Unitary reflection groups associated
with singularities of functions with
cyclic symmetry

V. Goryunov
March 22, 1999

Abstract

Finite groups generated by Euclidean reflections became a very
common object in various problems of singularity theory since their
importance in classification of critical points of functions was demon-
strated by Arnold [1, 2]. We show that a number of finite groups
generated by wunitary reflections are also naturally related to func-
tion singularities, namely to those invariant under a unitary reflection
of finite order. To establish this one has to consider function-germs
on a manifold with boundary and lift them to a cyclic covering of the
manifold ramified over the boundary. The construction provides a new
notion of roots for the groups under consideration and skew-Hermitian
versions of these groups.

The present paper can be considered as an initial step in solving a problem
of finding singularity theory interpretations of finite groups generated by
unitary reflections which was posed by Arnold some twenty years ago.

In 1972 Arnold discovered a natural one-to-one correspondence between
simple function singularities and Weyl groups whose Dynkin diagrams have
no multiple edges, that is, the groups Ay, Dy and Ej [1]. It was observed
that for a simple function there exists a distinguished basis in the homology
of its Milnor fibre for which the intersection graph is just the relevant Dynkin



diagram. The monodromy group of a simple singularity is exactly the corre-
sponding Weyl group. The set of irregular orbits of the complexification of
the Weyl group is isomorphic to the discriminant of the function.

In 1978 Arnold extended his results to the relation between functions
on a manifold with boundary and the groups with double edges in their
Dynkin diagrams (B, Cy and Fy) [2]. The crucial idea there was to pass
from the relative homology of the pair of Milnor fibres of a function and of
its restriction to the boundary, to a space with a well-defined intersection
from. This was provided by the introduction of the double covering of the
manifold ramified over the boundary.

The last Weyl group, G5, appeared as an S3-symmetric function singu-
larity [2].

Arnold’s discoveries were followed by a successful hunt for a singularity
theory interpretation of the reflection groups Hs, Hy and Iy(p) [13, 17, 12].

Analysing Arnold’s approach to the definition of the intersection form
of a boundary singularity, one arrives at a natural question: What happens
if the double covering is replaced by a cyclic of an arbitrary order? The
answer to this question brings us to singularities related to some of finite
groups generated by unitary reflections. The relation generalises that above
by Arnold. The groups are almost singled out from the complete classification
list of Shephard and Todd [18] by the two requirements:

e the groups are generated by n reflections in C”,

e the degrees of the basic invariants must be symmetric with respect to
their arithmetical mean.

‘Almost’ here means that we omit Hsz and Hy and some two-dimensional
groups.

In fact it would be very interesting to understand which intrinsic group
property picks up the reflection groups appearing in our context from the
entire list of Shephard-Todd groups.

We have to remark that five of the unitary reflection groups we are con-
sidering went unnoticed in Givental’s paper [11]. Those are groups A;’”’ (as
we denote them) and they correspond to particular values of the parameter
in the Burau representation of braid groups. The latter was approached in
[11] from a point of view which is rather close to our constructions.



Also we must say that classification of functions with a cyclic group sym-
metry is not a new topic in singularity theory. For example, it was considered
by Wassermann [21] and Tibar [20]. In particular, paper [20] contains the
singularities which we call B,(cm). But no relation to unitary reflection groups
has been spotted.

The paper is organised as follows.

In Sections 1 and 2 we recall basic facts about simple functions on a
smooth manifold and on a manifold with boundary emphasizing their rela-
tions with the Weyl groups.

Section 3 discusses the unitary reflection groups under consideration.

In Section 4 we consider finite cyclic coverings of a manifold with bound-
ary ramified over the boundary. Lifting a function to the covering space we
construct a distinguished basis in the homology of the lifted (cyclically sym-
metric) Milnor fibre which respects the action of the group of the covering.

In Section 5 we study functions on a complex linear space which are
symmetric with respect to the action of a finite cyclic group Z,, fixing a
hyperplane. We classify elliptic cyclically symmetric functions, that is, those
with finite monodromy. Consideration of elliptic singularities turns out to
be more natural than a traditional study of simple objects. We obtain a
realisation of the unitary reflection groups as monodromy groups acting on
the character subspaces of Z,, in the homology of symmetric Milnor fibres of
the elliptic singularities.

In Section 5.5 we observe that a geometric basis in a character subspace
has a lattice property very similar to that of the root system of a Weyl group.
Apparently this has not been noticed in the group theory where the main
approach to the cases under consideration was to choose an orthobasis in
which the Hermitian matrix of the products would be real (cf. [7, 9]). In
our approach the matrix is not real (cf. [16]) and the roots naturally have
different length.

Every elliptic function with cyclic symmetry is simple as a non-symmetric
singularity. This inscribes the related unitary group into a Weyl group.
In Section 5.6 we give an interpretation of this in the language of Dynkin
diagrams which generalises the folding operation producing, for example, the
canonical diagram of By, from that of Ay ;.

Acknowledgements. I am thankful to Alun Morris, Giinter Malle and
Terry Wall for useful references on unitary reflection groups.
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1 Isolated singularities of functions

We start with a necessary singularity theory background.

1.1 Milnor fibre of a function

Consider a holomorphic function-germ f : (C"*! 0) — (C,0) with an iso-
lated critical point at the origin (we call a point critical if the gradient of the
function at this point vanishes). In what follows we identify germ f with its
representative.

Consider a sufficiently small closed ball B C C™*! centred at 0. Choose a
non-zero complex number £ with its modulus much smaller than the radius
of B.

Definition 1.1 A Milnor fibre of f is the variety V = {f =¢} N B.

A Milnor fibre is a real 2n-dimensional smooth manifold with boundary.
The following is a classical result by Milnor [14]:

Theorem 1.2 A Milnor fibre of a function f with an isolated singularity is
homotopy equivalent to a wedge of a finite number of n-dimensional spheres.

Definition 1.3 The finite number p = u(f) of the spheres is called the
Milnor number of function f.

1.2 Vanishing cycles

A basis for the nth reduced homology H,(V,Z) of a Milnor fibre can be
obtained in the following way.

Recall that a critical point p of function g is called Morse if the matrix
of second derivatives of g at p is non-degenerate. In a neighbourhood of such
a point one can choose coordinates g, ..., x,, with the origin at p, so that

g=x5+...+22 +g(p) .

Let f be a morsification of f, that is, a small perturbation of f which
has only Morse critical points, all situated on different levels. We assume f
to be sufficiently close to f which, in particular, guarantees that the number
of critical points (and thus critical values) of f is y, all of them in B.
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Take a non-critical value x € C of f. The level {f = %} N B is diffeomor-
phic to a Milnor fibre of f. We denote it by the same letter V.

Consider the homotopy of V' defined by a non-self-intersecting path -~y
in C which joins point % with a critical value ¢ of f and does not pass
through other critical values (Figure 1). Approaching ¢, we get the local
changes on a non-critical level of f exactly the same as those on the variety
2+ ...+ 22 = § in C"™ when positive number § tends to zero. In the
latter case the n-dimensional sphere defined by the equation in the real space
R""! = {Imz; = 0} contracts to a point. This gives an n-sphere in V called

a vanishing cycle.
fo v

L - oC C

Figure 1: A cycle vanishing at a critical point.

Now join point * in C with all x critical values of f by a star-like system of
w1 paths with no mutual and self-intersections. The collection of p vanishing
cycles in V' defined by the system is called a distinguished set of vanishing
cycles.

Theorem 1.4 [4] A distinguished set of vanishing cycles forms a basis in

H(V,Z).

Example 1.5 Consider function f = z® on the complex line. Take f =

2% — 3z for its morsification and the zero-level of f for the Milnor fibre V.
Then Hy(V) = {a1[—v3]+az[0]+as[v/3], = a; = 0} = Z2. The morsification
has critical values 2 and —2. For the system of paths from * = 0 to the
critical values take the two straight intervals. The two vanishing cycles are
respectively [0] — [—-v/3] and [v/3] — [0]. The intersection matrix of this
distinguished set of vanishing cycles is the Cartan matrix of A,.
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In general, the self-intersection index of a vanishing cycle e is

0, mn odd
(e,e) =4 2, n=0mod4 (1)
—2, n=2mod4

1.3 Monodromy group of a singularity

A loop in C based at * and missing critical values c;,...,c, of f defines an
automorphism of the Milnor fibre V and, therefore, of H,(V'). The image of
the representation on H,(V) of the fundamental group m1(C \ {c;}i, *) is
called the monodromy group of the isolated function singularity f. It does
not depend on the various choices done in the construction.

The star-like system of paths of the previous section defines a system
of generators of the monodromy group in the following way. A non-self-
intersecting path v in C, from a regular value * to a critical value c of the
morsification f , defines a loop in C based at * which leaves x along v, nearly
enters ¢, goes around c once in the positive direction and comes back to *
along v~!. The described loop is called a simple loop. It defines a Picard-
Lefschetz automorphism h., of H,(V,Z):

hy:as a+ (=1)0HDEED2( e)e (2)

where e is the cycle vanishing along 7, and (-,-) the intersection form. For
even n, h, is an involution which is identical on the hyperplane (a,e) = 0.

Example 1.6 The system of paths of Example 1.5 defines two monodromy
operators on H(V), interchanging [—+/3] with [0] and [0] with [v/3] respec-
tively. Hence the monodromy group of f = 2% is the Weyl group As.

1.4 Classification of simple function singularities

Definition 1.7 Two function-germs f, g : (C"**,0) — (C,0) are said to be
equivalent (f ~ g) if there exists a biholomorphism-germ b of (C™"*!, 0) such
that f =gob.

Definition 1.8 Two function-germs, f and g, defined on two different spaces
(C",0) and (C®,0), are said to be stably equivalent if they become equivalent
after addition of squares of appropriate number of new variables:

f@iyeo @)+ 2o+ 3~ gty Ys) Yo e Y



Definition 1.9 An equivalence class X of function-germs is adjacent to an
equivalence class Y, X — Y, if a representative of X can be deformed into
a representative of Y by an arbitrary small perturbation.

Definition 1.10 An equivalence class of function-germs is simple if it is
adjacent to only finitely many equivalence classes.

Theorem 1.11 (Arnold [1]) Up to the stable equivalence, the list of simple
function-germs is

Ap,k > 0| Dy, k>4 Eg Er Eg ‘

k41 k—1
it T2y + 15 o3+ xd | 2d +oyxd | 2d + 2l

If the number of the variables is odd, the monodromy group of a simple
function is the corresponding Weyl group. If the number of the variables is
1mod4, there exists a distinguished basis in the reduced homology of a Mil-
nor fibre of a simple function in which the intersection matrix is the Cartan
matriz of the Weyl group.

Notice that the index in the notation of a simple singularity is its Milnor
number.

Stabilisation of a function by addition of squares of two new variables
provides the double suspension of each of the elements of a distinguished
basis which canonically changes the sign of their intersection [10]. Therefore
if the number of the variables is 3mod 4, a distinguished basis for a simple
singularity may be chosen with the intersection matrix being negative of the
Cartan matrix.

All possible adjacencies of the listed singularities are compositions of

A — Ak Dy, — Dy_1, Ap—1 Ey — Ep_1,Dg_1, Ap—1

Remark 1.12 We see that simple functions of odd number of variables are
elliptic: their intersection forms are non-degenerate and sign-definite. This
implies finiteness of the monodromy group. None of non-simple singularities
shares these properties.



Yet another appearance of the Weyl groups in the context is as follows.

Let O,;1 be the space of all holomorphic function-germs on (C"*1,0).
A wversal deformation of a function-germ f € O, is that which in a sense
contains all possible deformations of f. It is miniversal if its base has minimal
possible dimension. The latter, referred to as the codimension of f, coincides
with the Milnor number. For a miniversal deformation one may take

f+>‘161+“‘+)\#e#7

where the e; € O, represent a linear basis of O, 1/ (a%%, ce, 3—21-’;—1), and
the A; € C are the parameters of the deformation [3].

The discriminant of f, A(f) € C#, is the set of those values of the pa-
rameters of its miniversal deformation for which the corresponding functions
on C™*! have critical value 0.

For a simple function X, the discriminant A C C* is biholomorphic
to the set of irregular orbits in the orbit set C* of the complexification of
the Weyl group X,. Therefore, the complement C* \ A is an Eilenberg-
MacLane k(m, 1)-space for Brieskorn’s group B(X,) of generalised braids [5]
(the group of ordinary braids on k + 1 threads is B(Ay)). The monodromy
group of singularity X, is a representation of B(X,).

Example 1.13 A miniversal deformation of As-singularity 2z can be taken
in the form 23 + A1z + \s. The discriminant of this family is the set of values
(A1, A2) € C? corresponding to the polynomials with multiple roots.

The complex version of Weyl group A, is the symmetric group on 3 ele-
ments acting on the plane C? = {z; + 25 + 23 = 0} C C? by permutations
of the coordinates. The orbit space C?/A, ~ C? is the same space of poly-
nomials 22 + A1z + Xg. The set of irregular orbits is that coming from the
mirrors z; = zj, that is, the set of the polynomials with multiple roots again.

2 Boundary singularities

2.1 Vanishing cycles and semi-cycles

Assume now that in the domain (C"*! 0) of a function-germ f we have a
distinguished hyperplane (C",0). This hyperplane will be called a boundary.
The restriction of f to the boundary will be denoted f;.
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Taking an appropriate ball B C C™"! and small ¢, we obtain a pair of
Milnor fibres:

V={f=¢}nNnB D Vho={fo=¢e}Nn(BNC").
We have an obvious

Proposition 2.1
H,(V,Vo; Z) = Z'

where p and py are the Milnor numbers of f and fy.

Similar to the absolute case one can define a distinguished basis of the
relative homology. For this we take a morsification f of f whose restriction
fo to the boundary is a Morse function as well. Also we assume that the
critical values of f and f; are all distinct.

Now choose a number % € C which is a regular value for both f and fo.
As earlier, a non-self-intersecting path in C from * to a critical value of f~
defines a vanishing cycle on V' and thus an element of H,(V,V;). Similar
path going to a critical value of f, defines an element of H,(V,Vp) called a
vanishing semi-cycle. Its local model is the set

{mo+a2+...+22=6>0}

in the half-space {zy > 0} of the real z-space R"™ (here {zy = 0} is the
boundary). With ¢ tending to zero the set contracts to a point.

As in the absolute case, a system of u + po paths on C from * to critical
values of f and fy defines a distinguished set of vanishing cycles and semi-
cycles which turns out to be a basis of H,(V, Vy;Z). Of course, the paths are
assumed to have no self-intersection and common points, except for point .

2.2 The double cover

To get a good definition of intersection form and monodromy for a boundary
function singularity, Arnold introduced its double covering ramified over the
boundary [2]. For this one just sets zp = 2z2. The setting lifts f to a function
f(z,a:l, ooy my) = f(2%,11,...,2,) even in z. Its Milnor number is i =
21+ .



The Milnor fibre V of f is a double cover of the Milnor fibre V of f
ramified over the Milnor fibre V of f;. The involution z +— —z acts on
H,(V). The anti-invariant part H_; C H, (V) has rank g -+ po, the same as
that of H,(V,Vp), and substitutes the latter space in all the considerations
involving intersection forms.

A natural basis for H_; comes from a distinguished basis of
H,(V,Vy;Z). Tt is formed by long and short cycles which are respectively
the complete inverse images (appropriately oriented) of vanishing cycles and
semi-cycles on (V,Vp). The self-intersection number of a short cycle is the
same as that of an ordinary vanishing cycle (1). The self-intersection of a
long cycle is twice as large, that is, 0, 4 or —4 depending on the dimension.

Picard-Lefschetz operators which generate the monodromy group acting
on H_; are given by formula (2) if the corresponding vanishing cycle is short
and by

hy:ars a+ (=102 ee /2 (3)

if e is long.

2.3 Simple boundary singularities

We consider two function-germs, f and g, on (C™*!,0) with boundary (C", 0)
to be equivalent if there exists a biholomorphism-germ b of the pair
(C™*1 C™) such that f = gob.

Theorem 2.2 (Arnold [2]) Up to the stable equivalence, the list of simple

function-germs on (C™™,0) = {(z, ..., z,)} with boundary o =0 is
Ak)DkaEk Bkak22 Ck,kZ?) F4
zo + fo(21,. .., Tn), K k|2 1 3
fo € Ay, Dy, Ej x Toxy + X7 | Ty + 7

If the number of the variables is odd, the monodromy group of a simple func-
tion acting on the anti-invariant homology H_1 is the Weyl group of the same
name. If the number of the variables is 1 mod 4, for a simple function there
exrists a distinguished basis of H_i in which the intersection matriz is the
Cartan matriz of the corresponding Weyl group.
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The ellipticity property generalising in the obvious way that of Remark
1.12 holds.

In terms of Dynkin diagrams of the Weyl groups, the double cover of the
previous section is the quotient under the involution of the canonical diagram
(Figure 2). In terms of the groups themselves, this is passing to the subgroup
generated by the products of the commuting reflections in the roots glued
together by the folding.

Figure 2: Folding Dynkin diagrams

All the adjacencies of singularities of Theorem 2.2 are those induced by
the inclusions of the corresponding canonical Dynkin diagrams.

What was said by the end of Section 1.4 about the relations between the
discriminant of a function and the set of irregular orbits of the associated
Weyl group remains valid with minor adjustments. Namely, a miniversal
deformation (with the base of dimension p + o) of a boundary function
singularity f € O, is now

f + )\161 4+ ...+ A#‘Hioeli‘HlO y

where the e; form a basis of

of of of

On+1/(x08$0’ 8:81’ M 8:L‘n) °

Also the discriminant of f now consists of two parts which correspond to
either a function or its restriction to the boundary having critical value 0.
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3 The finite unitary reflection groups

The list of unitary groups we will be dealing with is given in Figure 3. It
contains one two-index series and seven exceptional groups.

G(m,1k) M==2——2— —2 m, 2m, ..., km B(li“)

G (G—3 4,6 A7
G B==03) 6, 12 BS?
5 : 2
Gy 8,12 A7
G, (5B—® 20,30 A
Gy (OB—03—03 6,9, 12 A
Gze M_@ 6,12, 18 C(??)
G, OG—3—3—03 12,18,24,30  AY

Figure 3: Relations defining the finite unitary reflection groups and the de-
grees of the basic invariants.

In the first column of the table we give the notation going back to the
original paper by Shephard and Todd [18]. For example, the index in the
notation of an exceptional group is its number in the classification list of
[18]. We assume in the series k¥ > 1 (the number of vertices of the graph)
and m > 3 (group G(2,1, k) would be just the Weyl group By).

The last column contains the notation of the same groups which is more
illustrative from the singularity theory point of view (we shall see the reason)
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and is partially borrowed from [6]. The lower index is the dimension of the
standard linear representation.

The third column gives the degrees of the basic invariants of the standard
representation. The order of a group is the product of all the degrees as the
corresponding orbit space is smooth.

The second column of the table contains diagrams encoding abstract rep-
resentations of the groups. Each vertex is a generator whose order is written
inside the circle. The multiplicity of the edge joining generators u and v is 2
less than the length of the braiding relation:

uv = vu, if there is no edge between the vertices;
uvu = vuw, if the edge is ordinary;
uvuv = vuvuy, for the double edge.

Therefore, each of our unitary groups is a quotient of the generalised braid
group corresponding to the Weyl group which enters the notation in the
fourth column. The unitary reflection group is obtained by assigning the
finite orders to the generators. Assigning order 2 to all the generators would
give just the Weyl group itself.

The exact meaning of an inequality sign on a double edge of a diagram
will be explained later, in Section 5.2. There a representation diagram will
be interpreted as a Dynkin diagram of a unitary analog of a root system of
a Weyl group. As in the Euclidean case, the sign indicates the difference in
the root length.

We should remark that the series G(m, 1, k) contains, for k = 1, all finite
cyclic groups which make the third line in the original list of [18].

The standard linear representation of a group can be read from its graph
as follows [9, 8]. Consider the vector space C" formally spanned by the
vertices vy, . . ., U, of the graph. The graph gives a positive-definite Hermitian
form (-,-) on C™

(v, v;) = sin -~ where p; is the number written at the vertex (the order
of the generator);

(vi,vj) = 0, if there is no edge joining the vertices;

(vi,vj) = —cos § = —%, for an ordinary edge;
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(v, v5) = —(3 sin pij)l/z, for a double edge with p; = 2,

(v1,v9) = —cos § = —%, for Gs.

Now the generator (complex reflection) corresponding to the vertex is the
rotation of order p; around the hyperplane which is Hermitian orthogonal to
’Ujl

v v+ (2P 1) <<;)’1;]>> vj (4)
VR

4 Cyclic coverings of functions on a manifold
with boundary

We return to boundary function singularities of Section 2.1 keeping all the

notations used there. Generalising the covering construction of Section 2.2

we set
o =2",

where m > 1 is an arbitrary integer. This gives an m-fold covering c :
Crt+l — C"*1 ramified along the boundary.

As earlier, a function f on the manifold C**! with boundary C™ lifts to
a function f = f o c on C"*!. This time

fi=mp+ (m—1)uo -

For a Milnor fibre of f we take the inverse image V = ¢1(V) of the

~

Milnor fibre V' of f. The group Z,, of the covering c acts on V and on its
homology. We get the splitting

Fn(v, C) = @szl HX
into subspaces on each of which Z,, acts by a character x:
dimH,—; = pu, dim Hy 1 = p+ po -

A geometrical basis for each of the H, can be obtained from a distin-
guished basis of vanishing cycles and semi-cycles of the boundary Milnor
pair (V,V4) in the following way (see Figure 4).
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boundary —

Figure 4: Lifting a cycle and a semi-cycle of a boundary singularity f to long
and short x-cycles in a character subspace H, of the Z,,-symmetric function

f=toc

The full inverse image under ¢ of a vanishing cycle o of the pair consists
of m cycles og,...,0, 1 in V. We take them with the orientation inherited
from 0. We assume that the ordering of the o; is chosen so that the rotation
z s e2mi/my provides the cyclic permutation 0; — 0(j41)modm- The linear
combination

m—1
_ —J .
Ox = Z X “0j
Jj=0

defines a non-zero element in H,. We call it a long x-cycle.

For a vanishing semi-cycle on (V,V,), we can arrange a similar linear
combination of its m preimages in V. This linear combination is a cycle if
x # 1 (since 14+ x+...4+x™ ! =0) and defines a non-zero element in H,.
We call this element a short x-cycle.

Both long and short x-cycles are defined up to multiplication by powers
of x and by —1.

Consider now a (skew-)Hermitian form on H,(V,C) defined by the in-
tersection index (-, ).
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Proposition 4.1 The self-intersection indez of a long x-cycle is 0 if n is odd
and (—1)"/22m if n is even. The self-intersection index of a short x-cycle is
is (—1)(”_1)/2}—“:;(m and (—1)"*m respectively.

The fact is obvious for long cycles. For short ones it is based on

Lemma 4.2 Consider a generic local intersection of two semi-cycles on 'V
at a point of Vy. One can choose corresponding short x-cycles on V' so that
their local intersection indez is m/(1 — x).

The local lifting of the semi-cycles is given in Figure 5. Figure 6 proves
that the local intersection is that stated in the lemma.

Figure 6: Demonstration that for the lifted cycles of the previous Figure
(1-x)a,b) = m.

The construction of the monodromy group of a boundary singularity pro-
vides the Picard-Lefschetz operators h, : H,(V,C) — H,(V,C). Each of
them splits into a direct sum h, = @®ym_1 h,, of operators acting on indi-
vidual character subspaces H,.
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Proposition 4.3 The action of the Picard-Lefschetz operator h., : H, —
H, corresponding to a short vanishing x-cycle e is given by the formula

hoys s @ a+ (—1)™HOED2(1 (g ee/m .
Simalar operator corresponding to a long vanishing x-cycle is
Byy ta s a+ (—1)PFD02(g eVe/m

Thus, in the symmetric case (n even) the operators are rotations around
the hyperplanes Hermitian-orthogonal to the cycles. Their orders are equal
to the order of x and 2 respectively.

Example 4.4 Consider the covering zo = 2™ of a deformation f(z) = z* —

4z + 3 of the one-dimensional boundary singularity Bs. Take f = 0 as the
covering Milnor fibre V (see Figure 7). Join 0 € C by the straight paths
with the critical values f(0) = 3 and f(2) = —1 of f. Take the linear
combination of the points on the inner circle in Figure 7 for a short x-cycle

e1 € H, C Hy(V) vanishing on the level f = 3, and the difference between
the linear combinations on the outer and inner circles for a long y-cycle e,

- : . : : : m —m
vanishing on f = —1. The intersection matrix ((e;, e;)) is . 9m
Xte~ . 211/m
Xl
) Oo 1. 1.V
Xe
Xe C,

Figure 7: Vanishing x-cycles for the m-covering of By singularity.

The Picard-Lefschetz operator h; rotates the points on the inner circle
anti-clockwise by 27 /m which means

h1(€1) = Xe€1,
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—~

62,€1>
€1,€1

hi(es) =ex+ (1 —x)er = ex — (1 — x){ez, e1)er/m =ex + (x — 1) e -

—~
~—

The operator hy swaps points on the same ray from the origin:

—~
~

€1, €2

ha(e1) = e1 + es = €1 — (e1,e2)ex/m = €1 + (ezm'/z — 1)<e .
2,C2

€2,

~

h2(€2) = —e€2.

Both operators give a good illustration to Proposition 4.3 (n = 0). Com-

paring the above formulae with (4) and the settings of Section 3, we see that

hy and hs generate in U(2) a subgroup isomorphic to ng ), where p is the

order of x. Indeed, the orders of the generators coincide with those of the
canonical generating reflections of ng and the intersection matrix in the
rescaled basis {e;/ \/m sin 7, es/ \/2m sinT} is exactly that encoded by the

graph Bép ). Notice also that once the braiding relation holds for generators
of a reflection group, it holds for their powers.

We generalise these observations to all of our unitary reflection groups in
the next section.

5 Functions with cyclic symmetry

5.1 Elliptic singularities

The group Z,, of the covering c : Cntl — C" ! of the previous section acts on
Cn*! by unitary reflections which fix the ramification locus C". Forgetting
for a moment about the covering itself, let us consider holomorphic function-
germs on (C™*!,0) invariant under this action. We call them functions with
cyclic symmetry or cyclic singularities for short.

The natural equivalence relation for such functions is that up to Z,,-
equivariant biholomorphisms of (é”“, 0). Of course, this is just the bound-
ary equivalence of the functions lowered to the quotient space (C"*',0)/Z,
which is the base of the covering c. Stable equivalence adds to a function-
germ squares of new variables on which the symmetry group acts trivially.

A (mini)versal deformation of a cyclic singularity within the space of
functions with the same cyclic symmetry is induced by the covering c from a
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(mini)versal deformation of the related boundary function singularity. The
dimension of the base of a miniversal deformation of a cyclic singularity (that
is, its codimension) is p + po.

For the monodromy group of a cyclic singularity we take that generated
by the Picard-Lefschetz operators h, = @, h,, of the previous section.

Definition 5.1 A function with cyclic symmetry is called elliptic if it is
stably equivalent to a cyclic singularity in an odd number of variables with
finite monodromy group.

Classification of elliptic cyclic singularities has more sense than that of
simple cyclic singularities. The latter produces a larger and more straight-
forward list which consists of arbitrary cyclic liftings of simple boundary
functions.

Up to the stable equivalence, elliptic cyclic singularities with Zs-sym-
metry are the double covers of the simple boundary singularities. For the
higher symmetry we have

Theorem 5.2 Up to the stable equivalence, the list of elliptic functions with
cyclic symmetry Z.,, m > 2, is as follows:

corresponding the order of the covering
notation boundary covering g — »™ absolute
singularity & 0= singularity
B,Em) By: zk, k>1 m Atm—1
Ag" Ay: mo+ 23 3 D,
Agl) A2 Xy + .’L':iI 4 E6
A§5) Ay: mo+ a3 5 Ey
Ag?’) As: mo+ i 3 Eg
C§3) Cs: zory + a3 3 E;
AL(E) Ay: mo+ 8 3 Eg
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For an odd number of the variables, the monodromy group acting on H,,
where x is a primitive mth root of unity, is the unitary reflection group whose
notation coincides with the notation of the cyclic singularity.

The dimension of the character subspace H,.; is the codimension of the
related boundary singularity. For convenience we set B; = Aj;.

The adjacencies of the singularities are obvious (cf. Sections 1.4 and 2.3).

We prove Theorem 5.2 in the next two subsections.

Remarks 5.3 One can make a number of elementary but useful observations
concerning the table:

(a) The complete set of the degrees of basic invariants of the unitary
reflection group related to an elliptic cyclic singularity is a subset of that of
the Weyl group in the last column. The maximal degrees (that is, Coxeter
numbers) coincide. This shows how the orbit spaces (serving also as the
bases of the corresponding miniversal deformations) are embedded one into
the other.

(b) The complete set of the degrees of basic invariants of a unitary group
X (™) is a multiple of that of the Weyl group X. According to [15], the two
pairs {orbit space, set of irregular orbits} are isomorphic (as before, we are
considering the complexification of the canonical representation of X).

(c) This is exactly the isomorphism (via c) between the bases of miniversal
deformations of the cyclic and boundary singularities. Within such interpre-
tation, the sets of irregular orbits are the discriminants of the singularities.
The discriminant of a cyclic singularity is the set of those values of the de-
formation parameters for which the corresponding function has critical value
0.

(d) As we have already mentioned, the set of regular orbits of a Weyl
group X is a k(m, 1)-space for the group B(X) of generalised braids. Its gen-
erators and braiding relations between them are read from the (canonical)
Dynkin diagram of group X in the same way as it was done in Section 3,
without setting the orders of the generators to be finite. The monodromy
group of a boundary singularity X is the representation of B(X), which pro-
vides just X itself (by setting to 1 the square of each of the generators) in
the case of an even-dimensional Milnor fibre. Similarly, the monodromy as-
sertion of the theorem tells that the representation of B(X) on the character
subspace H, of the cyclic singularity X (m) is the unitary group X(™): it sets
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to 1 exactly the required powers of the generators and does not introduce
any other relations.

5.2 Intersection diagrams

We start a proof of the theorem by demonstrating that its cyclic singularities
do have the monodromy groups promised.

Let us show a way one can understand the diagrams of Figure 3 as
Dynkin diagrams of distinguished bases of long and short x-cycles in H,
whose Picard-Lefschetz operators generate the unitary reflection groups re-
quired.

Forgetting the numbers at the vertices of these diagrams one obtains
standard Dynkin diagrams of root systems By, Ay, C3, within the traditional
conventions: a vertex is a basic root, there are long roots of length 2 and
short of length v/2, no edge between the vertices means that the roots are
orthogonal, a simple edge joining two vertices means that the scalar product
of the roots is —1 if both are short and —2 if they are long, a double edge
from a long root to a short one indicates that their scalar product is —2,
edges joining roots of different length are equipped with the inequality sign
open in the direction of the long root.

Each simple boundary function singularity X in C**! has a distinguished
basis of cycles and semi-cycles of Hy,(V,Vp) that lifts to the double cover as
a basis of long and short cycles in H,__; which has the standard Dynkin
diagram of the root system X as its intersection diagram (that is, the cycles
are the roots, and the scalar product is defined by the intersection in the
homology). Moreover, such a basis in H ; has a geometrical realisation for
which the number of points in the intersection of two cycles on V is equal to
the absolute value of their intersection number. Picard-Lefschetz operators
on H i corresponding to the elements of this basis are orthogonal reflections
in the roots and generate the Weyl group X.

The stable equivalence suspends the described relative basis to a basis of
a simple boundary singularity in arbitrary dimension. We call the obtained
basis standard.

Now take the standard basis of a boundary singularity and lift it to the m-
cover to a distinguished basis of H, ;. What was said about the intersections
in this subspace by the end of Section 4 implies (as a generalisation of the

above discussion) that each diagram of Figure 3 (excluding G5 = B£3’3))
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can be understood as an intersection diagram of the latter basis within the
following conventions:

e each vertex represents an element of the basis;

e a vertex corresponding to a long y-cycle is assigned number 2, a vertex
corresponding to a short x-cycle is assigned order of x;

e the squares of the basic x-cycles are given by Proposition 4.1;
e no edge between the vertices means the cycles do not intersect;

e a simple edge joining two vertices means that the intersection index of
the cycles is m/(x — 1) if both are short and —m if they are long (if n
is odd, we must formally fix the ordering in the intersection, but this
is not important at all, since all our graphs are trees);

e a double edge between cycles of different length indicates that their
intersection index is —m;

e such an edge is equipped with the inequality sign open to the long
cycle.

Now assume x to be a primitive mth root of unity. It is easy to verify (cf.
Example 4.4) that for even n one can multiply the elements of the standard
distinguished basis of H, of a cyclic singularity of the table of Theorem 5.2 by
appropriate complex numbers so that they would satisfy the normalisation
conditions listed by the end of Section 3. Therefore, the Picard-Lefschetz
operators h.,, of Section 4 do generate the desired finite unitary group on
H,.
For B,(cm) and Agl), character x may happen to be non-primitive. In these
cases one gets monodromy groups B,(gordX) and A,.

5.3 End of the proof of Theorem 5.2

Now we show that the list of elliptic cyclic singularities given in the Theorem
is complete.

Consider, for example, function-germs with the Zs-symmetry. Every such
function not contained in the table is adjacent to at least one of the functions
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A?), DY, ¢ and F¥ (in the obvious notations). If the number of the
variables is odd, the monodromy group of each of these four singularities
acting on H,; is that generated by the complex reflections satisfying the
relations defined by the corresponding modified canonical Dynkin diagram
(cf. Figure 3) with the vertices of orders 2 (if the root of the underlying Weyl
group is long) or 3 (if it is short). None of such groups is finite according to
the Shephard-Todd classification.

For a higher order symmetry one has to similarly consider functions A:(f),
A§5), C?(’>3) and A§>5).

. . 3,3
5.4 Singularity Bg )
The correspondence of Theorem 5.2 extends to include the last unitary re-
flection group G5 = Bég’?’) listed in Figure 3. For this one has to consider
corner singularities of functions on C"*!, that is, those in presence of two
transversal smooth hypersurfaces [19], and cyclically cover C™! twice with
the branching along each of the hypersurfaces. Now take the Z3 X Zs-covering
of the only codimension 2 corner singularity
To+ 2l +25+... +22, ro=2°, T =uw’

which “embeds” it into F.

The rank 6 vanishing homology space of the symmetric Eg splits into
the direct sum Byz=1,x2=1 H,, ., of the character subspaces of Z3 X Zy (in
fact, Hy 41 = 0). A geometrical basis for each of these subspaces can be

constructed from a geometrical basis of H,, of A§3) which is additionally
Z,-symmetric or anti-symmetric.

Combining this way the approaches of Sections 4 and 2.2 we obtain, for
the two rank 2 subspaces H,+2ri/s 1, bases which consist of one long and one
short cycle each. The self-intersection index of the short cycle is that given
by Proposition 4.1 and of the long one is twice as much (unlike Proposition
4.1, this is not zero for an odd-dimensional Milnor fibre). The cycles can
be chosen so that their intersection index is 6/(x — 1). The B$*® graph of
Figure 3 can be respectively interpreted as the intersection diagram in this
basis.

The Picard-Lefschetz operator on H, _; corresponding to the short cycle
acts by the formula of Proposition 4.3 (m = 3). The operator corresponding
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to the long cycle acts by the formula similar to that, with 2m = 6 in the
denominator (that is, differs form the long x-cycle operators of Proposition
4.3). Both operators are of order 3.

Passing to multiples of the above two cycles, one can reduce the inter-
section matrix to that of Section 3. Therefore, for even n, the monodromy

group acting on each of the subspaces H,+ariss ;1 is G5 = B§3’3).

Naturally we call the discussed singularity B§3’3). It turns out to be the
only elliptic codimension >1 singularity with similar direct product symme-
try of order >4.

5.5 The lattice property

The distinguished bases of subspaces H, of the elliptic cyclic singularities
possess a lattice property analogous to that of root systems of Weyl groups.
Namely, the image of an element a of such a basis under the unitary re-
flection in element b is a + £(x)b, where £(x) is a linear function of the
character with integer coefficients. The coefficients do not depend on y: if
elements a,b € H, and o', b’ € H,s are appropriate lifts of the same vanishing
(semi-)cycles from (V, V}), then the reflection in b' sends a' to a’ + £(x')¥'.

The same happens for the skew-Hermitian versions of the groups under
consideration.

To demonstrate the lattice property we list in the table below irreducible
two-dimensional subgroups generated by various pairs e;, e; € H, of elements
of the standard distinguished bases of elliptic cyclic singularities in both even
and odd cases, along with the corresponding intersection matrices.

The A{™ entry of the table shows that the monodromy A™ is just the
Burau representation of the braid group on k£ + 1 threads at the root of unity
(or at its negative in the odd case).

Stable equivalence of the singularities, which adds two new variables,
takes the intersection matrix to its negative and does not change the Picard-
Lefschetz operators. This way the table provides the information for n =
2,3mod 4 as well.

5.6 Fusion of diagrams

A versal cyclic deformation of a cyclic singularity is a subdeformation of
a versal deformation of the corresponding absolute singularity (for example,
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intersection matrix and

intersection matrix and

graph | the monodromy operators | the monodromy operators
h1, ho for n = 0 mod 4 hi, ho for n = 1 mod 4
I4+x _ _m
w| () -
__m_ m 14
1-x m ﬁ mﬁ
X —X 1 0 X X 1 0
0 1 1 x 0 1 1 —x
el (nz) | BT
—-m 2m m 0
x 1—x 1 0 —x x—1 10
0 1 1 -1 0 1 11
A 2m —m 0 —m
2 -m 2m m 0
long
1 -1 1 1 0 1 -1 10
cyeles 0 1 1 -1 0 1 11
I+x __6
B£3,3) < 36 —& > 31_X 1-x
. 6 1
— £ gl
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Bém) in Agm_1). The monodromy groups are similarly embedded one into the
other. For Z,-symmetric singularities this has an interpretation as the folding
of the canonical Dynkin diagrams (Figure 2). This operation generalises to
the higher symmetry as follows.

At an elementary degeneration B§m) of a Z,,-symmetric function one short
x-cycle vanishes. As an absolute singularity this is an A,, ; critical point.
Therefore the action of the Picard-Lefschetz operator h = ®,m_; h, on the
homology of the symmetric Milnor fibre is that of the classical monodromy
operator of A, 1 (which is the appropriate product of the m — 1 Picard-
Lefschetz operators of a non-symmetric morsification of the function). The
short y-cycle is an eigenvalue x eigenvector of the classical monodromy in
the linear space spanned by the m — 1 non-symmetric vanishing cycles.

Similarly, the Picard-Lefschetz operator h = @®,m—; h, corresponding to
m long x-cycles vanishing on the same critical level of a Z,,-symmetric per-
turbation of a cyclic singularity is the product of the m commuting non-
symmetric Picard-Lefschetz operators. The linear subspace in the homology
spanned by the m long y-cycles coincides with that spanned by the corre-
sponding m non-symmetric vanishing cycles.

This shows that one can produce diagrams of the unitary groups (Figure
3) from appropriate diagrams of the ambient Weyl groups (last column of
the table of Theorem 5.2) by fusing A,,—; subdiagrams to “short” vertices
and gluing m-tuples of disconnected vertices to “long” ones. Additionally,
there must be a check if the required relations between the generators (or
the Hermitian products of the obtained roots) are satisfied, that is, if the
fusing-folding operation works properly on the edges.

The results of the suggested algorithm are shown in Figure 8. We assume
the dimension of a Milnor fibre to be divisible by 4. The diagrams of the
absolute singularities are rather non-canonical Dynkin diagrams of the Weyl
groups. As usual, all their vertices have square 2 and a solid edge means that
the scalar product is —1. A dashed edge denotes scalar product 1.
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