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Abstract

The K-equivalence is a natural equivalence between map-germs ¢ : C™ — C"
which ensures that their compositions f o ¢ with a fixed function-germ f on C" are
the same up to biholomorphisms of C™. We show that the discriminant 3 in the base
of a Ks-versal deformation of a germ ¢ is Saito’s free divisor provided the critical locus
of f is Cohen-Macaulay of codimension m + 1 and all the transversal types of f are Ay
singularities. We give an algorithm to construct basic vector fields tangent to 3. This
is a generalisation of classical Zakalyukin’s algorithm [14, 15] to write out basic fields
tangent to the discriminant of an isolated function singularity. The case of symmetric
matrix families in two variables is done in detail. For simple singularities, it is directly
related to Arnold’s convolution of invariants of Weyl groups [1].

A logarithmic vector field for a hypersurface V' C CF is a derivation that multiplies an
equation of V' by a holomorphic function. This is a generalisation of tangency to a smooth
hypersurface. Such fields are dual to 1-forms logarithmic along V', hence the name. We
denote the set of all logarithmic fields for V' by Der(—log V).

A hypersurface V' is a free divisor in the sense of Saito if Der(—logV') is a free module
over functions on C*. In this case the module Der(—logV') is generated by k vector fields
and the determinant of the components of these fields in any coordinates gives an equation
of V.

The first examples of what is now called free divisors was discovered by Arnold and
Zakalyukin [1, 14, 15] in their study of evolution of wave fronts. These were discriminants
of finite reflection groups and of isolated function singularities. Later on it was shown
that some other natural equivalences of holomorphic maps and functions yield bifurcation
diagrams which are also free divisors (see, for example, [2]). In this paper we demonstrate
that discriminants of composite functions, under the dimensional assumptions that provide
nice deformational properties, are free divisors too.

The paper is structured as follows.

Section 1 recalls the definition of the Ks-equivalence which is a natural equivalence of
compositions of maps ¢ : C™ — C" with a fixed function f on C™.

In Section 2, we prove our main result that the discriminant ¥ in the base of a K-
versal deformation is a free divisor provided the critical locus of f is Cohen-Macaulay of
codimension m + 1 in C™ and all the transversal singularity types of f are A;. Here we



also give an algorithm to construct basic vector fields tangent to 3 in a way that generalises
Zakalyukin’s algorithm for discriminants of isolated function singularities.

In Section 3, we analyse what our constructive algorithm becomes in the case of symmetric-
matrix-valued functions of two variables. For simple matrix singularities in this situation
we consider an alternative algorithm similar to Arnold’s convolution of invariants of Weyl
groups [1]. In Section 3.2, we prove a version of the Splitting Lemma for composite functions.
This, for example, explains why certain parts of classifications of matrix singularities in [3]
and [4] in a sense coincide.

Finally, in Section 4, we formulate a Conjecture on multiplication of vector fields on
the base of a Ky-miniversal deformation induced from the multiplication on the base of an
R-miniversal deformation of the isolated function singularity.

I am very grateful to David Mond and Vladimir Zakalyukin for useful discussions of the
topics of this paper.

1 Equivalence of compositions

Consider a fixed function-germ f : (C",0) — (C,0) and various map-germs ¢ : (C™,0) —
(C™,0) into its domain. We would like to consider maps ¢ up to an equivalence which
preserves the singularity type of the composition f o ¢. First of all, this means that we
allow changes of coordinates on the source C™. On the other hand, we should allow the
image ¢(x) of a point x € C™ move within the same level set of the function f. The most
universal way to do this is to consider families {h,} of diffeomorphisms of C" preserving all
the levels of f and numbered by the parameter x € C™, with the action on ¢ by the rule
©(x) = hi(p(z)). The equivalence of maps ¢ obtained by joining these two parts together
is called the KC;-equivalence (see [8]).
The (extended) tangent space to the Kp-orbit of ¢ is

TEsp = tp(0m) + ¢*(Der(—log f)) -

Here 6,, is the space of all holomorphic vector field-germs on (C™,0) and Der(—log f) C 6,
are the fields annihilating f. The pullback of the latter by ¢* involves taking the module
over functions on C™.

The codimension of T'/C¢p in the space Oy, of all variations of ¢ is denoted 7x, () and
called the Tjurina number of ¢. Since Ky is Damon’s geometric subgroup of the contact
equivalence group, all the standard theorems of singularity theory apply [6]: finite determi-
nacy, infinitesimal criterion for versality, etc. For example, Oy, /TK; can be considered as
the base of a K-miniversal deformation of a germ ¢.

2 Vector fields
tangent to the discriminant of a composition

2.1 The K¢ discriminant

For the rest of the paper, except for Section 3.2, we shall assume that the critical locus of
f is Cohen-Macaulay (that is the quotient O,/J; by the jacobian ideal is such) and has
codimension m + 1 in C". According to [8], this guarantees nice properties for the maps ¢.
In particular, the Tjurina number of ¢ coincides with the Milnor number of the composition:
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Theorem 2.1 [8] 7ic,(¢) = u(f o p).

Let ® = ®(z,A) be a K;-miniversal deformation of a germ ¢, A € C7. The base of
this deformation contains the discriminant hypersurface ¥ = ¥; U ¥y C C7: component
Y1 corresponds to the non-transversality of the perturbations ®(—, \) to the regular part of
f =0, and X, to the images of the perturbations meeting the critical locus of f. These are
the only two ways to get the levels f o ®(—, A) = 0 singular.

Theorem 2.2 Assume all transversal types of f are Ay singularities. Then the discriminant
> C C7 of a map-germ ¢ s Saito’s free divisor.

Proof. Let F' = F(X,A) be an R-miniversal deformation of the function (f o ¢)(X),
A € C*=7. Denote by A € C* the ordinary discriminant of f o ¢.
The deformation f o ® is induced from F, that is

f(@(z; 2)) = F(X(z, A), A(N))

for suitable parameter substitution A = A(\) and family X = X (z, \) of diffeomorphisms of
C™ depending on A, X (z,0) = z. The inverse image of A under the base map A : C™ — CH
is the discriminant 3.

Notice that in order to distinguish between the bases of the two different deformations
we shall be writing C” and C* in spite of the dimensions being equal.

Theorem 2.3 [7] The critical locus of the inducing map A — A(X) is Xo.

This theorem is valid without any constraints on the transversal types of the function f.
The set ¥y splits into hypersurfaces corresponding to the images of the perturbations
®(—, \) meeting various components of the critical locus of f.

Lemma 2.4 Assume the transversal type of f along certain component of its critical locus
is Ax. Then the branching order of the map A along the corresponding component of Yo is
k+1.

Proof. Take a generic point on that component of the critical locus of f. In local

coordinates about this point, f = yf™ + y? + ... + y2. A generic non-transversality
of a map C™ — C" to the component has normal form (yo, 41, -, Ym, Ymsts -« Yn_1) =

(0,21,...,Zm,0,...,0). A Ks-miniversal deformation ® of this map replaces 0 by A € C in
the yo-component. Hence fo® = M1 422+ .. +12 . This is induced from the R-miniversal
deformation of the A; singularity by the map A = \+1. O

From now on we shall assume that all the transversal types of f, along all components
of its critical locus, are Ay’s (an individual £ for an individual component).

Lemma 2.5 A wvector field on C* is liftable to C™ if and only if it is tangent to A. The
result of the lifting is tangent to X C C7.

Proof. A mapping of branching order k£ + 1, near its generic critical point, is a cylinder
over the map z = w**! which lifts 20, to ﬁﬂw{)w. Application of Hartog’s theorem finishes
the proof. O

We can now finish the proof of Theorem 2.2 too. Namely, we know that the divisor
A C C* is free. Take a basis of logarithmic vector fields for A. Lift them against the map
A to C". From the proof of the last Lemma, the determinant of the components (in any
chosen coordinates on C7) of the lifted fields has an order 1 zero at a generic point of 3. O
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Corollary 2.6 The map A lifts an O,-basis of Der(—log A) to an O,-basis of Der(—logX).

Example. This is not true for other transversality types of f. For example, take
f) =y(y? —y2) € Dy and ®(z) = (z,ax + §). Then A = A(Ay) and ¥ =%y = {5 = 0}.
Generators of Der(—logA) lift to 50, and B0s. The divisor of the determinant of the
components of these fields is 2¥. The desired multiplicity 1 of ¥ got increased by the
modality of the singularity which has « as a modulus.

2.2 Basic fields

We would now like to derive an algorithm to construct a basis of Der(—logX).
A vector field V(A) = 3, V;(A)0dy, on C* whose components in certain coordinates

A= (Ay,...,A,) are read from the decomposition
m p
Y(X)F(XA) =3 Fx, (X, Uk(X, A) + 3 Fy, (X, A)V;(A) (1)
k=1 j=1

is tangent to the discriminant A. Here 9 is a holomorphic function-germ on C™, X =
(X1,...,Xn), Fx, = 0F/0X}, and the Uy and V; are holomorphic functions.

According to the classical result by Zakalyukin [14, 15|, we obtain an O,-basis of
Der(—log A) by running ¢ in (1) through a linear basis of the local ring O,,/Js,. By
Corollary 2.6, the basis of Der(—log A) lifts to that of Der(—logX). However, in concrete
examples, the map A : C™ — C* between the deformation bases may be rather complicated.
So, let us try to avoid it and find out what decomposition (1) corresponds to in terms of the
deformation @ itself.

To shorten our formulae, we rewrite (1) identifying the fields V and U = ¥, Uy (X)0x,
with the columns of their components:

W(X)F(X,A\) = Fx (X, DU(X,A) + F\(X,A)V(A).
Pull this back to the variables (z, ) using the inducing substitution (X, A) = (X (z, ), A())):
(X (2, M) F (X (2,4),A(N) = Fp X;' U(X(2,0), AN) + (A= F X771 X)) ATV(A() =
=F, X, (U= Xy AY'V(AN)) + Fa ATV(A(). (2)

Here we kept the arguments only where it was necessary to emphasise them. The liftability
of V means that the column A;'V (A())) is holomorphic. We denote this column (or actually
vector field on C7) by v(A). Since X (—, \) is a diffeomorphism for any fixed A, we see that
the column X' (U - X A;lV(A()\))) is also holomorphic. We denote it by u(z, A).

Let y be coordinates on C™. Since F pulled back to the (z, A)-variables is f o ®, we have
F; = f,®, and F) = f,®,. Putting these into (2), we get:

V(X (2, M) [(®(2,A) = fy®zu(z, A) + f@r0(}) . (3)

Now assume f is quasihomogeneous: f = f,E for certain vector field-column E = E(y) on
C". Then

P(X (2, ) E(2(z,A) = fy (Roulz, A) + rv(})) - (4)

Removing f,, we obtain:

V(X (2, \))E(®(z,N) = P u(z, \) + Prv(N) + R. (5)
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Here R € ®*(Der(—log f)). The latter follows from the fact that a free resolution of the
local algebra O,/J; of f pulled back by ® has only zero-dimensional homology while the
di-image in it is exactly ®*(Der(—log f)) (see the proof of Theorem 1.2 in [8]).

Assume 9 in (5) runs through a basis ¢, ..., 1, € Op, of the local algebra of f o ¢. The
resulting 7 = p decompositions give us a basis of Der(—logY.). However, since X (z,0) = z,
according to Nakayama’s lemma, we can actually slightly simplify the decompositions taking
in them ;(x) instead of ¢;(X (z, \)).

Hence we have obtained

Theorem 2.7 Assume a function-germ f : C™ — C is quasihomogeneous and E € 0, is an
Euler vector field preserving f. Let ® = ®(z, \) be a K¢-miniversal deformation of a map-
germ ¢ : (C™,0) — (C™,0), x € C™, A € C". Choose a linear basis ¥1(x), ..., ¥, (x) of the
local ring of the composition f o and fix some coordinates (x, ) = (L1, .-+, Tmy A1y -5 Ar)-
Then there exist decompositions

;0" (E) = ) Pyouic + »_ Py,vi; mod &*(Der(—log f))

k=1 j=1

in which the wy, = uy(z,\) and v;; = v;;(A) are holomorphic functions. The holomorphic
vector fields v; = Y7_, vi;0y,, form an O;-basis of Der(—logX).

In fact the existence of the decompositions follows already from the K¢-versality of ®.

Notice that we are back to Zakalyukin’s algorithm to obtain basic vector fields tangent
to the discriminant of an isolated function singularity g if, for example, we take n = m + 1,
f = Ym+1 and an embedding of the graph y,,i1 = g(y1,-- -, Ym) as @.

Remark. If there is another field E' € 6,, preserving f then using it in the decompositions
of the Theorem instead of E will not affect the fields v, at all since E — E’ € Der(—log f).

Example. Take f(y1,y2) = v +y2 and ¢ : C — C% 2 — (y1,42) = (2,0). Then
® = (z,az+ ), and the discriminant components are ¥3; = {4a® = 278} and 3, = {8 = 0}.
To avoid fractions, it is better to take the field £ = 2y,0,, + 3y,0,, which multiplies f by 6.
The Oy-module Der(—log f) has just one generator 2y,0,, — 3y;9,,. The decompositions of

the Theorem are
2z
vilz) ( 3(ax + ) > -

—utran) () )+l () +vatens) () +utan (950 ).

For a basis of the local ring of f o ¢ = z®, this gives:
P =1: V1 = a0y + 3B03, U = 2, w; =0;
Yo =3x: vy = (98— 200, — 20?805, uy =061+ 2alaz+ ), w,=—a.

Of course, the first field is just the Euler field on the parameter space.



3 Symmetric matrices

The main motivation for the results of the previous section was to understand the situation
with matrix singularities 3, 4, 5, 9, 12]. Let us see what Theorem 2.7 gives, for example, for
families of symmetric matrices.

So, we take for C™ the space Sym, ~ CT"t1)/2 of symmetric matrices and for f the
determinantal function det on it. The critical locus of this function has codimension 3.
Therefore, we are considering for ¢ 2-parameter symmetric matrix families Sy : (C?,0) —
Sym,. The transversal type of the function det is A;.

The K4et-equivalence of such families is that up to diffeomorphisms of the domain and
up to transformations Sy ~ M*SyM, where M : (C?,0) — SL,.

Infinitesimally this gives:

T aerSo = {A*So + SoA+ 3 So.u e}
k

where A = A(z) is an arbitrary family of traceless matrices, the Sp,, are the partial deriva-
tives, hy = hi(x) and = = (21, 22).

Let S = S(z,)\) be a Kje-miniversal deformation of Sy, A € C™, 7 = pu(det Sp). In the
matrix discriminant ¥ = ¥; UY, C C7, the component ¥; corresponds to non-transversality
of the perturbations of Sy to the set of all matrices of corank .

The results of the previous section yield

Corollary 3.1 The matriz discriminant ¥ C C7 is a free divisor. The components of the
basic vector fields v; = 32 vi;(A)0x, can be found from the decompositions

S = ALS + SA; + Y S+ Y Sy vi (6)
j=1

k=1,2

where the 1; = ¥;(z), i = 1,..., 1, form a linear basis of Oz/Jyet sy, the A; = Ai(x, \) are
families of traceless matrices, and uy, = uy(x, N).

If the corank of the matrix Sp(0) is 1, the family Sy is Kge-equivalent to a diagonal family
diag{g(z),1,...,1} and we are again back to Zakalyukin’s algorithm for basic fields tangent
to the functional discriminants.

Proof of the Corollary. For f = det, there is an obvious choice E' = %Zpgq Sp¢0s,, of the
Euler field of Theorem 2.7 when we assign the same weight 1/ to each of the entries S, of
a generic symmetric matrix S. The S*-pullback of this field is %S. O

Example. Assume S quasihomogeneous, that is its entries S, are quasi-homogeneous
functions of degrees dy,, such that dp, + dy; = dp + dyq for all p, g, s,t. Hence d,y = ¢, + ¢,
with ¢, = dp,/2. Let C be the matrix diag{ci,...,¢ }, c = tr(C) = deg(det S)/2, and w,,
and w), the weights of the variables.

Clearly, the Euler field e = 3, wy;A;0,, is tangent to the discriminant ¥ C C7. Let us
check which decomposition of type (6) this field is coming from.

The derivative of S in the direction of the Euler lift € = 3wy, Tx0yz;, + 32 wa;Aj0, of €
to C?*7 satisfies the decomposition

9
&(S) = 3 S wawk+ 3 Sy, s, Aj = (dpgSpq) = CS+SC = (C— ;IT)S—i-S(C— ;IT) + 765.
k J
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Hence the decomposition of the Corollary that gives the Euler field e is

2
_705 - (C - ;L)s +S(C - SIT) + 3 Sy e,k + 30 Sy, w, A
k J

3.1 Simple symmetric matrices in two variables

In the case of simple function singularities, in addition to Zakalyukin’s method to find basic
vector fields tangent to the discriminant there is also Arnold’s method [1]. This method is
based on the identification of the base of an R-miniversal deformation of a simple function
with the orbit space of the corresponding Weyl group. The identification sends the discrim-
inant to the set of irregular orbits. Choosing coordinates o1,..., 0, on the orbit space that
is, a set of basic invariants of the group, one can take

u
Zo-zzuo-j, ) r=1,...,u,

for a basis of the O,-module of the logarithmic fields. Here o;, is the gradient of o; with
respect to some coordinates z on the configuration space of the group and the brackets denote
the standard dot product.

For simple symmetric matrices in two variables, there is an opportunity to obtain a
similar description of basic logarithmic fields since there also exists an interpretation of the
base of a Kg4-miniversal deformation as a quotient space of a reflection group. Namely,
according to [9] simple singularities Sy : (C? 0) — Sym,, corkSy(0) > 1, are classified
by pairs (G, H) formed by a Weyl group G = A,,D,, E, and its reflection subgroup Y
satisfying certain lattice conditions. The function det Sy has a simple isolated singularity
traditionally denoted G as well. Denoting by W C C*# the mirror set of group G in its
complex configuration space, we have factorisation isomorphisms

(CH,W)/H ~ (C", %) and (CH,W)/G ~ (CH,A).

The inducing map A we used in Section 2 is the natural map from the intermediate quotient
(CH,W)/H to the final quotient (C*, W)/G.

We keep the notation o; for the coordinates on (C#, A) and introduce coordinates py, ...,
pu on (CH,3). From Arnold’s result and the factorisation relation between the orbit spaces
we immediately obtain

Theorem 3.2 The vector fields
lll .
Z(Oi,zapj,z)apj ) 1= 1;---,#,
j=1

form an O,-basis of Der(—logX).

Indeed these are the images of the G-invariant fields o;, under the factorisation map
C“ C“



3.2 Stabilisation of composite functions

Once we have touched classification of simple symmetric matrix singularities, it should also
be explained why some of them in a sense appear as simple singularities of square matrices.
Namely, the list of all 3-parameter simple singularities of arbitrary square matrices [4] can be
obtained from the complete classification of simple 2 x 2 symmetric matrices in 2 variables
[3] by the move

a b R a b+ x3 , abce O,
b ¢ b— x3 c

which has already been used in [9]. The reason turns out to be that passing from the
determinantal function on the space C? of 2 x 2 symmetric matrix to that on the space C*
of arbitrary order 2 square matrices we are adding the square of a new variable while a map
to C? is being extended to the map to C* as a trivial one-parameter unfolding.

Here is a general approach. In it, we are not imposing any constraints on the critical
locus of f and on the dimensions m and n.

Splitting Lemma for composite functions Consider two germs, f : (C",0) — (C,0)
and ¢ : (C™ 0) — (C™,0). Assume that f is critical at the origin and that the rank
of the 2-jet of the composition f o at 0 € C™ is r. Then one can choose coordinates
(%1, Tm) € C™ and (yi,...,ys) € C™ in which

fW)=yi+ . 9+ FWrits--- Yn)

and ¢ is Ky-equivalent to the mapping

Y =2%1, -+ 5 Yr = Zp, (y7“+17'-'7yn):¢($T+1""’xm)

such that the composition fo @ has the trivial 2-jet at the origin.

The Lemma reduces the Ky -classification of the maps ¢ satisfying its condition to the
K+ -classification of the maps @. It also allows to have for compositions an analog of the
notion of stabilisation of functions which is so useful in the R-equivalence: we can call ¢ a
stabilisation of @, even without requesting j72( f o) =0.

Proof. Let T C C™ be a germ of an r-dimensional submanifold transversal to the
kernel of j2(f o ¢). The map ¢ embeds 7 into C" so that the restriction of f to ¢(7)
is a Morse function. Choose coordinates yi,...,y, on (7 ) in which this restriction is
y? + ...+ y2. According to the standard Morse Lemma with parameters, we can extend
them to a coordinate system yi,...,y, in C" so that f(y) = v+ ...+ ¥2+ f(Urs1s-- - Yn)
and the equations of ¢(7) are y~, = 0.

Now introduce the coordinates z; = ¢*(y;), ¢ = 1,...,r, on 7. Consider the map ¢ as
an (m — r)-parameter deformation of its restriction to 7, that is of the map ¢, : (C",0) —

(C™,0) given by the formulas y; = z; if i <r and y; =0if i > 7.
Lemma 3.3 The (n — r)-parameter deformation
yi=x; if i<r and y,=X\_, if i>r

of g s Kg-versal.



Proof. Any variation of the first r coordinate functions of ¢y can be obtained by the
change of the coordinates on the source C". Any variation of the last n — r coordinate
functions of ¢o which does not move the image of the origin is contained in the O,-module
generated by the elements ¢§(fy, 0y, — 2yx0y,) = —2x40y,, k <71, > 1. O

The deformation in the Lemma is not necessarily miniversal. However, any other defor-
mation of ¢ is still induced from it. This finishes the proof of our Splitting Lemma: the
map @ plays the role of the inducing map between the bases of the deformations. O

4 Multiplication on the tangent sheaf
of the base of a K/-miniversal deformation

We return to our main case when the fixed function f has a Cohen-Macaulay critical locus
of codimension m + 1.

According to [10], one can define a multiplication on the O,-module 6, of vector fields
on the base of a ICs-miniversal deformation ® = ®(x, A) of a map-germ ¢. Namely, let C be
the union of all critical points of all the functions f(®(—, A)):

C = {0(f(®(x,\)/dzx =0, k=1,...,m} C C™ x C".

Associate to the coordinate field Jy, the partial derivative p; = 0(f o ®)/0\; restricted to C.
As it has been shown in [10], product of any two such derivatives belongs to the O -module
spanned by these derivatives:

pivj =Y ci(N)pk. (7)
k=1

This allows to set 0,0, = ZT: ki (A0,
k=1

In fact, this multiplication is induced by the mapping A : C™ — C# of Section 2 from the
multiplication of vector fields on the base C* of an R-miniversal deformation of f o, that is
from the multiplication which appears in the Frobenius structure on the base of a miniversal
deformation of an isolated function singularity (see [13]). Namely, in order to obtain the
value at some point \y € C7 of the product of two elements u,v € 0,, we send the vectors
u(Ao) and v(Ag) to Th(r,)CH, multiply them in this tangent space and lift the result back to
Ty, C7. This works well off the critical locus X5 of A.

Via exactly this inducing approach, the F-manifold structure has been introduced on
C7\ X, in [7]. However, the existence of the product decompositions (7) demonstrates that
the multiplication holomorphically extends to the entire base C7. The integrability of the
multiplication survives this extension since the underlying Lagrangian manifold is stable (see
[10]). But there is no unity for the extended multiplication. This is readily demonstrated by
the simplest codimension 1 composition used in the Proof of Lemma 2.4. For it, p = (k+1)\F
and hence p? = (k+1)\*p. Therefore, in general, all the elements of § have order k tangency
with the components of ¥y corresponding to the components of the critical locus of f along
which the transversal type is Ayg.

Thus, for at least the case of functions f with A, transversal types only,

6? C Der(—logYy) .

The inclusion is very likely to be true without any constraints on the transversal types.
Experiments with simple symmetric matrix singularities suggest a stronger
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Conjecture 4.1 (see also [11]) Assume that the only transversal type of f is A1. Then
0> = Der(—log%s) .

Perhaps a more general equality that allows various Aj transversal types and takes into
account the higher order tangencies with the relevant components of 3, (as noticed above)
is also true.
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