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Möbius transformations
Möbius transformations are simply the degree one rational
maps of C:

σA : z 7→ az + b
cz + d

: C→ C

where
ad − bc 6= 0

and

A =

(
a b
c d

)

Then

A 7→ σA : GL(2C)→ {Mobius transformations }

is a homomorphism whose kernel is

{λI : λ ∈ C∗}.

The homomorphism is an isomorphism restricted to SL(2,C),
the subgroup of matrices of determinant 1.



Möbius transformations
Möbius transformations are simply the degree one rational
maps of C:

σA : z 7→ az + b
cz + d

: C→ C

where
ad − bc 6= 0

and

A =

(
a b
c d

)
Then

A 7→ σA : GL(2C)→ {Mobius transformations }

is a homomorphism whose kernel is

{λI : λ ∈ C∗}.

The homomorphism is an isomorphism restricted to SL(2,C),
the subgroup of matrices of determinant 1.



Möbius transformations
Möbius transformations are simply the degree one rational
maps of C:

σA : z 7→ az + b
cz + d

: C→ C

where
ad − bc 6= 0

and

A =

(
a b
c d

)
Then

A 7→ σA : GL(2C)→ {Mobius transformations }

is a homomorphism whose kernel is

{λI : λ ∈ C∗}.

The homomorphism is an isomorphism restricted to SL(2,C),
the subgroup of matrices of determinant 1.



We have an action of GL(2,C) on C by

A.(B.z) = (AB).z, A, B ∈ GL(2,C), z ∈ C.

The action of SL(2,R) preserves the upper half-plane

{z ∈ C : Im(z) > 0}

and also R ∪ {∞} and the lower half-plane. The action of the
subgroup

SU(1,1) =

{(
a b
b a

)
: |a|2 − |b|2 = 1

}
preserves the open unit disc, the closed unit disc, and its
exterior.
All of these actions are transitive that is, for all z and w in the
domain there is A in the group with A.z = w .
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Kleinian groups

Definition 1 A Kleinian group is a subgroup Γ of PSL(2,C)
which is discrete, that is, there is an open neighbourhood
U ⊂ PSL(2,C) of the identity element I such that

U ∩ Γ = {I}.

Definition 2 A Fuchsian group is a discrete subgroup of
PSL(2,R)
Equivalently (as usual with topological groups) there is an open
neighbourhood V of I such that

γV ∩ γ′V = ∅

for all γ, γ′ ∈ Γ, γ 6= γ′. To get this, choose V with V = V−1 and
V .V ⊂ U.
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Limit set

Definition 3 The domain of discontinuity ΩΓ of Γ is the set of all
z ∈ C such that , for some open neighbourhood U of z,
γ.U ∩ U 6= ∅ ⇔ γ.z = z.

Definition 4 The limit set LΓ is the complement of ΩΓ.
Every Möbius transfomation which is not the identity has 1 or 2
fixed points in C
Definition 5 A hyperbolic element of Γ, is an element which has
two fixed points in C with multipliers at both points off the unit
circle. An elliptic element has two fixed points with multiplier on
the unit circle. A parabolic element has just one fixed point.
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Properties in brief

I LΓ is always nonempty, closed and invariant under Γ.
I It is infinite except when Γ is elementary, that is,

abelian-by-finite. If it is infinite elementary, it can consist of
one or two points, depending on whether the infinite order
generator is parabolic or hyperbolic.

I If Γ is nonelementary, LΓ is the closure of the set of fixed
points of hyperbolic elements of Γ.

I The domain of discontiuity is open, invariant under Γ and
possibly empty.

I Γ acts minimally on LΓ, that is for every z ∈ LΓ, the set
{γ.z : γ ∈ Γ} is dense in LΓ.

I Γ acts transitively on LΓ that is, for any open sets U and V
intersecting LΓ, there is γ ∈ Γ such that γ.U ∩ V 6= ∅.
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Extension of the SL(2, C) action

There is an an extension of the SL(2,C) action to upper half
space which mimics the action of SL(2,R) on the upper half
plane. One neat way of describing the action is to regard upper
half space as a subset of the quaternions and to use
mutliplication and division in the quaternions. So write

H3 = {x + yi + tj : t > 0, x , y ∈ R} = {z + tj : t > 0, z ∈ C}.

Then SL(2,C) acts on H3 by

A.w = (aw + b)(cw + d)−1 if A =

(
a b
c d

)
.
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Why does it work?

Note that
w−1 =

w
|w |2

where
x + iy + tj + uk = x − yi − tj − uk ,

|w |2 = ww .

Then

A.w =
ac|w |2 + bd + (ad − bc)w

|cw + d |2
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Preservation of the hyperbolic metric.

The action of SL(2,C) preserves the metric on H3 given in
classical form by

dx2 + dy2 + dt2

t2 .

With this metric, H3 is hyperbolic space.The action also
preserves the set of hemispheres with centres on the place
{t = 0} and vertical half-planes — all of which surfaces are
totally geodesic — and the horizontal planes and spheres in H3

which are tangent to {t = 0}.
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The action of a Kleinian group on H3.

The stabiliser of j under the SL(2,C) is the compact group

SU(2,C) =

{(
a b
−b a

)
: |a|2 + |b|2 = 1

}
.

I It follows that if Γ is Kleinian then there is an open
neighbourhood U of j in H3 such that

{γ ∈ Γ : γU ∩ U 6= ∅} = {γ ∈ Γ : γ.j = j}

and this set is finite and consists of finite order elements .
I If Γ has no finite order elements apart from the identity

element then this set is simply the identity element.
I Since SL(2,C) acts isometrically, it follows that the action

of a Kleinian group on H3 is discrete.
I If Γ has no finite order elements apart from the identity

then H3/Γ is a hyperbolic manifold with covering group Γ.
I If Γ does have finite order elements then H3/Γ is a

hyperbolic orbifold
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Is there an analogue?

I Analogues of the extension from C to H3 have been sought
in holomorphic dynamics, in particular for rational maps, for
example in work of Lyubich and co-workers.

I But there is no easy analogue.
I But we continue the elementary part of the dictionary,

promoted by Sullivan in the 1980’s.
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Action on the domain of discontinuity

We fix a Kleinian group Γ with domain of discontinuity ΩΓ

I Γ preserves ΩΓ.

I The stabiliser of a component U of ΩΓ is a subgroup Γ1 of
Γ.

I Since Γ1 acts discretely on U, the quotient U/Γ1 is a
Riemann surface, and if Γ1 has no finite order elements
(apart from the identity) then Γ1 is a quotient group of the
covering group.

I If U is simply connected then Γ1 is the covering group of
U/Γ1.
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Here is an analogue of Sullivan’s theorem on the nonexistence
of wandering domains in the Fatou set for rational functions. the
theorem was first proved by Ahlfors (Tulane Symposium on
quasiconformal mappings, 1967), but Sullivan gave a proof
based on a variaant of his wandering domains proof (Ann of
Mathh 122, 1985).

Ahlfors’ finiteness theorem Let Γ be finitely generated. Then
for any component U of ΩΓ with stabiliser Γ1, U/Γ1 is always an
analytically finite surface, that is, a compact surface minus
finitely many punctures. There are only finitely many orbits of
the Γ-action in ΩΓ.
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Analogue of hyperbolicity

We say that Γ acts hyperbolically or is convex cocompact if one
of the two following equivalent properties holds.

I There is a covering of LΓ by finitely many open balls Ui
(1 ≤ i ≤ n) such that, for each ε > 0, there is a covering of
LΓ by sets of the form γ.Ui with γ ∈ Γ and of radius < ε in
the spherical metric.

I (H3 ∪ ΩΓ)/Γ is compact.
Necessarily, if Γ acts hyperbolically then Γ is finitely generated
and every element is either hyperbolic or elliptic.
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Cusps

A maximal parabolic subgroup in a Kleinian group Γ is the
stabiliser Γz . of an element z ∈ C, if this group contains at least
one parabolic element. If one element in Γz is parabolic then all
elements are either parabolic or elliptic. The group Γz
preserves any ball or sphere in H3 tangent at z. We shall call z
a parabolic point.
Such balls and spheres are called horoballs and horospheres
at z. There is at least one horoball B at z such that γ.B ∩ B 6= ∅
⇔ γ ∈ Γz , in which case, of course, γ.B = B.
The quotient space B/Γz in H3/Γ is called a cusp
neighbourhood. The following theorem was proved by Sullivan
(Acta Math 147 1981, 289-299).
Sullivan’s finite cusps theorem Let Γ be finitely generated.
There are only finitely many conjugacy classes of maximal
parabolic subgroups in Γ.
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Geometrically finite groups

A finitely generated Kleinian group is called geometrically finite
if for representatives zi , 1 ≤ i ≤ n of the parabolic point orbits,

(H3 ∪ ΩΓ ∪ Γ.{zi : 1 ≤ i ≤ n})/Γ

is compact. Geometrically finite groups have some nice
properties that are reasonably easy to prove.

I Either the limit set is C or it has zero measure.
I If the limit set is connected then it is locally connected.

The first property is now known to hold for all finitely generated
Kleinian groups and not to hold for rational maps, nor even for
polynomials (proved by Buff and Cheritat in 2005).
The second property has been claimed at least for a large class
of groups, by Mitra (also known as Brahmachaitanya).
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Structural Stability

A convex cocompact group Γ is fairly easily proved to be
structurally stable, that is, if the generators γi of Γ are moved
sufficiently little then the resulting group Γ′ with generators γ′i is
also Kleinian and quasiconformally conjugate to Γ′, that is there
is a q-c map ϕ : C→ C such that

ϕ(γi .z) = γ′i .ϕ(z)

for all generators γi and all z ∈ C.
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Structural Stability and no invariant line fields

Sullivan proved the converse. In fact he proved more (Acta
Math 155 1985 243-260)
Sullivan’s no invariant line field theorem

I If Γ is finitely generated Kleinian and structurally stable,
then every conjugacy to a sufficiently nearby group is
quasiconformal.

I The quasi-conformal deformation space of any finitely
generated Kleinian group is naturally isomorphic to the
Teichmuller space of ΩΓ/Γ.

I There are no invariant line fields on the limit set.
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The dictionary on density and structural stablity

I Sullivan was able to prove that all structurally stable
Kleinian groups are “good” (convex cocompact) but was
unable to prove that structurally stable groups are dense.

I He proved with Mane and Sad that structurally stable
rational maps are dense but was unable to prove that
structurally stable rational maps are hyperbolic.

I It is now known that geometrically finite groups are
dense.(First main results due to Brock and Bromberg.)
Theorem Let M = H3/Γ is any hyperbolic 3-manifold such
that π1(M) is finitely generated and a representation
ρ : π1(M)→ Γ is fixed. Then there is a sequence
ρn : π1(M)→ Γn) such that ρn → ρ and H3/Γn → H3/Γ and
Γn is geometrically finite.

I Density of hyperbolicity in any reasonable family of rational
maps is conjectured but still unknown.
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