
Symmetri
 X9 singularitiesand the 
omplex aÆne re
e
tion groupsVi
tor Goryunovto Vladimir Igorevi
hon the o

asion of his 70th birthdayAbstra
tWe establish a natural 
orresponden
e between the �nite order automorphisms ofthe fun
tion singularities X9 and the 
omplex 
rystallographi
 groups. The 
ompletelist of the related obje
ts is obtained.Relations between singularities and Coxeter groups is a 
lassi
al area of singularity the-ory, going ba
k to the fundamental works by Arnold [1℄ and Brieskorn [6℄. Re
ently it wasobserved that these relations 
an be extended to in
lude symmetri
 simple fun
tions singu-larities on one hand and 
ertain Shephard-Todd groups on the other [11, 12, 13℄. In thispaper we are making a further natural step in this dire
tion by relating symmetries of thefun
tion singularities X9 to a number of Popov's 
omplex 
rystallographi
 groups [16℄. Ap-pearan
e of 
omplex aÆne re
e
tion groups in equivariant monodromy of paraboli
 fun
tionsingularities with symmetry is the �rst appearan
e of su
h groups in any singularity 
ontext(see also [14℄).The stru
ture of the paper is as follows.Se
tion 1 introdu
es the 
rystallographi
 groups to be related to the fun
tion singularities.In addition, in Subse
tion 1.2 we des
ribe a way to 
onstru
t a 
omplex aÆne re
e
tion groupfrom a semi-de�nite hermitian form of 
orank 1.Se
tion 2 lists �nite order automorphisms of the X9 fun
tions. It also shows how therank 2 kernel of the X9 hermitian interse
tion form is shared by various 
hara
ter subspa
esH� of the symmetry a
tion on the middle vanishing homology.Se
tion 3 is devoted to the proof of the main result of the paper that all the 
omplex aÆnere
e
tion groups arising from the equivariant monodromy of the symmetri
 X9 singularitieson the appropriate H� via the 
onstru
tion of Subse
tion 1.2 are a
tually 
rystallographi
.
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1 AÆne re
e
tion groups1.1 The 
omplex 
rystallographi
 groupsAn aÆne re
e
tion in C n is an aÆne unitary transformation identi
al on a hyperplane. Thehyperplane is 
alled the mirror of the re
e
tion. A group generated by su
h re
e
tions andhaving a 
ompa
t fundamental domain is 
alled 
omplex 
rystallographi
. These groups were
lassi�ed by V. L. Popov in [16℄.For a 
omplex 
rystallographi
 group W , we denote by L � Un its linear part, that is theimage of W under the natural map W ! Un. The group L is a Shephard-Todd group. LetT be the maximal translation subgroup ofW . Then W is an extension of L by T . Unlike thereal 
ase, W may not be the semi-dire
t produ
t of its linear and translation parts. However,all the groups we will need in our 
urrent singularity 
ontext are su
h produ
ts.We shall now des
ribe the �ve groups to be involved. Mirrors of L will be identi�ed bytheir normals whi
h we shall 
all roots.The linear parts of the groups we will need are the Shephard-Todd groups L = G(4; 1; 2),G(6; 2; 2); G3(6); G8; G26 (see [17, 16℄). Their Dynkin diagrams are given in Figure 1. Thevertex set of a diagram there represents a set of generating re
e
tions. Ea
h vertex is aunit root and is marked with the order of the re
e
tion, order 2 omitted. An edge a! b isequipped with the hermitian produ
t ha; bi. As usual, ! = e2�i=3. The edge orientation isomitted if the produ
t is real, and there is no edge at all if the roots are orthogonal. All thediagrams were 
onstru
ted using the roots from Table 2 of [16℄ (see also [9℄). The rank ofthe group G(6; 2; 2) is 2. The rank of any other group is equal to the number of verti
es inits diagram.
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(1−ω)/2Figure 1: Dynkin diagrams of the Shephard-Todd groups. All roots are unit.In the notation of [16℄, the 
rystallographi
 groupsW with the above linear parts that willbe related to fun
tion singularities in this paper are [G(4; 1; 2)℄2; [G(6; 2; 2)℄2; [K3(6)℄; [K8℄,[K26℄1. The latti
e T is spanned by the L-orbit of any root of L of order 2 in the �rst two
ases, of any root in the next two, and of any root of order 3 in the last 
ase.All the 
rystallographi
 groups have the 
onjugate versions, with i and ! repla
ed bytheir 
onjugates. However, the 
onjugations yield the same groups.
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1.2 AÆne groups de�ned by 
orank 1 hermitian formsThe relation between the 
rystallographi
 groups and fun
tion singularities we are going toestablish is based on the following 
onstru
tion of a 
omplex re
e
tion group from a 
orank1 hermitian form (
f. [5℄).Let eq be a 
orank 1 semi-de�nite hermitian form on eV = C n+1 . Choose a basis e0; e1; : : : ; enin eV so that e0 is in the kernel K of the form. The span of the ej>0 will be denoted V ,and v will stay for the V -
omponent of ev 2 eV : ev = v0e0 + v. In all the matrix expressionsbelow, with a minor abuse of the notation, elements v 2 V will be treated as 
olumns oftheir 
oordinates vj>0. For example, eq(ev; ew) = vTQw, where Q = (eq(ei; ej))i;j>0 is the matrixof the restri
tion q = eqjV .We 
onsider the spa
e eV � dual to eV as K� � V . For 
oordinates on it we 
hoose�0; �1; : : : ; �n so that a linear fun
tional e� on eV is written ase�(ev) = v0�0 + vTQ� = v0�0 + q(v; �):Take a pseudo-re
e
tion on eV (that is a transformation given by the same formula as are
e
tion had the form eq been non-degenerate) with a root eu =2 K and the eigenvalue �:A : ev 7! ev � (1� �)eq(ev; eu)eu=eq(eu; eu) = �v0 + 
q(v; u)u0�e0 + �v + 
q(v; u)u�;where 
 = (�� 1)=q(u; u). For the dual transformation A�, we have(A�e�)ev = e�(A�1ev) = v0�0 + vTQ� + 
vTQ(u0�0 + uTQ�)u = v0�0 + vTQ(� + 
e�(eu)u) :Therefore, the dual transformation sends ea
h of the hyperplanes �0 = 
onst into itself andon su
h a hyperplane it a
ts as� 7! � + 
e�(eu)u = �� (1� �)�0u0 + q(�; u)q(u; u) u ; (1)where q is the hermitian form on V 
onjugate to q: it has the matrix Q = QT in the basisej>0. If �0 6= 0, then this is an aÆne re
e
tion on the hyperplane � = f�0 = 
onstg ' V ,with the root u, mirror e�(eu) = �0u0 + q(�; u) = 0 and eigenvalue �. For u0 = 0, thetransformation is linear.2 Smoothable symmetries of X9Now we introdu
e the fun
tion singularities we will be dealing with.Let f be a holomorphi
 fun
tion-germ on (C n ; 0), with an isolated singularity at theorigin. Consider a di�eomorphism-germ g of (C n ; 0) sending the hypersurfa
e f = 0 intoitself. It multiplies f by a fun
tion 
 not vanishing at the origin. In what follows we assumeg is of a �nite order, so 
 is a 
onstant, a root of unity.Let O(g; 
) be the spa
e of all holomorphi
 fun
tion-germs on (C n ; 0) multiplied by 
under the a
tion of g. The group Rg of biholomorphism-germs of (C n ; 0) 
ommuting with3



g a
ts on O(g; 
). The 
orresponding equivalen
e is a geometri
 equivalen
e in the sense ofDamon [10℄. Therefore, the base of an Rg-miniversal deformation of f in O(g; 
) is smoothand su
h a deformation 
an be 
onstru
ted in the standard way [10, 4℄.De�nition 2.1 An automorphism g of a hypersurfa
e f = 0 is 
alled smoothable if anRg-versal deformation of fun
tion f 
ontains members with smooth zero sets.If g is su
h an automorphism, then the zero level M of a generi
 member of an Rg-versaldeformation is a g-invariant Milnor �bre of f . Hen
e, g a
ts on the homology of M andprovides the splitting Hn�1(M; C ) = ��H� ; �order(g) = 1 ; (2)of the middle homology, in whi
h g a
ts on an individual summand as a multipli
ation bythe 
hara
ter �. The equivariant monodromy group, that is the monodromy within an Rg-versal deformation of f , preserves the splitting. The monodromy a
tion on the H� will beour sour
e of 
omplex 
rystallographi
 groups, upon an appli
ation of the 
onstru
tion ofSe
tion 1.2.We restri
t our attention to 
lassi�
ation of smoothable automorphisms of 
urves of theX9 family x4 + ax2y2 + y4 = 0 ; a2 6= 4: (3)The 
lassi�
ation is up to holomorphi
 
hanges of the 
oordinates. Our a
tual major aim is toobtain the homology splitting (2), therefore we will not distinguish between automorphismsgenerating the same 
y
li
 groups. Moreover, we prefer to have a hermitian interse
tion formon the middle homology rather than skew-hermitian. Be
ause of that, we stabilise equation(3) by adding z2 to the left-hand side. Respe
tively, g starts a
ting on z by multipli
ationby one of two possible square roots of 
. We 
all this a
tion stabilised . The ambiguityin 
hoosing a root a�e
ts only the 
hara
ter assignment in (2), not the dire
t summandsthemselves. Sin
e only the summands are 
ru
ial for us, we give just one of the 
hoi
es inour 
lassi�
ation. In parti
ular, we set g a
t trivially on z if the fun
tion is g-invariant.Theorem 2.1 The 
omplete list of stabilised smoothable automorphisms of all X9 
urves isgiven in Table 1.In the Table:"r = e2�i=r;the versal monomials are those to add with arbitrary 
oeÆ
ients to f to obtain an Rg-miniversal deformation;the kernel � are the values of the 
hara
ter for whi
h the restri
tions of the hermitianinterse
tion form from H2(M; C ) to the H� are degenerate (see Proposition 2.1 below);the aÆne groups are the 
omplex 
rystallographi
 groups whi
h will be 
onstru
ted inSe
tion 3 from the monodromy on the H� on whi
h the interse
tion form has 
orank 1;similar to [7, 11℄, if the dis
riminant of a symmetri
 fun
tion singularity 
oin
ides withthat of a Weyl group, the group enters the notation, the supers
ripts indi
ating the ordersof the Pi
ard-Lefs
hetz operators (see Se
tion 3);4



the K4;2 is the unimodular boundary fun
tion singularity of [2, 3℄;in all the other 
ases, the notation shows the symmetry group of the singularity, with theverti
al line telling that the fun
tion is invariant under the a
tion and the slash indi
atingthat it is equivariant (
f. [13, 12℄).About the proof of Theorem 2.1. The 
lassi�
ation pro
ess is based on the 
onsiderationhow the automorphism permutes the four bran
hes of the 
urve (3). The smoothability isheavily restri
ted by an obvious observation that, on
e a smoothable di�eomorphism of theplane has been diagonalised, it multiplies fun
tion f by the same fa
tor by whi
h it multipliesone of the monomials 1, x, y (otherwise the zero level of any symmetri
 perturbation off would have had a 
riti
al point at the origin). The rest of the 
lassi�
ation is ratherstraightforward. �For an appli
ation of the 
onstru
tion of Se
tion 1.2, it is 
ru
ial to know how the rank2 kernel of the X9 hermitian interse
tion form is shared by the 
hara
ter subspa
es.Proposition 2.1 The kernel values of the 
hara
ter � for the symmetri
 X9 singularitiesare those given in Table 1.Proof. We distinguish between invariant and equivariant 
ases, that is when 1 respe
tivelyis or is not among the versal monomials.a) In the invariant 
ases, the kernel 
hara
ters are the eigenvalues of the a
tion of g onthe residue forms dxdydz=df and q4(x; y)dxdydz=df , where q4(x; y) is a degree 4 monomialde�ning a non-trivial element in the lo
al algebra of f . The span of the two forms is dual tothe kernel of the interse
tion form on the homology.b) We do the equivariant fun
tions 
ase-by-
ase, mainly using the fa
t that 
y
les in thekernel of the interse
tion form are invariant under any monodromy.X9=Z3. The monodromy � = e2�it, 0 � t � 1, in the family f(x; y; z) + �x = 0 
oin
ideswith the transformation g, hen
e all the kernel of the X9 interse
tion form is in H�=1.X9=Z9. The top-dimensional strata of the dis
riminant of X9=Z3 are 3A1 only. Threeordinary Morse 2-
y
les e, ge and g2e vanishing simultaneously provide an elemente + ��1ge+ ��2g2e 2 H� ; �3 = 1 : (4)This implies that the ranks of all of the three H� are the same, 3. On the other hand,the automorphism of X9=Z3 is the 
ube of that of X9=Z9. Hen
e the kernel 
hara
ters ofX9=Z9 are 
ubi
 roots of unity. Sin
e the kernel 
hara
ter set must be sent into itself bythe 
omplex 
onjugation, we see that for X9=Z9 the kernel of the X9 form is spanned by theone-dimensional spa
es H! and H!.X9=Z12. Take M = fx4 + y4 + z2 � x = 0g as a symmetri
 Milnor �bre. It retra
ts tothe Z12-orbit of the 2-
ell � = f(x; y; z) : 0 � x � 1; y � 0; z 2 Rg � M \ R3 . The linear
ombination 11Xj=0 ��jgj� ; �12 = 1 ; �3 6= 1 ; (5)5



Table 1: Symmetri
 X9 singularitiesf g : x; y; z 7! jgj versalmonomials kernel� aÆnegroup notationx4 ix;�y; z 4 1; y2; x2y �i [G(4; 1; 2)℄2 X9jZ4+y4+z2 ix; y; z 4 1; y; y2 �i [K8℄ A(4)3!x; i!y; !z 12 x �i � X9=Z12x4 ix; i!y; z 12 1 �!;�! � X9jZ12+xy3+z2 �x;�!y; z 6 1; x2 !; ! [K3(6)℄ B(6;3)2x; !y; z 3 1; x; x2; x3 !; ! [K26℄1 C(2;3)4!x; !y;�!z 6 x; y2; x2y �!;�! [G(6; 2; 2)℄2 X9=Z6"9x; "49y; "29z 9 y !; ! � X9=Z9x3y+xy3 + z2 "8x;�"8y; z 8 1 �i � X9jZ8x4 ix;�iy; z 4 1; xy; x2y2 1 � (X9jZ4)0+ax2y2+y4 �x; y; z 2 1; y; y2; x2; x2y; x2y2 �1 � K4;2+z2 !x;�!y; !z 6 x; x2y2 �1 � (X9=Z6)0ix; iy; z 4 1; x2y2 �1 � (X9jZ4)00�x;�y; z 2 1; x2; xy; y2; x2y2 1 � (X9jZ2)00!x; !y; !z 3 x; y; x2y2 1 � X9=Z3
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spans H�. On the other hand, the quasi-homogeneous monodromy in the family x4 + y4 +z2 � e2�itx = 0, 0 � t � 1, is g4. Hen
e the kernel 
hara
ters satisfy �4 = 1. With � = 1prohibited, this gives � = �i.(X9=Z6)0. The square of the X9=Z12 automorphism is the inverse of that of (X9=Z6)0.So, the above implies that the kernel of the X9 form is now the rank 2 spa
e H�=�1.X9=Z6. The deformation f(x; y; z)+�x2y gives an adja
en
y of X9=Z6 to the singularityD6=Z6 of [13, 12℄, all of whose H�, �3 = �1, are of rank 2. The multipli
ity of the X9=Z6dis
riminant is 4, one higher than that of D6=Z6, the in
rease due to the 3A1 stratum. Thisimplies that the dimension of ea
h of the three 
hara
ter spa
es of X9=Z6 is 3. Sin
e theranks of the interse
tion forms on them are at least 2, the 
hara
ters �! and �! are kernel.�Questions 2.1 a) A bit more 
areful 
al
ulations show that, for all symmetri
 X9 singu-larities, the rank of a 
hara
ter subspa
e with a degenerate interse
tion form is equal to thedimension of the base of an equivariant miniversal deformation, that is to the number of theversal monomials. The same is true for the J10 symmetries of [14℄. Why is this so?b) It would be also good to understand why the kernel of the interse
tion form does notsplit exa
tly when the symmetri
 singularity has a module.3 Relating symmetri
 X9 singularities and
rystallographi
 groupsWe 
all a symmetri
X9 singularity interesting if the monodromy group on one of its 
hara
tersubspa
es gives rise to an aÆne 
omplex re
e
tion group (not ne
essarily 
rystallographi
)via the 
onstru
tion of Se
tion 1.2. Ne
essary 
onditions for this are:� the rank 2 kernel of the X9 hermitian interse
tion form splits between two 
hara
tersubspa
es;� ea
h of the two subspa
es must be of rank at least 2;� the multipli
ity of the dis
riminant of a symmetri
 singularity must be at least 2, sin
ean aÆne re
e
tion group has at least two generators whi
h must be 
oming from thePi
ard-Lefs
hetz operators.A

ording to Table 1, the �rst 
ondition eliminates all moduli 
ases. The last 
onditioneliminates four further singularities with one-dimensional bases of miniversal deformations.This leaves exa
tly 5 interesting symmetries, those to whi
h the table assigns aÆne groups.In Figure 2 the dis
riminants of three interesting X9 singularities are shown. The de-generation types to whi
h the top strata 
orrespond are indi
ated. The X9=Z6 dis
riminantis that of B3 with an additional smooth 
omponent. The order �; �; 
 of the deformationparameters is by the in
rease of their quasi-homogeneous weight in the deformations usingthe versal monomials of Table 1. The equation of the X9jZ4 dis
riminant is
(�2 � 4
)�(� � �2=4)2 � 4
� = 0 :7
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Figure 2: Dis
riminants of the symmetri
 X9 singularities.Two dis
riminants missing from Figure 2 are those of singularities A(4)3 and C(2;3)4 . The �rstof them is the standard A3 swallowtail, with the top stratum A3. The se
ond is the standardC4 dis
riminant with the smooth and singular 
omponents 3A1 and A2 respe
tively.The main result of this paper isTheorem 3.1 Consider an interesting symmetri
 X9 singularity. Let � be one of its kernel
hara
ters, and � the hyperplane in H�� formed by all linear fun
tionals taking a �xed non{zero value on a �xed element of the kernel of the hermitian interse
tion form on H�. Then theequivariant monodromy group of the singularity a
ting on � is the 
omplex 
rystallographi
group given in Table 1.Proof. By the methods developed in [11, 12, 13℄, it is possible to 
onstru
t, for ea
h ofthe H� of the Theorem, distinguished sets of vanishing �-
y
les whose Dynkin diagrams arethose of Figure 3. The sets are bases of the H�, ex
ept for the X9=Z6 
ase that has onerelation.We use the following 
onventions in the diagrams. The verti
es are elements of a dis-tinguished set of �-
y
les. A �-
y
le vanishing at a kA� stratum has the self-interse
tionnumber �k(� + 1) whi
h is written by the vertex. The order of the 
orresponding Pi
ard-Lefs
hetz operator is � + 1 (written inside the vertex, order 2 omitted). Simple, double andtriple edges indi
ate that the relations between the pairs of the operators are aba = bab,(ab)2 = (ba)2 and (ab)3 = (ba)3 respe
tively. The marking and orientation of the edges aresimilar to those in Figure 1.The idea behind the 
y
le 
onstru
tion is as follows. Consider the quotient set M 0 =M=Zm of a symmetri
 Milnor �bre by the group generated by the automorphism g. Thisset is strati�ed a

ording to the stationary subgroups of the points. Let M 00 � M 0 be theunion of all strata whose dimension is less than dimM 0. When the deformation parameterapproa
hes its dis
riminantal value, it is easy to de�ne geometri
ally a relative vanishing8
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y
le in (M 0;M 00). Let � � M 0 be this 
y
le and �0; �1; : : : ; �m�1 its inverse images in Mordered so that g(�j) = �(j+1)modm. Then Pm�1j=0 ��j�j 2 H� is the �-
y
le we are for. The
y
les (4) and (5) are examples of the 
onstru
tion.Ea
h tree diagram of Figure 3 serves both kernel values of the 
hara
ter sin
e vanishing�-
y
les are de�ned up to multipli
ation by powers of � and orientation 
hange.A vanishing �-
y
le de�nes the Pi
ard-Lefs
hetz operator on H�. This is a pseudo-re
e
tion with the 
y
le as its root. Thus we are ready to apply the 
onstru
tion of Se
tion1.2. To introdu
e the notations used in it, we denote e00; e1; e2; : : : the verti
es in ea
h treediagram going from left to right, and in the X9=Z6 diagram starting from the top left andgoing 
lo
kwise (in this 
ase e3 = ��e1 + �e2). For all the singularities, a generator of thekernel of the hermitian interse
tion form 
an be taken in the form e0 = e00 + a where a is alinear 
ombination of the ej>0. The ve
tor a will be 
alled the trun
ated kernel ve
tor . It isan analog of the negative of the maximal root of a Weyl group.Now drop the vertex e00 from ea
h tree diagram of Figure 3, 
hange the sign of theinterse
tion form and divide all the roots by appropriate positive numbers to make all ofthem unit. The result will be exa
tly the diagrams of Figure 1 of the linear parts L ofthe aÆne groups assigned to the singularities by Table 1 (for � = �! in the X9=Z6 
ase,the additional 
omplex 
onjugation is required). Therefore, the Pi
ard-Lefs
hetz operators
orresponding to the �-
y
les ej>0 de�ne the Shephard-Todd group L on the hyperplane� � H��.The translation ve
tor of the transformation (1) is proportional to its root, as it shouldbe in an aÆne re
e
tion. Thus, Theorem 3.1 will be proven if it turns out that, in all the
ases, the trun
ated kernel ve
tor a is a root of a re
e
tion from L of the order spe
i�ed atthe end of Se
tion 1.1. And, indeed, we have:X9jZ4 : a � (2; 1) = A21e2A(4)3 : a = (�1� i; i) = �A1A�12 e1B(6;3)2 : a = e1C(2;3)4 : a � (! � 1; 2; 1) = �A�11 A2A3A2e1X9=Z6 : a = �2e1 � e2 = � A1e3 ; � = �!A�11 e3 ; � = �!9



where the ve
tor a or its multiple are written in the basis ej>0 and the Aj are the linearre
e
tions de�ned by the roots ej and having the eigenvalues �1; !; i. This yields the resultrequired. �Remarks 3.1 a) The eigenvalue of the Pi
ard-Lefs
hetz operator 
orresponding to a mul-tiple Morse degeneration is �1. The eigenvalues of all the other operators in the X9jZ4 andX9=Z6 singularities are ��. They are � in the A(4)3 and C(2;3)4 
ases. And �nally, for theB(6;3)2 singularity, the operators of orders 3 and 6 have the eigenvalues � and �� respe
tively.This follows from easy quasi-homogeneous 
onsiderations similar to those in [11, 12, 13℄.b) The standard order of vanishing 
y
les in the distinguished set used to 
onstru
tthe X9=Z6 diagram is e2; e00; e1; e3. As usual, for the tree diagram the order may be donearbitrary.
) The three 
rystallographi
 groups 
orresponding to the three symmetri
 X9 singular-ities with the Weyl groups in the notations are representations of the 
orresponding gener-alised braid groups.We should also noti
e that the fa
t that the equivariant monodromies of Theorem 3.1are at most fa
tor-groups of the 
rystallographi
 groups in question already follows from thedes
ription of the dis
riminants of our singularities and the information about the ordersof the Pi
ard-Lefs
hetz operators. Indeed, 
onsider �rst the four string diagrams of Figure3 omitting their egde orientations and all the labellings. Applying Zariski's method to
al
ulate the fundamental groups of the 
omplements to our dis
riminants, we see thatthe redu
ed diagrams are exa
tly the diagrams of relations between the generators of thesegroups. If we now restore the orders of the verti
es then we 
ome to the diagrammati
presentations of the 
orresponding 
rystallographi
 groups obtained in [15℄. To obtain similar
oin
iden
e with [15℄ for X9=Z6, we use the interpretation of the triple interse
tion of thedis
riminant: the lower right triangle of the Dynkin diagram 
orresponds to the 
ir
ularrelations ab
 = b
a = 
ab in the fundamental group (see [8, 15℄). Finally, the additionalrelations in [15℄ are the orders of the 
lassi
al monodromy in our 
ases.Question 3.1 A relation between the dis
riminant of an interesting symmetri
 paraboli
fun
tion and the orbit spa
e of the related 
rystallographi
 group should be investigated. Inparti
ular, it would be interesting to �nd out why fun
tion singularities with non-isomorphi
dis
riminants may give rise to the same 
rystallographi
 groups. At the moment, there aretwo examples of su
h a dupli
ation: symmetri
 J10 singularities with the dis
riminants G2and C3 (see [14℄) 
orrespond to the same aÆne groups, [K3(6)℄ and [K8℄, as respe
tively thesingularities B(6;3)2 and A(4)3 of this paper.The skew-hermitian versions of the �ve aÆne re
e
tion groups are given by the Dynkindiagrams of the two-variable symmetri
X9 singularities of Figure 4. The diagrams are drawnfor � = i and � = ! for the 2-variable automorphisms of Table 1 of orders respe
tively 4and 3 or 6. For � = �i; !, all the numbers must be 
onjugated. Inside the verti
es are theeigenvalues of the Pi
ard-Lefs
hetz operators. The empty verti
es 
orrespond to the kA1degenerations, hen
e all the eigenvalues for them are 1 and the Pi
ard-Lefs
hetz operators10
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Figure 4: Dynkin diagrams of the symmetri
 X9 singularities in 2 variables, � = i; !.are a 7! a�ha; eie=k. The three 
y
les forming the lower right triangle of the X9=Z6 diagramare linearly dependent.Referen
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