/!kila/llll) wlkll(—sinw cosw) '

By mathematical induction one may show that (Problem 1D

n_ (. COSH® Sinnw
7=l (—sinuwcosnw)' (4.13)

and thus

W ag [ COSHE sinnw \ __,
AT= 1l (msmuw cosnw ) £ - (4.14)

Example 4.2
Solve the system of difference equations

Xa+1)=AX @) (4.15)

A=("_“jg),X(0)=(é). i

SOLUTION  The cigenvalues of 4 are repeated: &) = A3 = 2, The only

where

eigenvector that we are able to find is V= ; . To construct P we need to
find a generalized eigenvector V3. This is accomplished by solving the equation

(A—20)Vy = V1. Then, V; may be taken as any vector * s With 3y —2x =

1. We take V, = (i) Now if we put P = (:25 }), then P~iAp = J =

2 .
, (0 2). Thus, the solution of Eq. (4.15) is given by

X(n) = PJ"P~'x ()
_ (31 [ pyn-i L =1\ /1
“\21/Lo oo -2 3 0
nf1~—3n
=2 ( —2n ) .



(42

REMARK 4.1
f”(XO) — AI!XO — PJHP

4. STABILITY OF TWO-DIMENSIONAL MAPS

Ifamap f:R? - RZis given by f(Xy) = AXgp, then

: ) (hen £ (Xg) =

_ng. In particular, if Xy = 0

2" (1:23") foralin e Z+. f

Lo T

Exercises - (4.1 and 4.2)

In Problems 1-5, find the eigenvalues and eigenvectors of the matrix A and
then compute A",

L.

2.

- Solve the difference equation X (n + 1

455
A= (4.5 8)

45 —1
A=(22515)
(8313
=\ -4s3473

23
A=(sz)
=(77)

. Let L : R? —» R? be defined by L(X) = AX where Aisas in Problem 1.
Find L" ( ?) L

. Solve the difference equation X (n+1) = AX(n) where A is as in

Problem 3 and X (0) = i

i

AX(n) where A is as in
Problem 4 and X (0) =

. Let f : R* — R® be defined by £(X) = AX, with A as in Problem 5.

Find f7 (?)
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10. Let A be a 2 x 2 matrix with distinct real eigenvalues. Show that the
corresponding eigenvectors of A are linearly independent.

_ Ll n L ?1;\."—1
1. @ IfJ = (OA),showthatJ _"(0 3

by Iff = (_aﬁ g),show that J* = [Aj* ( cosnw smnw),where

— Sin 1w cos rw
|X| = /o2 + B2, w = arctan (aﬁ)

12. Let a matrix 4 be in the form

—p1 M

(a) Show thatif A has distinct eigenvatues A i and Ay, then

- 0
AP = (M)
11
where P = (ll lz)'

(b) Show that if A has a repeated eigenvalue A, then

i, M1
rar= (31,

10
where P = (A 1).

{c) Show that if A has complex eigenvalues At=o4ifand by =
— if3, then _
“lup._[ @B
pian=(%1)

10
where P = (a ﬂ)’

e e

4.3 Tundamental Set of Solutions
Consider the linear system

X(n+1)=AX@), (4.16)
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where A is a 2 x 2 matrix. Then, two solutions X1 {x) and Xa(n) of Eq. (4.16)
are said to be linearly independent if X5(n) is not a scaler multiple of X (n)
foralln € Z*. In other words, if ¢/ X (1) + c3Xo(n) =0foralln e Z*, then
€1 = c3 = 0. Aset of two linearly independent solutions {X1(), Xz(n)) is
called a fundamental set of solutions of Eq. (4.16).

DEFINITION 4.2 Let (X,(n), X 2(n)} be a fundamental set of solutions of
Eq. (4.16). Then

X(n) =k X1(n) + KaXo(n), ki, kel 4.17)
is called a general solution of Eq. (4.16). \

Finding X | (n) and Xa(n) is generally an easy task. We now give an explicit
_derivation,

In the sequel A [, Ay denote the e genvalues of A; V|, Va are the corresponding
eigenvectors of A.

CASE 4.1

Ap O

-1 — —
Suppose that P~'AP = J = (0 A

). Then a general solution may be

given by

X(n)=A"X0) = PIJ"PIX(0)
_ Ao ky
=0 () (1)
where (2) = P~LX(0). Then,

X(n) = k]l'; Vi - kzkg Va . (4.18)

Here, X1(n) = MViand Xa(n) = My Vo constitute a fundamental set of
solutions since in this case Vi and Va are linearly independent eigenvectors.
Note that one may check directly that M Vi and 35 V5 are indeed solutions of
Iq. (4.16) (Problem 13a).
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CASE 4.2

Suppose that P7IAP = J = (3 i) Then, a general solution may be

given by
X(n) = PPy )

M=y kg

= KAV + k(A Yy AR ) (4.19)

Hence, X {(n) = \"V, and Xa(n) = MVy 4+ gar—1 Vi constitute a funda-
mental set of solutions of Fq. (4.16} (Problem | 3b).

CASE 4.3

Suppose thar P~'AP = J = (—aﬁ g) If w = arctan(B/w), then the
general solution may be given by
X(m) = PJ"P~'x(0)
=0 e e (1)
= |At]"[k{ cos nw + kq sin nw)Vj (4.20)
(k| sinnw + ky cos nw) Val.

Hence, X(n} = [A["[(k) cos ntw) Vi—(k; sin(nw)) V,] and Xa2(n) = (IA4["[(k2 sin{new’
Vi + (ka cos(nw)1Vy constitute a Jundamental set of solutions (Problem 13¢),

Example 4.3
Solve the system of difference equations

2

A:("f:g). 0

SOLUTION  ‘Theeigenvalues of A are A t = —2+3i and Ay = —2—3}. The

X(n+ 1) = AX (1), X(0) = (‘) ,

where

corresponding eigenvectors are V = (_;I ) and V = (::tl ) respectively.
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This time, we take a short cut and use Eq. (4.20). The vectors ¥} and Va

referred to in this formuia are the real partof V, V| = ( _Ol ), and the imaginary

partof V, Vo = (?) Now, [&(] = V13, w = arctan(52) ~ 123.69°. Thus,
X{n) = (13)”/2[(k; cos new + kg sin aw) (—(—)1)
. 0
+ (—ky sinnw + ka2 cos nw) 0 1.

o (1) (3)en(3)

Hence, ky = 1, k3 = 2. Thus,
X(n) = (13)"/2[(005 nw 4 2 sin nw) ((l)) + (—sinnw - 2 cos ncu> (0>] »

1
- a2 { —cosnw — 2sinnw
=3 (— sinrw -+ 2cosnw /- B

D R T

4.4 Second-Order Difference Equations

A second-order difference equation with constant coefficients is a scalar
equation of the form

u(i+ 2y -+ pru(n + 1) + pau(n) = 0 (4.21)

Although one may solve this equation directly, it is sometimes beneficial to
convert it to a two-dimensional system. The trick is lo let 1{n) = x((n) and
u(t 4 1) = xq(n).

Then we have

xi(n 4+ 1) = x(n)
Xa(n+1) = —pax(n) — praa(n)

which is of the form
X+ 1D =AX(n) 4.22)

_ xi(n) {0 1
X(n) = (,\:g(n)) , and A == (—pz —Pl) .

where
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The characteristic equation of 4 is given by
A4 piidpr=0. (4.23)

Observe that we may obtain the characteristic Eq. (4.23) by letting u(n) = A"
in Eq. (4.21). Thus, if A| and A5 are the roots of Eq. (4.23), then | (n) = Al
and u3(n) = Aj are solutions of Eq, {(4.21).

Using Egs. (4.18), (4.19), and {4.20), we can make the following conclusions:

L. If Ay # A7 and both are real, then the general solution of Eq. (4.21) is
given by :
w(n) = c|A] + car) | (4.24)

2. If A1 = Ay = A, then the general solution of Eq. (4.21) is given by

u(n) = c]A" + cana® (4.25)

3. HAr =a+4iB, A = — i, then the general solution of Eq. (4.21) is
given by
#(n) = A" (c) cosnw + 2 sin nw) , (4.26)

where @ = arctan {8/w).

Example 4.4
Solve the second-order difference equation

x(+2)+6xm+ D) +9x(m) =0, x0) =1, x(1) =0. [

SOLUTION  The characteristic equation associated with the equation is
given by A% 4 6A + 9 = 0.

Henece, the characteristic roots are A 1 = Az = —3, The general solution is
given by

x(n) = 9(~=-3)" + czn(—3)"
X(O) =1= (4]
(1) = 0= ~3¢; —3¢;.

Thus, ¢3 = —{ and, consequently,

x(n) = (=3)" — n(-3)"
=(=3)"(1-n) §



