All questions are similar to homework problems.

1. The Taylor series of $f(x) = x^{-2} = (1 + (x - 1))^{-2}$ is

$$1 - 2(x - 1) + \frac{2 \cdot 3}{2!}(x - 1)^2 - \frac{2 \cdot 3 \cdot 4}{3!}(x - 1)^3 \dots = \sum_{n=0}^{\infty} (-1)^n (n+1)(x-1)^n.$$

This can also be worked out by computing all derivatives of f at x = 1.

- [3 marks]
- a) When x = 0.5 the series is convergent and equal to f(0.5) = 4.
- [1 mark
- b) When x=2 the series is not convergent to $f(2)=\frac{1}{4}$. In fact, the series is not convergent.

[1 mark]

No explanation is required in a) or b).

- 5 = 3 + 1 + 1 marks
- 2(i) Separating the variables, we have

$$\int y \, dy = -\int \sin x \, dx,$$

$$\frac{y^2}{2} = \cos x + C,$$

or

$$y = \pm \sqrt{2C + 2\cos x}.$$

Putting y(0) = 1 gives 2C = -1 and $y = +\sqrt{2\cos x - 1}$.

2(ii) Using the integrating factor method, and the integrating factor is

$$\exp\left(\int dx\right) = e^{-x}.$$

So the equation becomes

$$\frac{d}{dx}(ye^{-x}) = e^x.$$

Integrating gives

$$ye^{-x} = e^x + C.$$

So the general solution is

$$y = e^{2x} + Ce^x.$$

Putting y(0) = 2 gives C = 1 and $y = e^{2x} + e^x$.

3 marks for (i) 4 marks for (ii).

[7 marks]

3. Try $y = e^r x$. Then

$$r^{2} + 2r - 15 = 0 \Rightarrow (r - 3)(r + 5) = 0 \Rightarrow r = -5 \text{ or } r = 3.$$

So the general solution is

$$y = Ae^{3x} + Be^{-5x}.$$

[2 marks]

So $y' = 3Ae^{3x} - 5Be^{-5x}$ and the initial conditions y(0) = 2, y'(0) = -1 give

$$A + B = 2$$
, $3A - 5B = -1 \rightarrow 8B = 7$, $A = 2 - B \Rightarrow B = \frac{7}{8}$, $A = \frac{9}{8}$.

So

$$y = \frac{9}{8}e^{3x} + \frac{7}{8}e^{-5x}.$$

[3 marks]

[2+3=5 marks]

4. We have

$$\lim_{(x,y)\to(0,0),y=0} \frac{x^2y^2}{x^4+y^4} = \lim_{x\to 0} \frac{0}{x^4} = 0,$$

$$\lim_{(x,y)\to (0,0),y=x}\frac{x^2y^2}{x^4+y^4}=\lim_{x\to 0}\frac{x^4}{2x^4}=\frac{1}{2}.$$

So the limits along two different lines as $(x,y) \to (0,0)$ are different, and the overall limit does not exist.

[4 marks]

5.

$$\begin{split} \frac{\partial f}{\partial x} &= 2xy\cos(x^2y), \ \frac{\partial f}{\partial y} = x^2\cos(x^2y), \\ \frac{\partial^2 f}{\partial x^2} &= 2y\cos(x^2y) - 4x^2y^2\sin(x^2y), \\ \frac{\partial^2 f}{\partial y \partial x} &= 2x\cos(x^2y) - 2x^3y\sin(x^2y), \\ \frac{\partial^2 f}{\partial x \partial y} &= 2x\cos(x^2y) - 2x^3y\sin(x^2y), \end{split}$$

so that these last two are equal, and

$$\frac{\partial^2 f}{\partial y^2} = -x^4 \sin(x^2 y).$$

[5 marks]

6. We have

$$\frac{\partial u}{\partial x} = 2, \ \frac{\partial u}{\partial y} = 1, \ \frac{\partial v}{\partial x} = -1, \ \frac{\partial v}{\partial y} = 2.$$

By the Chain Rule,

$$\begin{split} \frac{\partial g}{\partial x}(x,y) &= \frac{\partial f}{\partial u}(u,v)\frac{\partial u}{\partial x}(x,y) - \frac{\partial f}{\partial v}(u,v)\frac{\partial v}{\partial x}(x,y) \\ &= 2\frac{\partial f}{\partial u}(u,v) - \frac{\partial f}{\partial v}(u,v). \end{split}$$

Similarly,

$$\frac{\partial g}{\partial u}(x,y) = \frac{\partial f}{\partial u}(u,v) + 2\frac{\partial f}{\partial v}(u,v).$$

Similarly,

$$\begin{split} \frac{\partial^2 g}{\partial x^2}(x,y) &= 2\left(2\frac{\partial^2 f}{\partial u^2}(u,v) - \frac{\partial^2 f}{\partial u \partial v}(u,v)\right) - \left(2\frac{\partial^2 f}{\partial v \partial u}(u,v) - \frac{\partial^2 f}{\partial v^2}(u,v)\right) \\ &= 4\frac{\partial^2 f}{\partial u^2}(u,v) + \frac{\partial^2 f}{\partial v^2}(u,v) - 4\frac{\partial^2 f}{\partial u \partial v}(u,v). \end{split}$$

Similarly,

$$\begin{split} \frac{\partial^2 g}{\partial y^2}(x,y) &= \left(\frac{\partial^2 f}{\partial u^2}(u,v) + 2\frac{\partial^2 f}{\partial u \partial v}(u,v)\right) + 2\left(\frac{\partial^2 f}{\partial v \partial u}(u,v) + 2\frac{\partial^2 f}{\partial v^2}(u,v)\right) \\ &= \frac{\partial^2 f}{\partial u^2}(u,v) + 4\frac{\partial^2 f}{\partial v^2}(u,v) + 4\frac{\partial^2 f}{\partial u \partial v}(u,v). \end{split}$$

Adding, we obtain

$$\frac{\partial^2 g}{\partial x^2}(x,y) + \frac{\partial^2 g}{\partial y^2}(x,y) = 5 \left(\frac{\partial^2 f}{\partial u^2}(u,v) + \frac{\partial^2 f}{\partial v^2}(u,v) \right).$$

[6 marks]

7. For

$$f(x,y,z) = \frac{1}{xy} + \frac{1}{yz} + \frac{1}{xz}$$

we have

$$\nabla f(x,y,z) = (-x^{-2}(y^{-1}+z^{-1})\mathbf{i} + (-y^{-2}(x^{-1}+z^{-1})\mathbf{j} + (-z^{-2}(x^{-1}+y^{-1})\mathbf{k})\mathbf{k} + (-z^{-2}(x^{-1}+z^{-1})\mathbf{k})\mathbf{k} + (-z^{-2}(x^$$

So

$$\nabla f(1,1,1) = -2\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}.$$

3 marks

The tangent plane at (1, 1, 1) is

$$\nabla f(1,1,1).((x-1)\mathbf{i} + (y-1)\mathbf{j} + (z-1)\mathbf{k} = 0,$$

or

$$-2(x-1) - 2(y-1) - 2(z-1) = 0,$$

or

$$x + y + z - 3 = 0$$
.

[2 marks]

[3 + 2 = 5 marks.]

8. For

$$f(x,y) = y^2x + 2yx + 2x^2 - 3x,$$

we have

$$\frac{\partial f}{\partial x} = y^2 + 2y + 4x - 3, \quad \frac{\partial f}{\partial y} = x(2y + 2).$$

[2 marks]

So at a stationary point,

$$x(2y+2) = 0 = y^2 + 2y + 4x - 3 \Leftrightarrow x = 0 = (y+3)(y-1) \text{ or } y+1 = 0 = 4x - 4$$

 $\Leftrightarrow (x,y) = (0,1) \text{ or } (0,-3) \text{ or } (1,-1).$

[2 marks]

$$A = \frac{\partial^2 f}{\partial x^2} = 4, \ B = \frac{\partial^2 f}{\partial y \partial x} = 2y + 2, C = \frac{\partial^2 f}{\partial y^2} = 2x.$$

For (x, y) = (0, 1) or (0, -3) we have C = 0 and $B \neq 0$. So $AC - B^2 < 0$ and these points are saddle points.

For (x, y) = (1, -1), we have A = 4, B = 0, C = 2. So A > 0, $AC - B^2 > 0$ and (1, -1) is a minimum.

[4 marks]

$$[2 + 2 + 4 = 8 \text{ marks}]$$

9. For

$$f(x,y) = \frac{1}{x^2 + y^2},$$

we have

$$\frac{\partial f}{\partial x} = \frac{-2x}{(x^2+y^2)^2}, \quad \frac{\partial f}{\partial y} = \frac{-2y}{(x^2+y^2)}.$$

So

$$f(1,1) = \frac{1}{2}, \quad \frac{\partial f}{\partial x}(1,1) = -\frac{1}{2}, \quad \frac{\partial f}{\partial y}(1,1) = -\frac{1}{2}.$$

So the linear approximation is

$$\frac{1}{2} - \frac{1}{2}(x-1) - \frac{1}{2}(y-1).$$

It would be acceptable to realise that

$$f(x,y) = (2 + 2(x - 1) + (x - 1)^{2} + 2(y - 1) + (y - 1)^{2})^{-1}$$
$$= \frac{1}{2}(1 + (x - 1) + (y - 1) + \frac{1}{2}(x - 1)^{2} + \frac{1}{2}(y - 1)^{2})^{-1}$$

and to expand out.] [4 marks]

10. In polar coordinates (r,θ) , D is the set where $r\leq 1$ and $0\leq \theta\leq 2\pi$ (by choice of argument). Also, $x^2+y^2=r^2$ and $dxdy=rdrd\theta$. So

$$\int \int_{D} e^{x^{2}+y^{2}} dx dy = \int_{0}^{2\pi} \int_{0}^{1} r e^{r^{2}} dr = \int_{0}^{2\pi} \left[\frac{1}{2} e^{r^{2}} \right]_{r=0}^{r=1} d\theta$$
$$= \int_{0}^{2\pi} \frac{1}{2} (e-1) d\theta = \pi (e-1).$$

[6 marks]

Section B

11. (i) a)
$$f'(z) = \frac{1}{2}(4+z)^{-1/2}$$
, $f''(z) = -\frac{1}{4}(4+z)^{-3/2}$. So $f(0) = 2$, $f'(0) = \frac{1}{4}$ and
$$P_1(z,0) = 2 + \frac{1}{4}z$$
, $R_1(z,0) = -\frac{1}{8}(4+c)^{-3/2}z^2$

for some c between 0 and z.

[3 marks]

If $|z| \le 2$ and c is between 0 and z then $(4+c)^{-3/2} \le 2^{-3/2}$ and

$$|R_1(z,0)| \le \frac{1}{8.2\sqrt{2}} \cdot 2^2 = \frac{1}{4\sqrt{2}}.$$

[3 marks]

(i)b) $g'(x) = -\sin x$, $g''(x) = -\cos x$, $g^{(3)}(x) = \sin x$, $g^{(4)}(x) = \cos x$. So g(0) = 1, g'(0) = 0, g''(0) = -1, $g^{(3)}(0) = 0$, and

$$P_3(x,0) = 1 - \frac{x^2}{2}, \quad R_3(x,0) = \frac{\cos c}{4!}x^4$$

for some c between 0 and x.

[4 marks]

Since $|\cos c| \le 1$ we have

$$|R_3(x,0)| \le \frac{x^4}{24}.$$

[1 mark]

(ii) $y^2 = 8 + 2(\cos x - 1)$. Then $y = \sqrt{2}f(\cos x - 1)$. So for $P_1(z, 0)$ and $R_1(z, 0)$ as in (i)a),

$$y = \sqrt{2}P_1(\cos x - 1, 0) + \sqrt{2}R_1(c, 0)$$
$$= \sqrt{2}\left(\frac{7}{4} + \frac{1}{4}\cos x\right) + R_1(c, 0)$$

for some c between 0 and $\cos x - 1$. Since $-2 \le \cos x - 1 \le 0$ for all x, we have $-2 \le c \le 0$, and by (i)a) $\sqrt{2}|R_1(\cos x - 1,0)| \le \frac{1}{4}$. [4 marks.]

12. For the complementary solution in both cases, if we try $y = e^{rx}$ we need

$$r^{2} + 4r + 3 = (r+1)(r+3) = 0,$$

that is, r = -1 or -3. So the complementary solution is $Ae^{-x} + Be^{-3x}$. [3 marks]

(i) We try $y_p = Cx + D$. Then $y'_p = C$ and $y''_p = 0$. So $y''_p + 4y'_p + 3y_p = 4C + 3Cx + 3D = 3x + 1$. So C = 1 and 3D = 1 - 4C, that is, D = -1. So the general solution is

$$y = Ae^{-x} + Be^{-3x} + x - 1.$$

[3 marks]

This gives

$$y' = -Ae^{-x} - 3Be^{-3x} + 1.$$

So putting x = 0, the boundary conditions give

$$A+B-1=1, -A-3B+1=2 \Rightarrow -2B=3, A=2-B\Rightarrow B=-\frac{3}{2}, A=\frac{7}{2}$$

So the solution is

$$y = \frac{7}{2}e^{-x} - \frac{3}{2}e^{-3x} + x - 1.$$

[3 marks]

(ii) We try $y_p = C \sin x + D \cos x$. Then $y_p'(x) = C \cos x - D \sin x$ and $y_p'' = -C \sin x - D \cos x$. So

$$y_p'' + 4y_p' + 3y_p = (2C - 4D)\sin x + (4C + 2D)\cos x = 5\sin x.$$

So D=-2C and 10C=5 So the general solution is

$$y = Ae^{-x} + Be^{-3x} + \frac{1}{2}\sin x - \cos x.$$

[3 marks] This gives

$$y'(x) = -Ae^{-x} - 3Be^{-3x} + \frac{1}{2}\cos x + \sin x$$

So putting x = 0, the boundary conditions give

$$A+B-1=1, \quad -A-3B+\frac{1}{2}=2 \Rightarrow -2B=\frac{7}{2}, A=2-B \Rightarrow B=-\frac{7}{4}, A=\frac{15}{4}.$$

So

$$y = \frac{15}{4}e^{-x} - \frac{7}{4}e^{-3x} + \frac{1}{2}\sin x - \cos x.$$

[3 marks]

 $[5 \times 3 = 15 \text{ marks}]$

13a) The area is A(x,y)=4xy if the vertices of the rectangle are at $(\pm x,\pm y)$ with $x\geq 0,\,y\geq 0$.

[1 mark]

We have

$$\nabla A = 4y\mathbf{i} + 4x\mathbf{j}$$

$$\nabla g = 6x\mathbf{i} + 10y\mathbf{j}.$$

[2 marks]

At a stationary point of A on g = 10, we have $\nabla A = \lambda g$, that is,

$$4y = 6x\lambda$$
, $4x = 10y\lambda \Rightarrow (6x^2 - 10y^2)\lambda = 0$.

If $\lambda = 0$ then x = y = 0, which is inconsistent with g = 10. So $6x^2 - 10y^2 = 0$ and $x = \pm \sqrt{5/3}y$. The condition g = 10 then gives $10y^2 = 10$ and $y = \pm 1$. So the maximum area is $4\sqrt{5/3}$.

[5 marks]

b) We have

$$\nabla f = 2x\mathbf{i} - 2y\mathbf{j}.$$

[1 mark]

The only stationary point of f is 2x = -2y = 0, that is, (x,y) = (0,0), which is inside the ellipse and f(0,0) = 0. [One can note that this is a saddle point and therefore not a local maximum of minimum but this turns out to be unnecessary.]

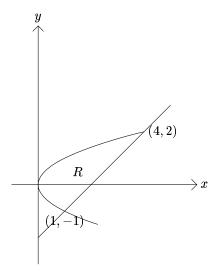
2 marks.

For a stationary point on the ellipse, we have $\nabla A = \lambda g$, that is $2x = 6x\lambda$ and $-2y = 10y\lambda$. So either x = 0 and $\lambda = -\frac{1}{5}$; or $\lambda = \frac{1}{3}$ and y = 0. We cannot have x = y = 0 since g = 10. If x = 0 then the condition g = 10 gives $y^2 = 2$ and f = -2. If y = 0 then the condition g = 10 gives $3x^2 = 10$ and $f = \frac{10}{3}$. So the maximum and minimum values of f are $\frac{10}{3}$ and -2.

$$[1+2+5+1+2+4=15 \text{ marks.}]$$

14a). The line y=x-2 meets the parabola $x=y^2$ when $y^2-y-2=0$, that is, (y+1)(y-2)=0. When y=-1 then x=1 and when y=2 x=4 The

parabola is to the left of the line. The region R is as shown.



[3 marks]

The area A is

$$\int_{-1}^{2} \int_{y^{2}}^{y+2} dx dy = \int_{-1}^{2} (y+2-y^{2}) dy$$

$$= \left[\frac{y^{2}}{2} + 2y - \frac{y^{3}}{3} \right]_{-1}^{2} = 2 + 4 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3} = \frac{9}{2}$$

[4 marks]

14b) Then

$$\overline{x} = \frac{1}{A} \int_{-1}^{2} \int_{y^{2}}^{y+2} x dx dy$$

$$= \frac{2}{9} \int_{-1}^{2} \left[\frac{x^{2}}{2} \right]_{y^{2}}^{y+2} dy = \frac{1}{9} \int_{-1}^{2} (y^{2} + 4y + 4 - y^{4}) dy$$

$$= \frac{1}{9} \left[\frac{y^{3}}{3} + 2y^{2} + 4y - \frac{y^{5}}{5} \right]_{-1}^{2} = \frac{1}{9} \left(\frac{8}{3} + 8 + 8 - \frac{32}{5} + \frac{1}{3} - 2 + 4 - \frac{1}{5} \right)$$

$$= \frac{1}{9} \cdot \frac{72}{5} = \frac{8}{5}$$

[4 marks]

$$\begin{split} \overline{y} &= \frac{1}{A} \int_{-1}^{2} \int_{y^{2}}^{y+2} y dx dy \\ &= \frac{2}{9} \int_{-1}^{2} (y^{2} + 2y - y^{3}) dy = \frac{2}{9} \left[\frac{y^{3}}{3} + y^{2} - \frac{y^{4}}{4} \right]_{-1}^{2} \end{split}$$

$$= \frac{2}{9} \left(\frac{8}{3} + 4 - 4 + \frac{1}{3} - 1 + \frac{1}{4} \right) = \frac{2}{9} \cdot \frac{9}{4} = \frac{1}{2}.$$

$$(\overline{x},\overline{y}) = \left(\frac{8}{5},\frac{1}{2}\right).$$

$$[4 \ marks] \\ [3+4+4+4=15 \ marks.]$$

So