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Representation space

I Throughout this lecture, Γ0 is a finitely generated group
and ρ : Γ0 → Γ ≤ PSL(2,C) is a group isomorphism.

I If Γ0 has a generating set with r elements, then we can
identify the set of all (Γ, ρ) with a closed affine subvariety of
(PSL(2,C))r .

I We are interested in the case when Γ is Kleinian, that is
discrete.
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Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Quasi-conformal deformations

Definition. (Γ2, ρ2) is a quasi-conformal deformation of (Γ1, ρ1)
if there is a quasiconformal homeomorphism ϕ of C such that
ρ2(γ0) ◦ ϕ = ϕ ◦ ρ1(γ0) for all γ0 ∈ Γ0.

I In this case, γ → ϕ ◦ γ ◦ ϕ−1 : Γ1 → Γ2 is a group
isomorphism.

I The derivative Dϕ, which is defined a.e., defines a
Γ1-invariant field of ellipses by

xT DϕT
z Dϕzx = const.

I This also defines a Γ1- invariant line field, taking the the
major axis or 0 depending on whether the ellipse is not, or
is, a circle.

I Alternatively, ϕz/ϕz is a Γ1-invariant Beltrami-differential.



Stable representations

Definition.A group Γ, ρ is stable if for any representation
ρ : Γ0 → Γ and any (Γ′, ρ′) sufficiently close to (Γ, ρ) there is a
homeomorphism ϕ : C→ C such that

ϕ(ρ(γ).z) = ρ′(γ′.ϕ(z))

for all γ ∈ Γ0 and z ∈ C. It is relatively straightforward to prove
that any finitely generated Kleinian group Γ which acts
hyperbolically on LΓ is stable. The following theorem is due to
Sullivan.

Theorem
If Γ is stable then Γ acts hyperbolically on LΓ.
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The Ingredients

I The Sullivan-Mane-Sad λ-lemma, which implies that all
nearby maps are actually quasiconformally conjugate:
λ-Lemma If Λ ⊂ Cn is open and X ⊂ C with Φ(0, z) = z
and Φ : Λ× X → C : (λ, z) 7→ Φ(λ, z) is holomorphic in λ,
and injective on X for each fixed λ, then the map
z 7→ Φ(λ, z) extends to a quasi-conformal homeomophism
from X to its image.

I An argument due to Thurston, which shows that the
representation space is bounded below by a sum of
numbers, one corresponding to each topological end of the
manifold. This, in turn, depends the existence, in
hyperbolic 3-manifold with finitely generated fundamental
group of the compact Scott core;

I The following theorem (also due to Sullivan)
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Invariant line fields

Theorem
Let Γ be a finitely generated Kleinian group. Then any
Γ-invariant line field is supported a.e. on the domain of
discontinuity ΩΓ.
The analogues of Sullivan’s Theorems for holomorphic maps,
even for polynomials, is still unknown, although quasi-conformal
rigidity is now known in some cases.
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Further remarks.

I The Ahlfors Conjecture, that the limit set of a Kleinian
group is either C or of zero measure, has now been
proved. This does not imply Sullivan’s theorem in the case
when the limit set is C.

I The analogue of the Ahlfors conjecture is now known to be
false for polynomials (Buff and Cheritat).

I An eventual corollary of Sullivan’s No-invariant line fields,
and the Ahlfors’ Finiteness Theorem is that the
quasi-conformal deformation space of (Γ, ρ) is a
finite-dimensional manifold, whose dimension can be
computed.
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Recurrent and Dissipative

Definition. The action of Γ on LΓ is said to be recurrent if for
any set U ⊂ LΓ of positive Lebesgue measure, there exists
γ ∈ Γ with γ 6= I such that U ∩ γ.U has positive measure.

I If the action of Γ on L is not recurrent then there exists a
set U of positive measure such that all the sets γ.U are
disjoint. We then write

Γ.U = ∪γ∈Γγ.U

I In this case, there is a positive measure set V which is of
the form Γ.U for some such U, which contains a.e. point of
Γ.U1, for any measurable set U1 such that the sets γ.U1
are all disjoint.

I Such a set V , which is defined modulo sets of measure 0,
is called the dissipative part of the action of Γ on LΓ. the
complement is the recurrent part
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No dissipative part

Sullivan proved the absence of invariant line fields by the
following reduction.

Lemma
Let Γ be a finitely generated Kleinian group. Then the action of
Γ on LΓ has no dissipative part modulo sets of measure 0. That
is, the action is recurrent.
Proof

I The proof is by contradiction. We assume that there is a
dissipative part.

I This gives an infinite-dimensional space of Γ-invariant
Beltrami differentials on C.

I This, in turn, gives an infinite-dimensional space of
Kleinian groups isomorphic to Γ, which is impossible.
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The infinite dimensional space of Beltrami differentials

I Suppose for contradiction that there is a set U ⊂ LΓ of
positive measure such that the sets γ.U are all disjoint.

I Then the space of Beltrami differentials supported on U is
infinite dimensional. To find an infinite linearly independent
set we can for example choose disjoint positive measure
sets Uj in U and let µj ∈ L∞(Uj) with ‖µj‖ ≤ 1

2 . Then

{
∑

j

αjµj : αj ∈ C,
∑

j

|αj | ≤ 1}

is an infinite-dimensional family of Beltrami differentials on
U.

I Any Beltrami differential µ on U extends to a unique
Γ-invariant Beltrami-differential on Γ.U (γ∗µ = µ for all
γ ∈ Γ) and then to C by taking it to be 0 on the complement
of Γ.U.
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The corresponding Kleinian groups

I We start with a Γ-invariant Beltrami differential µ.
I Let ϕµ be the quasi-conformal homeomorphism with
ϕ∗µ(0) = µ, that is

(ϕµ)z = µ(ϕµ)z .

Note that this implies µ 7→ ϕµ is injective.
I The homeomorphism ϕµ is unique if we normalise it to fix

0, 1 and∞.
I For any γ ∈ Γ, ϕµ ◦ γ ◦ ϕ−1

µ is a Möbius transformation
because it is quasi-conformal and

(ϕµ ◦ γ ◦ ϕ−1
µ )∗0 = (γ ◦ ϕ−1

µ )∗(µ) = (ϕ−1
µ )∗(µ) = 0.

I So ϕµ ◦ Γ ◦ ϕ−1
µ is a Kleinian group Γµ.
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Properties of the map µ 7→ Γµ

I The map µ 7→ Γµ is holomorphic in µ because ϕµ ◦ γ ◦ ϕ−1
µ

maps 0,∞ and 1 to ϕµ(γ.0), ϕµ(γ.∞) and ϕµ(γ.1), and
these are holomorphic in µ by the Measurable Riemann
Mapping Theorem.

I Since the map µ 7→ ϕµ is injective, the map µ 7→ Γµ is also
injective.
For if Γµ1 = Γµ2 and ϕ−1

µ1
◦ ϕµ2 = ϕ, then ϕ(γ.z) = γ.ϕ(z)

for all z ∈ C. It follows that ϕ fixes all fixed points of
hyperbolic elements of Γ and must be the identity on LΓ.
Since ϕ is holomorphic on ΩΓ, it is holomorphic on C and
must be the identity. So ϕµ1 = ϕµ2 and µ1 = µ2.



Properties of the map µ 7→ Γµ

I The map µ 7→ Γµ is holomorphic in µ because ϕµ ◦ γ ◦ ϕ−1
µ

maps 0,∞ and 1 to ϕµ(γ.0), ϕµ(γ.∞) and ϕµ(γ.1), and
these are holomorphic in µ by the Measurable Riemann
Mapping Theorem.

I Since the map µ 7→ ϕµ is injective, the map µ 7→ Γµ is also
injective.
For if Γµ1 = Γµ2 and ϕ−1

µ1
◦ ϕµ2 = ϕ, then ϕ(γ.z) = γ.ϕ(z)

for all z ∈ C. It follows that ϕ fixes all fixed points of
hyperbolic elements of Γ and must be the identity on LΓ.
Since ϕ is holomorphic on ΩΓ, it is holomorphic on C and
must be the identity. So ϕµ1 = ϕµ2 and µ1 = µ2.



Properties of the map µ 7→ Γµ

I The map µ 7→ Γµ is holomorphic in µ because ϕµ ◦ γ ◦ ϕ−1
µ

maps 0,∞ and 1 to ϕµ(γ.0), ϕµ(γ.∞) and ϕµ(γ.1), and
these are holomorphic in µ by the Measurable Riemann
Mapping Theorem.

I Since the map µ 7→ ϕµ is injective, the map µ 7→ Γµ is also
injective.

For if Γµ1 = Γµ2 and ϕ−1
µ1
◦ ϕµ2 = ϕ, then ϕ(γ.z) = γ.ϕ(z)

for all z ∈ C. It follows that ϕ fixes all fixed points of
hyperbolic elements of Γ and must be the identity on LΓ.
Since ϕ is holomorphic on ΩΓ, it is holomorphic on C and
must be the identity. So ϕµ1 = ϕµ2 and µ1 = µ2.



Properties of the map µ 7→ Γµ

I The map µ 7→ Γµ is holomorphic in µ because ϕµ ◦ γ ◦ ϕ−1
µ

maps 0,∞ and 1 to ϕµ(γ.0), ϕµ(γ.∞) and ϕµ(γ.1), and
these are holomorphic in µ by the Measurable Riemann
Mapping Theorem.

I Since the map µ 7→ ϕµ is injective, the map µ 7→ Γµ is also
injective.
For if Γµ1 = Γµ2 and ϕ−1

µ1
◦ ϕµ2 = ϕ, then ϕ(γ.z) = γ.ϕ(z)

for all z ∈ C. It follows that ϕ fixes all fixed points of
hyperbolic elements of Γ and must be the identity on LΓ.
Since ϕ is holomorphic on ΩΓ, it is holomorphic on C and
must be the identity. So ϕµ1 = ϕµ2 and µ1 = µ2.



Preservation of dimension

I Any holomorphic (or C1) map from one manifold to another
is a submersion onto a submanifold, restricted to any open
set on which the rank of the derivative is constant.

I Hence, if µλ is any holomorphic family of Beltrami
differentials parametrised by an open set Λ of some Cn

then the map Φ : λ→ Γµλ
is a diffeomorphism restricted to

the subset of Λ on which the derivative of Φ has maximal
rank.

I Hence
dimΦ(Λ)) ≥ dim(Λ).

I The dimension of Λ can be taken arbitrarily large and the
(complex) dimension of Φ(Λ) is bounded by three times the
number of generators of Γ.

I This gives a contradiction, completing the proof that the
action of Γ on LΓ is recurrent. There is no dissipative part.
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The recurrent part

The strategy for showing that there is no nontrivial measurable
invariant line field on LΓ is by contradiction. So assume that
there is a nontrivial measurable invariant line field on LΓ.

I By Egoroff’s Theorem, there is a compact set K of strictly
positive Lebesgue measure restricted to which the line
field is continuous.

I By compactness, the line field is uniformly continuous
restricted to K . So given ε > 0 there is δ > 0 such that the
direction of the line field varies by at most ε on the
intersection of K with any ball of radius δ.

I By a basic result in geometric measure theory, almost
every point z of K is a Lebesgue density point of K , that is,

lim
r→0

meas(K ∩ Br (z))

measBr (z))
= 1.

I Let K1 be the set of points in K where the density in Br ′(z)
is at least 1− ε0 for all r ′ ≤ r , choosing r so that K1 has
positive measure.
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Continued..

I By recurrence, for a.e. z ∈ K1, γ.z ∈ K1 for infinitely many
γ.

I The aim is to show that the line field cannot vary in
direction by < ε on both Bδ(z) and Bδ(γ.z).

I Use the compact-abelian-compact decomposition

γ = ±P∆Q

where

∆ =

(
λ 0
0 λ−1

)
with 0 < λ < 1.
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I Then for a constant C, either |γ.z − P.0| < Cλ or
|z −Q−1.∞| < Cλ.

I We can assume λ small enough that 2Cλ < r .
I In the first case consider the image under γ−1 of

{z ′ : |z ′ − γ.z| < Cλ}

I If the line field is within ε on proportion ≥ 1− ε0 of
BCλ(γ.z) then it cannot be so for BCλ(z).

I The other case is similar.
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