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Basics about holomorphic maps

Recall some facts about holomorphic maps. If

zZ=x+iy

f(z) = u(x,y) + iv(x,y)

then
f'(2) = ux + ivk = vy — iuy.



Considered as a function from R2 to R?, the derivative is

ue U\ (ux —v
Ve Vy)  \Wx Uy
If f'(z) # 0 then u2 + v2 # 0. Lengths are not usually

preserved, but angles are.
The action of the derivative at z, is multiplication by '(zp).



Conversely, suppose that f : U(C R?) — R? is continuous, and
continuously differentiable except at finitely many points, and
the dervative Df is invertible, has positive determinant and
preserves angles except at finitely many points. Write

f = (u, v). The derivative Df is

Ux Uy
Ve vy

If angles are to be preserved then this must be of the form

rcosf —rsiné
rsind rcosé



So the Cauchy-Riemann equations
Uy = V}/7

VX == —Uy

are satisfied, and hence f is holomorphic, except possibly at
finitely many points. But since f is continuous, any singularities
are removable and f is holomorphic on U.



How to write Riemannian metrics in the plane

The usual classical form of writing a Riemannian metric in the
plane is
adx? + 2bdxdy + cdy?

where a, b, ¢ are real-valued functions of (x, y), and the
symmetric matrix
a b
G d

is positive definite. For this we need
at+c>0,

ac—b®> > 0.



The classical notation is suggested by the formula for the length
of a curve (x(t), y(t)) (t € /) in this metric:

/ \Ja(ax/dty? + 2b(ax/di)(dy /at) + c(dy/at)2at
I



Field of Ellipses

A 2 x 2 symmetric positive definite matrix A defines an ellipse

with equation
X
X A =1
(x ) <y>

The constant on the righthand side is unimportant. Note that
A=PTAP,

with P orthogonal and A diagonal. Interchanging the rows of P
if necessary, we can assume that P has determinant 1.



Then we get the standard form

(X Y)A<§§):1

for the ellipse by making the change of variable

() -7C)

The major and minor axes of the ellipse are orthogonal to each
other and are given by the columns of U (not necessarily in that
order) provided the eigenvalues of A are distinct.

This association of an ellipse (up to scale) to each point in the
domain is called a field of ellipses. The major axis at each point
— up to direction — gives a line field. It is undefined when the
eigenvalues of A are equal.



Complex form of a Riemannian metric

In formulating the measurable Riemann mapping theorem it is
more convenient to write the metric adx? + 2bdxdy + cdy?
in another form:

Ndz + pdz|2 = Mul.[n~ 1 dz + dz|?

where A > 0 and |u| < 1 and A and p = pq + iup are functions
of z. the function y is called the Beltrami differential (of the
Riemannian metric). To get between the two:

2)‘MZ = bv

A+ [ +2u1) = a,
A+ 12— 21) = .



Then
ac — b* = N(1 — |uf?)?
and
ac—b? 11— |uf?
(@a+c)? 1+[uf
So u is bounded from 1 if the ratio of the eigenvalues of A is
bounded above and below, where

()

There is a relation between the argument of ;(z) and the major
axis of the ellipse associated to the metric at z. If +v is the
direction of the major axis then

arg(n) = arg(v?).



Transforming Riemannian metrics

If f: U— V is a diffeomorphism between open subsets of R?,
and o is a Riemannian metric on V then we can define a
Riemannian metric f*o on U by the following formula. If o is
given in classical terminology by adx? + 2bdxdy + cdy? then

f*o is given by
T(a b ax
@ o (2 2)or (%)

where Df is the 2 x 2 matrix representing the derivative. If
¢1(v1) denotes length of a path 4 with respect to o and ¢2(~2)
denotes length of a path ~» with respect to f*(o) then

la(v) = t1(f o)

This follows from the definition of f*o and the chain rule for
differentiating f o .



Note that f* is a contravariant functor, that is
(fog)'o=gfo

(where defined).



Transforming the standard metric in the complex

notation
The standard metric og is dx? + dy? = |dz|2. Suppose that
f: U — Vis adiffeomorphism between open subsets U and V
of C. So f is a complex-valued function on a complex domain,
and the same is true for the partial derivatives f, and f,. Write

= %(fx + ify)
If f is holomorphic, then, by the Cauchy-Riemann equations,
f, = f and f; = 0. Write

dz = dx + idy

dz = dx — idy

Then
fxdx + f,dy = f,dz + ;dz



Then f*oq is given by

|fdx + f,dy|? = |f,dz + dZ[?

2

= |fz,2

dz + Ed?
f;




Transforming fields of ellipses and Beltrami
differentials

If o is the standard metric dx? + dy? = |dz|? and g is
holomorphic then write

f*oo = M|dz + p1dz|?

g oo = Xo|dZ + p2dz|?

Then
_9(2)
A =|d'|AMog
In particular,

l2lloe = [l11oo-



Also since
D(fo g)"D(f o g) = Dg™ (Df" Df\Dg

the major and minor axes for the ellipse at z for g*f*o¢ map
under Dg to those for f*o. If the major axis of the ellipse at z for
g*f*oq is in the direction of +v (v € C) then the direction for
f*op at g(2) is £g'(z)v.



The Riemann Mapping Theorem

Write
D={z:|z| <1}

The classical Riemann mapping theorem (easy version) says
that if U is an simply connected proper open subset of C, then
there exists a holomorphic bijection o : U — D.



One way to prove this (not the easiest) would be to find an
orientation-preserving diffeomorphism g : D — U, giving rise to
a Riemannian metric g*og onD . As before, oy denotes the
standard metric |dz|? on U (or on any domain in C). Then
suppose we can find an o-p diffeomorphism f : D — D with

f*O'o = )\g*ao
for a strictly positive function A\. Then
(9 ") oo = (fog 1) oo = oo

So
D(fog ") D(fog) =\l



Then D(f o g~') must be a multiple of an orthogonal matrix and
of positve determinant. So the partial derivatives of fo g~
satisfy the Cauchy-Riemann equations, and fog=' : U — Dis
holomorphic.



The Measurable Riemann Mapping Theorem

This theorem has a long history. The version usually now used
is that of L. Ahlfors and L.Bers in Annals of Math., 72 (1960),
385-404. There are versions for C, C and the unit disc D. Let U
be any one of these three.



Theorem 1 Suppose that ;1 € L>°(U) with ||1]|sc < 1. Then
there exists a homeomorphism f : U — U which is differentiable
a.e., with partial derivatives locally LP for some p > 2 and

That is, for some X\ > 0
f*oo = N dz + pdz|?.

Moreover f is unique up to left composition with a Mébius
tfransformation.

Such a homeomorphism f is quasi-conformal (and o-p). It is
holomorphic if x = 0 a.e.



Quasi-conformal Maps

The standard reference is Ahlfors’ book

Lectures on Quasiconformal mappings

Take d to be the Euclidean metric if D = C or D and the
spherical metric if U = C. Let B(z, r) denote the ball of radius r
centred on z in this metric. The simplest topological definition
for a quasiconformal map is the following. f: U — U is
quasiconformal if it is a homeomorphism and there exists a
constant Ky such that for all z € U and each ball B(z, r), there
is r; such that

B(f(z),r1)  f(B(z,r)) C B(f(z),Kir)



Anhlfors gives two definitions which are equivalent to this, and
he proves their equivalence, but neither of them is this definition
(for good reason).



Modulus of a topological rectangle

Any closed topological disc R in the plane with four marked
points x; (1 < i < 4 in anticlockwise direction) on the boundary
is homeomorphic to a rectangle, with the four marked points
mapping to the vertices. So R can therefore be referred to as a
topological rectangle. A strengthening of the Riemann mapping
theorem imples that this homeomorphism can be realised by a
map which is holomorphic on the interior. For unique numbers
a> 0, b > 0 there is a homeomorphism

¢e:R—={x+iy:0<x<a0<y<b}

whijich is holmorphic on the interior of R and mapping x; to 0,
X2 10 a, x3 to a+ ib, and x4 to ib. a/b is then defined to be the
modulus mod(R) of R.



Ahlfors’ definitions

Definition 1 A homeomorphism ¢ : U — U is K
-quasiconformal if for any topological rectangle R

mod(R)

% < mod(R) < Kmod(R).

Definition 2 A homeomorphism ¢ : U — U is K
-quasiconformal if partial derivatives fy, f, exist a.e. in U, and
are locally L'along a.e. horizontal line in U, and a.e. vertical
line in U, and

|| < k||

where

K= 1



Continuity, Differentiability, and Holomorphicity

The Ahlfors Bers paper is famous for results about families of
Beltrami differentials which vary continuously, differentiably or
holomorphically. We keep to the notation of Theorem 1.



Theorem 2 Let A — py : A — L*(U) (A € A be a continuous
family of Beltrami differentials with ||ix||cc < k for some k < 1.
Then A — f,, Is:

» locally uniformly continuous in C(U)

» locally Hélder on C*(U) for some o > 0

» the partial derivatives (f,, )x and (1., ), are continuous in

the local LP topology.

If X — py 2 N is locally uniformly differentiable/holomorphic in

L>°, then A — f,, is differentiable/holomorphic with respect to
the same list of seminorms.



In particular this theorem implies that if A — py : A — L>°(U) is
continuous/holmorphic, then so is

A= f(2):N=U

for each z € U.



