### THE UNIVERSITY of LIVERPOOL

### SECTION A

Write down the Taylor series about x = 1 for the function

$$f(x) = x^{1/2}.$$

State whether this Taylor series converges to f(x) for:

a) 
$$x = 0.5$$
,

b) 
$$x = 3$$
.

[5 marks]

2. Find the general solutions of the following differential equations:

(i) 
$$x\frac{dy}{dx} - y^2 = 0,$$

(ii) 
$$x \frac{dy}{dx} - y = x$$
.

[7 marks]

Solve the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 5y = 0$$

with the initial conditions y(0) = 1, y'(0) = -1.

[5 marks]

**4.** Determine which of the following limits exist, giving the value of any limits. a)  $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2+x^3}{x^2+y^2}$ , b)  $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^4+y^4}$ .

a) 
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2 + x^3}{x^2 + y^2}$$

b) 
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^4+y^4}$$
.

[5 marks]

Work out all first and second partial derivatives of

$$f(x,y) = x^3y - xy^3,$$

and verify that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

and

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

[5 marks]

## THE UNIVERSITY of LIVERPOOL

**6.** Let

$$f(x,t) = F(x+ct) + G(x-ct),$$

where F and G have continuous first and second derivatives. Find

$$\frac{\partial f}{\partial x}$$
,  $\frac{\partial f}{\partial t}$ ,  $\frac{\partial^2 f}{\partial x^2}$ ,  $\frac{\partial^2 f}{\partial t^2}$ 

in terms of the first and second derivatives of F and G. Verify that

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}.$$

[5 marks]

7. Find the gradient vector  $\nabla f(x, y, z)$  at (x, y, z), where

$$f(x, y, z) = x^{3}y - y^{2}z + 2xyz.$$

Also find the directional derivative at (1,1,1) in the direction (-1,1,2).

[5 marks]

8. Locate and classify all stationary points of the function

$$f(x,y) = x^2 + x^2y + 2y^2.$$

[8 marks]

9. Find the linear approximation near (x, y) = (1, 1) to the function

$$f(x,y) = \frac{1}{x^2 + y}.$$

[4 marks]

## THE UNIVERSITY of LIVERPOOL

10. Let R be the region in the plane bounded by the x-axis and the parabola  $y = 4 - x^2$ . Work out the double integral

$$\int \int_{R} x^2 dx dy.$$

You may change the order of integration if you prefer.

[6 marks]

### SECTION B

11.

(i) Find an expression for the Taylor polynomial  $P_n(x)$  at 0 for the function  $f(x) = \cos x$ , and for the remainder term  $R_n(x)$  in the cases

a) 
$$n = 3$$
,

b) 
$$n = 2k - 1$$
, any  $k \ge 1$ .

Show also that if  $|x| \leq 1$ , then

$$0 \le R_3(x) \le \frac{x^4}{24},$$

and

$$1 - \frac{11}{24}x^2 \ge \cos x \ge 1 - \frac{1}{2}x^2.$$

(ii) By using the Taylor series of  $\cos x$  at 0 or otherwise, work out the limits

a) 
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
,

b) 
$$\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{2(1 - \cos x)} \right)$$
.

In the second one, you may wish to rewrite the expression with a common denominator. [15 marks]

# THE UNIVERSITY of LIVERPOOL

12. Solve the following differential equations with the given boundary conditions:

(i)

$$y'' - 2y' + y = 4e^{-x}$$

with y(0) = 1, y'(0) = -1.

(ii)

$$y'' - 2y' + y = x$$

with y(0) = 1, y'(0) = -1,

[15 marks]

13. Find the maximum and minimum values of the function f(x, y) in the region where  $g(x, y) \leq 1$ , where f(x, y) and g(x, y) are defined by

$$f(x,y) = 3x^{2} + x^{2}y + y^{2},$$
$$q(x,y) = 2x^{2} + y^{2}.$$

[15 marks]

14. Find the centre of mass of the plane triangle bounded by the lines

$$x = 0, \quad y = 0, \quad x + 2y = 1,$$

where mass is distributed with density function  $\rho(x,y)$  and

$$\rho(x,y) = xy.$$

[15 marks]