SECTION A

1. Write down the Taylor series of $f(x) = e^{2x}$ about x = 0. State for which x this is convergent.

[4 marks]

- 2. Find the general solutions of the differential equations
- a) $x^2 \frac{dy}{dx} = (x+2)y$,
- b) $\frac{dy}{dx} y = e^{-x}.$

[8 marks]

3. Solve the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 15y = 0$$

subject to y(0) = 0, y'(0) = 4.

[6 marks]

4. Show, using two different paths through the origin, that

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^2+2y^2}$$

does not exist.

[4 marks]

5. Work out all first and second partial derivatives of

$$f(x,y) = x^4 - 6x^2y^2 + y^4.$$

verify that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

and

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

[6 marks]

6. Find $\frac{\partial z}{\partial u}(1,2)$ and $\frac{\partial z}{\partial v}(1,2)$ where $z = xy + y \ln x$ and

$$x(1,2) = 1, y(1,2) = 1,$$

$$\frac{\partial x}{\partial u}(1,2) = 1 \frac{\partial y}{\partial u}(1,2) = -1, \quad \frac{\partial x}{\partial v}(1,2) = 2, \frac{\partial y}{\partial v}(1,2) = 0.$$

[6 marks]

7. Given that $f(x, y, z) = x^2 - y^2 - zx$, find the directional derivative of f at (1, -1, 2) in the direction $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.

[4 marks]

8. Locate and classify all stationary points of

$$f(x,y) = 5xy^2 - 8x^2 - 9y^2.$$

[8 marks]

9. Find a linear approximation near (1,0) to

$$f(x,y) = \sqrt{x^2 + y^2}.$$

[4 marks]

10. By changing the order of integration, compute

$$\int_0^1 \int_x^1 \frac{1}{y} \cos(\pi x/(2y)) dy dx.$$

[6 marks]

SECTION B

11. a) Write down the degree two Taylor polynomial $P_2(y,0)$ of e^y at 0, and the remainder term $R_2(y,0)$. Also write down $P_9(y,0)$ and the remainder term $R_9(y,0)$.

Now if y = -x and x > 0, show that

$$|P_2(-x,0) - e^{-x}| \le \frac{x^3}{3!}$$

and

$$|P_9(-x,0) - e^{-x}| \le \frac{x^{10}}{10!}.$$

Hence show that if $0 \le x \le \frac{1}{2}$ then

$$|P_2(-x) - e^{-x}| \le \frac{1}{48}$$

and if $0 \le x \le 2$ then

$$|P_9(-x) - e^{-x}| < 0.0003.$$

b) Write down the first four terms of the Taylor series of e^x and e^{-x} . State for which values of x the Taylor series for e^x is convergent and equal to e^x . Hence, or otherwise, show that

$$\lim_{x \to 0} \frac{1 - x + \frac{x^2}{2} - e^{-x}}{1 + x + \frac{x^2}{2} - e^x} = -1.$$

 $[15~\mathrm{marks}]$

12.

a) Find the general solution to

$$(x^2 - y^2)\frac{dy}{dx} = xy.$$

b) Solve the equation

$$y'' + 2y' - 3y = \cos x$$

subject to

$$y(0) = 1, y'(0) = -1.$$

[15 marks]

13. a) Find the maximum area of a trangle with vertices at the points (0,1),(x,y) and (-x,y) of the ellipse

$$g(x,y) = \frac{x^2}{4} + y^2 = 1$$

.

b) Find the maximum and minimum values of $f(x,y)=x^2-2y^2$ in the region $\{(x,y):x^2+y^2\leq 1\}.$

[15 marks]

14.

- a) Find the area of the region R bounded by the parabola $x=4y^2$ and the line 2y+2=x.
 - b) Find the centre of mass $(\overline{x}, \overline{y})$ of R, assuming uniform density.

[15 marks]