The Resident's View Revisited

Mary Rees

University of Liverpool

9th W. R. Hamilton Geometry and Topology Workshop, Geometry and Groups after Thurston, 27-31 August 2013, HMI, Trinity College Dublin.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Branched coverings

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Branched coverings

- The sphere and the torus are the only compact surfaces to admit self-branched coverings of degree greater than one.
- Branched coverings of the sphere which are not homeomorphisms necessarily have branch points, also called critical values.
- Rational maps are examples of branched coverings.
- The dynamics of rational maps is one of the main areas of complex dynamics.

(ロ) (型) (E) (E) (E) (O)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

A branched covering f is said to be critically finite if the postcritical set

$$X(f) = \{f^n(c) : c \text{ critical }, n > 0\}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

is finite.

A branched covering f is said to be critically finite if the postcritical set

$$X(f) = \{f^n(c) : c \text{ critical }, n > 0\}$$

is finite.

Two critically finite branched coverings f_0 and f_1 are usually said to be Thurston equivalent if there is a homotopy f_t ($t \in [0, 1]$) through critically finite branched coverings such that $X(f_t)$ varies isotopically for $t \in [0, 1]$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

A branched covering f is said to be critically finite if the postcritical set

$$X(f) = \{f^n(c) : c \text{ critical }, n > 0\}$$

is finite.

Two critically finite branched coverings f_0 and f_1 are usually said to be Thurston equivalent if there is a homotopy f_t ($t \in [0, 1]$) through critically finite branched coverings such that $X(f_t)$ varies isotopically for $t \in [0, 1]$.

In this talk a slightly stronger notion of Thurston equivalence will be used. We consider branched coverings of the Riemann sphere for which the critical values are numbered, and then f_0 and f_1 are said to be Thurston equivalent if the isotopy of $X(f_t)$ preserves the numbering of critical values. Thurston's Theorem for critically finite branched coverings (1982)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thurston's Theorem for critically finite branched coverings (1982)

The quotient by Möbius conjugation of a Thurston equivalence class is contractible to the Möbius conjugacy class of a unique rational map, if and only if a certain orbifold is hyperbolic, and a certain combinatorial condition holds, which can be described as the non-existence of a Thurston obstruction.

ション ふゆ く は マ く ほ マ く し マ

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 ろんの

Thurston's theorem has been deliberately formulated as a result about the topology of a space of maps. It is a geometrisation result in two ways.

It gives a condition under which a map is holomorphic, modulo the appropriate type of homotopy equivalence (Thurston equivalence).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Thurston's theorem has been deliberately formulated as a result about the topology of a space of maps. It is a geometrisation result in two ways.

It gives a condition under which a map is holomorphic, modulo the appropriate type of homotopy equivalence (Thurston equivalence).

It also shows that the corresponding space of maps is contractible to a space with a geometric structure – although there is little to say about geometries on a space consisting of a single point. But a point is just the simplest case...

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

f is a branched covering of the Riemann sphere;

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

- f is a branched covering of the Riemann sphere;
- Y(f) is a finite set which contains all the critical values, which are numbered, and is the union of the set of critical values and Z(f), where f(Z(f)) ⊂ Z(f);

ション ふゆ く 山 マ ふ し マ うくの

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

- f is a branched covering of the Riemann sphere;
- Y(f) is a finite set which contains all the critical values, which are numbered, and is the union of the set of critical values and Z(f), where f(Z(f)) ⊂ Z(f);

(日) (周) (日) (日) (日) (0) (0)

• Y(f) and Z(f) vary isotopically with f, for $[f, Y(f)] \in B$;

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

- f is a branched covering of the Riemann sphere;
- Y(f) is a finite set which contains all the critical values, which are numbered, and is the union of the set of critical values and Z(f), where f(Z(f)) ⊂ Z(f);
- Y(f) and Z(f) vary isotopically with f, for $[f, Y(f)] \in B$;
- ► [f, Y(f)] denotes the conjugacy class of (f, Y(f)) by Möbius transformations, using only Möbius transformations which preserve the numbering of critical values.

The elements of a connected topological space $B = B(f_0, Y(f_0))$ are [f, Y(f)], and include $[f_0, Y(f_0)]$, where:

- f is a branched covering of the Riemann sphere;
- Y(f) is a finite set which contains all the critical values, which are numbered, and is the union of the set of critical values and Z(f), where f(Z(f)) ⊂ Z(f);
- Y(f) and Z(f) vary isotopically with f, for $[f, Y(f)] \in B$;
- ► [f, Y(f)] denotes the conjugacy class of (f, Y(f)) by Möbius transformations, using only Möbius transformations which preserve the numbering of critical values.

For example, *B* could be the Thurston equivalence class of a critically finite branched covering f_0 , with $Y(f_0) = Z(f_0) = X(f_0)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

If $[f_t, Y(f_t)]$ is a path in B then $f_t = \varphi_t \circ f_0 \circ \psi_t^{-1}$ where:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If $[f_t, Y(f_t)]$ is a path in B then $f_t = \varphi_t \circ f_0 \circ \psi_t^{-1}$ where:
 - φ_0 and ψ_0 are the identity is the identity and $t \mapsto \varphi_t$ and $t \mapsto \psi_t$ are isotopies;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $[f_t, Y(f_t)]$ is a path in B then $f_t = \varphi_t \circ f_0 \circ \psi_t^{-1}$ where:

- φ_0 and ψ_0 are the identity is the identity and $t \mapsto \varphi_t$ and $t \mapsto \psi_t$ are isotopies;

If $[f_t, Y(f_t)]$ is a path in B then $f_t = \varphi_t \circ f_0 \circ \psi_t^{-1}$ where:

- φ_0 and ψ_0 are the identity is the identity and $t \mapsto \varphi_t$ and $t \mapsto \psi_t$ are isotopies;
- φ_t is determined up to isotopy constant on Y(f₀), and post-composition by a Möbius transformation, by [f_t, Y(f_t)]: that is, as an element [φ_t] of the Teichmüller space T(Y(f₀)) of the sphere with marked set bijective to Y(f₀).

If $[f_t, Y(f_t)]$ is a path in B then $f_t = \varphi_t \circ f_0 \circ \psi_t^{-1}$ where:

- φ_0 and ψ_0 are the identity is the identity and $t \mapsto \varphi_t$ and $t \mapsto \psi_t$ are isotopies;
- φ_t is determined up to isotopy constant on Y(f₀), and post-composition by a Möbius transformation, by [f_t, Y(f_t)]: that is, as an element [φ_t] of the Teichmüller space T(Y(f₀)) of the sphere with marked set bijective to Y(f₀).

This correspondence maps the universal cover of B to $\mathcal{T}(Y(f_0))$ with contractible fibres, so that B is a $K(\pi, 1)$. The fundamental group maps to a subgroup of the pure mapping class group $PMG(\overline{\mathbb{C}}, Y(f_0))$. Since B is a $K(\pi, 1)$, the Topographer's View is a result about the structure of its fundamental group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

I obtained a result, or sequence of results, which I called The Topographer's View – which I do not particularly want to revisit at this juncture, but it is not possible to separate the Topographer and Resident's views completely, because they complement each other.

ション ふゆ く は マ く ほ マ く し マ

I obtained a result, or sequence of results, which I called The Topographer's View – which I do not particularly want to revisit at this juncture, but it is not possible to separate the Topographer and Resident's views completely, because they complement each other. The Topographer's View of $B = B(f_0, Y(f_0))$ is a homotopy equivalence to an ordered graph of countably manytopological spaces of maps, where these topological spaces have some geometric structure.

I obtained a result, or sequence of results, which I called The Topographer's View – which I do not particularly want to revisit at this juncture, but it is not possible to separate the Topographer and Resident's views completely, because they complement each other. The Topographer's View of $B = B(f_0, Y(f_0))$ is a homotopy equivalence to an ordered graph of countably manytopological spaces of maps, where these topological spaces have some geometric structure.

The "base" geometric pieces are the rational maps in B quotiented by Möbius conjugation.

An important part of the result, not easy, is that the inclusion of each component V of rational maps in the larger space B is injective on π_1 .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

An important part of the result, not easy, is that the inclusion of each component V of rational maps in the larger space B is injective on π_1 .

This result was only obtained for *B* consisting of degree two maps, or maps "of polynomial type", $Z(f_0)$ contained in the full orbit of periodic critical points.

ション ふゆ アメリア メリア しょうくの

Question: nature of the embedding

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Question: nature of the embedding

Having seen that the universal cover V of V embeds in $\mathcal{T}(Y(f_0))$, one can obviously ask about the nature of the embedding. From the group-theoretic point of view, this is a question about a subgroup of the Pure Mapping Class Group $PMG(\overline{\mathbb{C}}, Y(f_0))$ which identifies with the fundamental group of the space of rational maps. Of course the embedding is Lipschitz, but I know nothing about the inverse map. A projection of the embedding

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

A projection of the embedding

In the cases that we consider, f_0 is of degree two, and $Y(f_0) \setminus Z(f_0) = Y \setminus Z$ is a single point, a critical value of f_0 , denoted by $v_2 = v_2(f_0)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A projection of the embedding

In the cases that we consider, f_0 is of degree two, and $Y(f_0) \setminus Z(f_0) = Y \setminus Z$ is a single point, a critical value of f_0 , denoted by $v_2 = v_2(f_0)$. There is a natural projection from $\mathcal{T}(Y)$ to the universal cover $\widetilde{\mathbb{C} \setminus Z}$ of $\overline{\mathbb{C}} \setminus Z$, defined as follows.

ション ふゆ く は マ く ほ マ く し マ
In the cases that we consider, f_0 is of degree two, and $Y(f_0) \setminus Z(f_0) = Y \setminus Z$ is a single point, a critical value of f_0 , denoted by $v_2 = v_2(f_0)$. There is a natural projection from $\mathcal{T}(Y)$ to the universal cover $\widetilde{\mathbb{C} \setminus Z}$ of $\overline{\mathbb{C}} \setminus Z$, defined as follows. Let $\pi_Z : \mathcal{T}(Y) \to \mathcal{T}(Z)$ denote the natural projection and let d_Y and d_Z denote the Tiechmüller metrics on $\mathcal{T}(Y)$ and $\mathcal{T}(Z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If $[\varphi_t]$ is a path in $\mathcal{T}(Y)$ from a basepoint $[\varphi_0] = x_0$, then let $\chi_t : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be the unique homeomorphism minimizing qc-distortion such that

$$\pi_{Z}([\varphi_{t}]) = \pi_{Z}([\chi_{t} \circ \varphi_{0}])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $[\varphi_t]$ is a path in $\mathcal{T}(Y)$ from a basepoint $[\varphi_0] = x_0$, then let $\chi_t : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be the unique homeomorphism minimizing qc-distortion such that

$$\pi_{Z}([\varphi_{t}]) = \pi_{Z}([\chi_{t} \circ \varphi_{0}])$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Then $t \mapsto \chi_t^{-1} \circ \varphi_t(v_2)$ defines an element of $\widetilde{\overline{\mathbb{C}} \setminus Z}$.

If $[\varphi_t]$ is a path in $\mathcal{T}(Y)$ from a basepoint $[\varphi_0] = x_0$, then let $\chi_t : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be the unique homeomorphism minimizing qc-distortion such that

$$\pi_{Z}([\varphi_{t}]) = \pi_{Z}([\chi_{t} \circ \varphi_{0}])$$

Then $t \mapsto \chi_t^{-1} \circ \varphi_t(v_2)$ defines an element of $\widetilde{\mathbb{C} \setminus Z}$. The composition with the embedding gives a map

$$\rho:\widetilde{V}\to\widetilde{\overline{\mathbb{C}}\setminus Z}.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

In the cases considered, V is a finite type Riemann surface of negative Euler characteristic, and so, of course is $\overline{\mathbb{C}} \setminus Z$. So the universal cover of each of these Riemann surfaces is the unit disc up to conformal equivalence, with boundary the unit circle.

ション ふゆ く は マ く ほ マ く し マ

In the cases considered, V is a finite type Riemann surface of negative Euler characteristic, and so, of course is $\overline{\mathbb{C}} \setminus Z$. So the universal cover of each of these Riemann surfaces is the unit disc up to conformal equivalence, with boundary the unit circle.

 $\rho: \widetilde{V} \to \widetilde{\overline{\mathbb{C}} \setminus Z}$ extends continuously and monotonically to map the boundary $\partial \widetilde{V}$ into $\partial \overline{\overline{\mathbb{C}} \setminus Z}$ with just countably many discontinuities which can be naturally characterised, and where right and left limits exist.

In the cases considered, V is a finite type Riemann surface of negative Euler characteristic, and so, of course is $\overline{\mathbb{C}} \setminus Z$. So the universal cover of each of these Riemann surfaces is the unit disc up to conformal equivalence, with boundary the unit circle.

 $\rho: \widetilde{V} \to \widetilde{\overline{\mathbb{C}} \setminus Z}$ extends continuously and monotonically to map the boundary $\partial \widetilde{V}$ into $\partial \overline{\overline{\mathbb{C}} \setminus Z}$ with just countably many discontinuities which can be naturally characterised, and where right and left limits exist.

Once the continuity is proved, monotonicity is straightforward.

The limit of ρ along geodesics

We use d_P to denote the Poincaré (or hyperbolic) metric on the unit disc (the universal cover of $\overline{\mathbb{C}} \setminus Z$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The limit of ρ along geodesics

We use d_P to denote the Poincaré (or hyperbolic) metric on the unit disc (the universal cover of $\overline{\mathbb{C}} \setminus Z$).

Theorem

 $\lim_{x\to\infty} \rho(x)$ exists along any half geodesic segment ℓ in $\mathcal{T}(Y)$ such that $\lim_{x\to\infty} d_P(0,\rho(x)) = +\infty$. In fact, if ℓ starts at x_0 and $d_P(0,\rho(z)) \ge n$ for all $z \in \ell$ between x and y then for a suitable constant C,

 $|\rho(\mathbf{x}) - \rho(\mathbf{y})| \leq Cne^{-n}.$

ション ふゆ く は マ く ほ マ く し マ

The limit of ρ along geodesics

We use d_P to denote the Poincaré (or hyperbolic) metric on the unit disc (the universal cover of $\overline{\mathbb{C}} \setminus Z$).

Theorem

 $\lim_{x\to\infty} \rho(x)$ exists along any half geodesic segment ℓ in $\mathcal{T}(Y)$ such that $\lim_{x\to\infty} d_P(0,\rho(x)) = +\infty$. In fact, if ℓ starts at x_0 and $d_P(0,\rho(z)) \ge n$ for all $z \in \ell$ between x and y then for a suitable constant C,

 $|\rho(\mathbf{x}) - \rho(\mathbf{y})| \leq Cne^{-n}.$

It therefore seems natural to consider geodesic segment with endpoints in \widetilde{V} (which is a subset of $\mathcal{T}(Y)$) and to compare ρ on the geodesic with a path with the same endpoints.

A key idea in the proof of this theorem is that geodesic segments on $\overline{\mathbb{C}} \setminus Z$ tend to have many self-intersections.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A key idea in the proof of this theorem is that geodesic segments on $\overline{\mathbb{C}} \setminus Z$ tend to have many self-intersections.

More precisely, given any geodesic segment γ of length Δ there is a constant C_1 such if we consider lifted geodesics in the unit disc starting from 0, every such geodesic segment of length n ends within Euclidean distance $C_1 e^{\Delta - n}$ of a geodesic segment which has endpoints within a bounded Poincaré distance of the endpoints of γ .

A key idea in the proof of this theorem is that geodesic segments on $\overline{\mathbb{C}} \setminus Z$ tend to have many self-intersections.

More precisely, given any geodesic segment γ of length Δ there is a constant C_1 such if we consider lifted geodesics in the unit disc starting from 0, every such geodesic segment of length n ends within Euclidean distance $C_1 e^{\Delta - n}$ of a geodesic segment which has endpoints within a bounded Poincaré distance of the endpoints of γ .

So we can choose γ to do anything we like by choosing Δ sufficiently large, e.g. to cut $\overline{\mathbb{C}} \setminus Z$ into topological discs with at most one puncture.

It is relatively easy to check that $\lim_{x\to\infty} \rho(x)$ exists along half-geodesics in V ending at any puncture corresponding to a rational map f at which $v_2(f) \in Z(f)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

It is relatively easy to check that $\lim_{x\to\infty} \rho(x)$ exists along half-geodesics in V ending at any puncture corresponding to a rational map f at which $v_2(f) \in Z(f)$.

ション ふゆ く は マ く ほ マ く し マ

Note that $f \notin V$ because $Z(g) \cup \{v_2(g)\} = Y(g)$ varies isotopically for $g \in V$.

It is relatively easy to check that $\lim_{x\to\infty} \rho(x)$ exists along half-geodesics in V ending at any puncture corresponding to a rational map f at which $v_2(f) \in Z(f)$.

Note that $f \notin V$ because $Z(g) \cup \{v_2(g)\} = Y(g)$ varies isotopically for $g \in V$.

In these cases, $\lim_{x\to\infty} \rho(x)$ is a "lift" of a point in Z – the endpoint of a geodesic in $\overline{\mathbb{C}} \setminus Z$ which ends at a point of Z.

It is relatively easy to check that $\lim_{x\to\infty} \rho(x)$ exists along half-geodesics in V ending at any puncture corresponding to a rational map f at which $v_2(f) \in Z(f)$.

Note that $f \notin V$ because $Z(g) \cup \{v_2(g)\} = Y(g)$ varies isotopically for $g \in V$.

In these cases, $\lim_{x\to\infty} \rho(x)$ is a "lift" of a point in Z – the endpoint of a geodesic in $\overline{\mathbb{C}} \setminus Z$ which ends at a point of Z.

It is also quite easy to show that, for a lift x of any other puncture of V, either $\lim_{y\to x} \rho(y)$ exists, or left and right limits exist outside a horosphere.

The discontinuities $x \in \partial \widetilde{V}$ are the points such that lim $\inf_{y\to x} d_P(0, \rho(y)) < \infty$. These are quite easily characterised and also it is quite easy to show that right and left limits exist outside a horosphere or Stoltz angle at such a point. However I have never managed to find such a point of *pseudo-Anosov type*. It is possible (although unlikely) that they do not exist.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The points at which limits exist are sufficiently dense that the proof of the Resident's View is completed by showing that for each $x \in \widetilde{V}$, and for a choice of basepoint x_0 , there is just one path x_t in \widetilde{V} from x_0 to x on which the same uniform continuity for limits holds, that is, if $d_P(\rho(x_u), 0) \ge n$ for all $u \in [s, t]$ then $|\rho(x_s) - \rho(x_t)| \le C_1 ne^{-n}$.

ション ふゆ く は マ く ほ マ く し マ

The points at which limits exist are sufficiently dense that the proof of the Resident's View is completed by showing that for each $x \in \widetilde{V}$, and for a choice of basepoint x_0 , there is just one path x_t in \widetilde{V} from x_0 to x on which the same uniform continuity for limits holds, that is, if $d_P(\rho(x_u), 0) \ge n$ for all $u \in [s, t]$ then $|\rho(x_s) - \rho(x_t)| \le C_1 n e^{-n}$.

It is natural to start with the geodesic segment in $\mathcal{T}(Y(f_0))$ and to try to modify this to a path in \widetilde{V} .

The points at which limits exist are sufficiently dense that the proof of the Resident's View is completed by showing that for each $x \in \widetilde{V}$, and for a choice of basepoint x_0 , there is just one path x_t in \widetilde{V} from x_0 to x on which the same uniform continuity for limits holds, that is, if $d_P(\rho(x_u), 0) \ge n$ for all $u \in [s, t]$ then $|\rho(x_s) - \rho(x_t)| \le C_1 n e^{-n}$.

It is natural to start with the geodesic segment in $\mathcal{T}(Y(f_0))$ and to try to modify this to a path in \widetilde{V} .

It is only this part of the proof that I have been revisiting.

Suppose that $[x_0, x]$ is a geodesic segment in $\mathcal{T}(Y)$ with endpoints x_0 and x in \widetilde{V} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Suppose that $[x_0, x]$ is a geodesic segment in $\mathcal{T}(Y)$ with endpoints x_0 and x in \widetilde{V} .

うして ふゆう ふほう ふほう しょうく

The path in \widetilde{V} with these endpoints is obtained by taking $\lim_{n\to\infty} x_n(x_1) \in \widetilde{V}$ corresponding to $x_1 \in [x_0, x]$, where:

Suppose that $[x_0, x]$ is a geodesic segment in $\mathcal{T}(Y)$ with endpoints x_0 and x in \widetilde{V} .

The path in \widetilde{V} with these endpoints is obtained by taking $\lim_{n\to\infty} x_n(x_1) \in \widetilde{V}$ corresponding to $x_1 \in [x_0, x]$, where:

$$d_Y(x_n, x_{n+1}) - d_Z(x_n, x_{n+1}) \le C;$$

うして ふゆう ふほう ふほう しょうく

Suppose that $[x_0, x]$ is a geodesic segment in $\mathcal{T}(Y)$ with endpoints x_0 and x in \widetilde{V} .

The path in \widetilde{V} with these endpoints is obtained by taking $\lim_{n\to\infty} x_n(x_1) \in \widetilde{V}$ corresponding to $x_1 \in [x_0, x]$, where:

$$d_Y(x_n, x_{n+1}) - d_Z(x_n, x_{n+1}) \le C;$$

a chain of *long thick and dominants* (α_i, ℓ_i) with $\ell_i \subset [x_i, x_{i+1}]$ and $\alpha_i \cap \alpha_{i+1} \neq \emptyset$ is non-cancelling, so that ℓ_i is a bounded d_{α_i} -distance from $[x_1, x_n]$ for $1 \le i < n$.

ション ふゆ く は マ く ほ マ く し マ

Suppose that $[x_0, x]$ is a geodesic segment in $\mathcal{T}(Y)$ with endpoints x_0 and x in \widetilde{V} .

The path in \widetilde{V} with these endpoints is obtained by taking $\lim_{n\to\infty} x_n(x_1) \in \widetilde{V}$ corresponding to $x_1 \in [x_0, x]$, where:

$$d_Y(x_n, x_{n+1}) - d_Z(x_n, x_{n+1}) \le C;$$

a chain of *long thick and dominants* (α_i, ℓ_i) with $\ell_i \subset [x_i, x_{i+1}]$ and $\alpha_i \cap \alpha_{i+1} \neq \emptyset$ is non-cancelling, so that ℓ_i is a bounded d_{α_i} -distance from $[x_1, x_n]$ for $1 \leq i < n$.

From this we can deduce properties of the difference between $\rho(x_1)$ and $\rho(x_n)$.

In revisiting this proof, my hope was to use a result about chains of long thick and dominants on Teichmüller geodesics which I found rather hard to prove, and useful in another situation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In revisiting this proof, my hope was to use a result about chains of long thick and dominants on Teichmüller geodesics which I found rather hard to prove, and useful in another situation.

ション ふゆ く は マ く ほ マ く し マ

I am not quite there yet, but have found an application to the analysis of the relation between $\tau([x, \tau(x)])$ and $[\tau(x), \tau^2(x)]$ where τ is the appropriate analogue for $B(f_0, Y(f_0))$ of the *Thurston pullback*.

The proof of Thurston's Theorem for critically finite branched coverings used a distance-non-increasing map $\tau : \mathcal{T}(X(f_0)) \to \mathcal{T}(X(f_0))$ known as the *Thurston pullback*. For a suitable integer k, τ^k is a uniform contraction on any set $x : d(x, \tau(x) < M)$. So there is a unique fixed point.

The proof of Thurston's Theorem for critically finite branched coverings used a distance-non-increasing map $\tau : \mathcal{T}(X(f_0)) \to \mathcal{T}(X(f_0))$ known as the *Thurston pullback*. For a suitable integer k, τ^k is a uniform contraction on any set $x : d(x, \tau(x) < M)$. So there is a unique fixed point.

The map τ is given by $\tau([\varphi]) = [\psi]$ where $\varphi \circ f_0 = s \circ \psi$ where s is a holomorphic branched covering and ψ is a homeomorphism.

The proof of Thurston's Theorem for critically finite branched coverings used a distance-non-increasing map $\tau : \mathcal{T}(X(f_0)) \to \mathcal{T}(X(f_0))$ known as the *Thurston pullback*. For a suitable integer k, τ^k is a uniform contraction on any set $x : d(x, \tau(x) < M)$. So there is a unique fixed point.

The map τ is given by $\tau([\varphi]) = [\psi]$ where $\varphi \circ f_0 = s \circ \psi$ where s is a holomorphic branched covering and ψ is a homeomorphism.

This equation determines s and $[\psi]$ uniquely.

The proof of Thurston's Theorem for critically finite branched coverings used a distance-non-increasing map $\tau : \mathcal{T}(X(f_0)) \to \mathcal{T}(X(f_0))$ known as the *Thurston pullback*. For a suitable integer k, τ^k is a uniform contraction on any set $x : d(x, \tau(x) < M)$. So there is a unique fixed point.

The map τ is given by $\tau([\varphi]) = [\psi]$ where $\varphi \circ f_0 = s \circ \psi$ where s is a holomorphic branched covering and ψ is a homeomorphism.

This equation determines s and $[\psi]$ uniquely. If $\tau([\varphi]) = [\varphi]$ then $\varphi \circ f_0 \circ \varphi^{-1} = s$, and s is critically finite and Thurston equivalent to f_0 . Since τ is a contraction, (s, φ) is unique, up to Möbius conjugation of s and post-composition of φ by this same Möbius transformation. The iteration in the generalised case

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?
in this more general case, the Teichm|'uller space used is $\mathcal{T}(Y)$, where Y contains all the critical values of f_0 but may not be forward invariant.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

in this more general case, the Teichm|'uller space used is $\mathcal{T}(Y)$, where Y contains all the critical values of f_0 but may not be forward invariant. Only $Z \subset Y$ is forward invariant, and Z does not contain all the critical values.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

in this more general case, the Teichm|'uller space used is $\mathcal{T}(Y)$, where Y contains all the critical values of f_0 but may not be forward invariant. Only $Z \subset Y$ is forward invariant, and Z does not contain all the critical values.

If we use the same formula as before and define $\tau([\varphi]) = [\psi]$ then we can consider $[\psi]$ as an element of $\mathcal{T}(Z)$. But we want an iteration on $\mathcal{T}(Y)$.

in this more general case, the Teichm|'uller space used is $\mathcal{T}(Y)$, where Y contains all the critical values of f_0 but may not be forward invariant. Only $Z \subset Y$ is forward invariant, and Z does not contain all the critical values.

If we use the same formula as before and define $\tau([\varphi]) = [\psi]$ then we can consider $[\psi]$ as an element of $\mathcal{T}(Z)$. But we want an iteration on $\mathcal{T}(Y)$.

There is a natural way to do this, simply by defining $\tau([\varphi])$ by the two conditions

$$\pi_{Z}(\tau([\varphi]) = \pi_{Z}([\psi])$$

in this more general case, the Teichm|'uller space used is $\mathcal{T}(Y)$, where Y contains all the critical values of f_0 but may not be forward invariant. Only $Z \subset Y$ is forward invariant, and Z does not contain all the critical values.

If we use the same formula as before and define $\tau([\varphi]) = [\psi]$ then we can consider $[\psi]$ as an element of $\mathcal{T}(Z)$. But we want an iteration on $\mathcal{T}(Y)$.

There is a natural way to do this, simply by defining $\tau([\varphi])$ by the two conditions

$$\pi_{Z}(\tau([\varphi]) = \pi_{Z}([\psi])$$

 $d_{Y}([\varphi],\tau([\varphi])) = dZ([\varphi],\tau([\varphi])),$

where d_Z denotes Teichmüller distance in $\mathcal{T}(Z)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$au^k:\mathcal{T}(Y) ightarrow\mathcal{T}(Y)$ is not a global contraction for any k

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\tau^k : \mathcal{T}(Y) \to \mathcal{T}(Y)$ is not a global contraction for any k However $d_Y(\tau([\varphi]), \tau^2([\varphi])) \le d_Y([\varphi], \tau([\varphi])),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $au^k : \mathcal{T}(Y) \to \mathcal{T}(Y)$ is not a global contraction for any k However $d_Y(\tau([\varphi]), \tau^2([\varphi])) \le d_Y([\varphi], \tau([\varphi])),$

and for a suitable n depending only on #(Y),

$$d_Y(\tau^n([\varphi]), \tau^{n+1}([\varphi])) < d_Y([\varphi], \tau([\varphi])).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

The most important property is the characterisation of the fixed set of $\boldsymbol{\tau}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The most important property is the characterisation of the fixed set of τ .

If $\tau([\varphi]) = [\varphi]$ then $s(\varphi(Z) = \varphi(Z)$ where s is the holomorphic map such that $\varphi \circ f_0 = s \circ \psi$. Also, φ and ψ are isotopic via an isotopy which is constant on Z.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The most important property is the characterisation of the fixed set of τ .

If $\tau([\varphi]) = [\varphi]$ then $s(\varphi(Z) = \varphi(Z)$ where s is the holomorphic map such that $\varphi \circ f_0 = s \circ \psi$. Also, φ and ψ are isotopic via an isotopy which is constant on Z.

This means that the fixed set of τ is the union of all the sets $\widetilde{V} \subset \mathcal{T}(Y)$, where V runs over the components of rational maps in B.

Definition of the sequence x_n

The sequence $x_n = x_n(x_1)$ is then obtained by defining x_{n+1} to be a modification of $\tau(x_n)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?