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Abstract

We study singularities of functions equivariant with respect to an
action of Z,, C SU(2). We list all the functions with a finite mon-
odromy group. We show that such a monodromy group is one of the
Shephard-Todd groups G(3,1,n), G(2m,2,n), Gg and G3;.

Discoveries of close interrelations between apparently distant subjects are
among the most inspiring in mathematics. One of the best demonstrations
of this was by Arnold who found that the classification of simple function
singularities follows that of Weyl groups [1, 2]. Soon after doing this he pro-
posed to search for singularity theory realisations of finite groups generated
by complex reflections. The first examples of such realisations were given
in [7]. In the present paper we continue with the program and relate some
other Shephard-Todd groups to function singularities. The groups come out
as the only possible finite monodromy groups of functions equivariant with
respect to an action of the group Z,, C SU(2).

The idea to study such functions is naturally suggested by inspection of
the sets of the degrees of basic invariants of Shephard-Todd groups. The
degree set D(G) of a finite reflection group G serves as its passport in the
problems of singularity theory. For example, the existence of the inclusion
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D(H,) C D(FEs) helped O. Scherbak to relate the group H, to function
singularities [12].

The group Ejg plays a special role for us as well. One of the remarkable
inclusions in the list of unitary reflection groups is D(G31) C D(Eg) (G3 is
the group number 31 in the Shephard-Todd list [13]). Translation of this to
the language of singularity theory gives a subfamily in the versal deformation
of the function Eg which consists of all the odd degree functions (see Figure
1), that is, of the functions with the Zy-symmetry:

f(_ma _y) = —f(x,y) :

Calculation of the monodromy group of the subfamily (in fact, of its one-
variable stabilisation), which is another traditional object of singularity the-
ory, shows that this group is exactly G;.
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Figure 1: Deforming function Eg : x® + y° (black monomials) by arbitrary
linear combinations of the eight distinguished monomials. The monomials
corresponding to the degrees of the group G31 are crossed.

The simplest generalisation of the symmetry group provides Shephard-
Todd groups G(3,1,n), G(2m,2,n) and Gy (see Section 1) as monodromy
groups of the equivariant function singularities.

The paper is organised in the following way.

Section 1 reviews some generalities about the unitary reflection groups
we are dealing with.

Section 2 introduces the equivariant functions of two variables, the equiv-
alence of these functions, vanishing homology and corresponding Picard-
Lefschetz operators. In Section 3 we describe stabilisations of all these ob-
jects. We need the stabilisations as we are looking for the intersection forms
of the right parity on the homology of the Milnor fibres.



In Section 4 we list all the equivalence classes of the equivariant func-
tions with finite monodromy of the stabilisation. Their monodromy groups
are exactly the unitary reflection groups under consideration. On the other
hand, the monodromy of the corresponding functions on C? are what one
can naturally take for a skew-Hermitian analogue of these groups. We list,
in the form of diagrams, their generating skew-Hermitian reflections.

We finish Section 4 with the study of the discriminants of our singularities
and unitary groups.

1 The unitary reflection groups

A complex reflection in C™ is a unitary transformation identical on a hy-
perplane, which is called the mirror of the reflection. The complete list of
finite irreducible groups generated by complex reflections was obtained by
Shephard and Todd [13]. It contains Coxeter groups as its proper subset.
The Shephard-Todd list consists of three infinite series (Weyl groups 4,,
cyclic Z,, and three-index G(p,q,n)) and 34 exceptional groups. In the
present paper we are dealing with two subseries in G(p,q,n) and two ex-
ceptional groups, Gy and G3; (the lower index is the number of a group in
the table in [13]). We briefly recall the description of these groups. In our
considerations a mirror is identified by its normal, which we call a root.

1.1 Groups G(p,q,n)

The group G(p,q,n) (all the parameters are natural numbers, ¢ divides p,
and n > 2) is a subgroup in U(n). It is generated by the rotation by the
angle of 2wq/p corresponding to the root u; (the u; are the unit coordinate
vectors) and by n reflections of order 2 defined by the roots
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Uy — Uy, U3 — U,y ... Uy — Up_1 and uy — e Py, . (1)

For example, in two cases, when either ¢ = p or ¢ = 1, just n reflections are
sufficient to generate the group.

The series contains Coxeter groups: G(2,2,n) = D, G(2,1,n) = B, and
G(p,p,2) = Ir(p).



Information about generating reflections of a group can be represented
by a graph analogous to a Dynkin diagram of a Coxeter group (cf. [5, 11]).
Our conventions are as follows:

e a vertex of a graph represents a root;

e a vertex is white if the root is long, of length v/2, and black if the root
is short, of length 1;

e the order of the reflection is written at the vertex (order 2 is omitted);

e the Hermitian product (vi,vq) of the roots is written on an oriented
edge v; — vso;

e there is no edge between two orthogonal roots;
e the product —1 is not written;
e orientation of an edge equipped with a real number is omitted.

Figure 2 shows graphs of the groups G(3,1,n) and G(2m,2,n) which we
relate to function singularities in this paper. Groups G(p, 1,n) have already
appeared in a singularity theory context in [7].

G(3,1,n) og—o—o— ----- —O

G(2m,2,n) >
m@—w ----- —0

Figure 2: Graphs of the groups G(3,1,n) (n vertices) and G(2m,2,n) (n+1
vertices). Notation: a = e™/™.

a

Remark 1.1 It is convenient to include groups G(1,1,n) into the series.
According to the previous description, group G(1,1,n) is the permutation



group of the coordinates in C". Hence C" splits into the standard represen-
tation of A,, | on the hyperplane z; + ...+ z, = 0 and the one-dimensional
trivial representation.

It is also natural to set G(m,1,1) = G(mgq,q,1) = Zy,.

The orbit space of any Shephard-Todd group is smooth. Basic invariants
of the group G(p, ¢, n) have degrees p,2p, ..., (n—1)p,np/q (hence the order
of the group is p"n!/q). For such invariants one can take the first n — 1
elementary symmetric functions of #7,..., 2% and (z; - ...- z,)?/?. Thus the
orbit space C"/G(p,q,n) ~ C" can be identified with the space C} , of
polynomials in y:

Y oyt A+ +ap1y+aol.

The discriminant 3 of the group G(q, ¢, n), that is, the space of its irregular
orbits, is the set of all such polynomials with multiple roots. The discriminant
of any other group of the series is the set of the polynomials with either
multiple or zero roots.

Remark 1.2 The latter means that C"\ X(G(p, q,n)), p # ¢, is an unrami-
fied ¢g-fold covering of the complement to the discriminant of the Weyl group
B,,. Hence C" \ X(G(p,q,n)) is a k(m, 1)-space. Similar assertion is true for
the groups G(q,q,n) as well [9].

1.2 GI‘OllpS Gg and G31

Group Gy C U(2) is generated by two reflections, one of order 4 and the
other of order 2. The degrees of its basic invariants are 8 and 24. The
discriminant coincides with that of the Weyl group G2 [10] which consists of
a cubical parabola and its tangent. As an abstract group, Gy is a quotient-
group of Brieskorn’s braid group associated with the Weyl group G [3] (that
is, generated by two elements subject to the relation (ab)® = (ba)®) by the
relations a* = 1 and »? = 1.

Group G, is generated by five order 2 reflections in C*. We formulate
a conjecture on the shape of the discriminant of (G3; in Section 4.2. The
defining relations for the group, as well as for all the other Shephard-Todd
groups, can be found in [4].



Figure 3 shows graphs of generating reflections for the two groups. The
sum of the two upper roots in the diagram of (3, is equal to the lower centre
root. The Gy diagram shows in particular that Gy contains the Coxeter group
I,(8).

GQ
O——0O
4 —2costy8

Figure 3: Graphs of the groups Gg and G3;.

Now we leave reflection groups for a while and switch to the study of
function singularities.

2 Equivariant functions on the plane

2.1 The equivalence

The standard SU(2) representation of the group Z,, is generated by the
transformation
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g: T,y — xT-6,y- *, where e =e¥/m,

Definition 2.1 A function f on C? is Z,,-equivariant if f o g = cf.

Remark 2.2 One could consider more general Z,,-equivariant functions,
such that f og = &"f for some integer exponent r. But in what follows
we prefer generic equivariant functions to have smooth zero-levels which al-
lows to study intersection forms on these levels without any complications.
This requirement is satisfied only in three cases, »r = 0,+1. For any other
choice of the exponent, the level f = 0 is singular at the origin. The case
of Z-invariant functions, » = 0, was studied in [8] and led to the first ap-
pearance of the reflection group Hj in singularity theory. The case r = —1
reduces to r =1 in an obvious way.



The ring Z of Z,,-invariant holomorphic function-germs on C? at the
origin is generated by 3 elements: z™, y™ and zy. The space £ of germs
at the origin of our Z,,-equivariant functions is an Z-module generated by z
and y™ L

E=T(xz,y™ ).

The group Rz, of biholomorphism-germs of (C2,0) commuting with the
Z,,-action acts on & providing equivalence of equivariant functions. This
equivalence satisfies all the axioms of Damon’s good geometric equivalence
[6]. Hence the standard theorems of finite determinacy and on the form of
versal deformations are valid for the Rz, -equivalence. For example, the Lie
algebra of the group Rz, is an Z-module generated by four Z,,-invariant
vector fields
20y, Y™ 0, YOy, xm_lﬁy.

Therefore the tangent space T'f to the equivalence class of an equivariant
function f € £ is

Tf :I<$faca ymilfwa yfy7 xmilfy> cé&
and an Rz, -miniversal deformation of f can be taken in the form
fHAor+.. .+ Aor, (2)

where the ¢; € £ represent a basis of the linear space £/T' f and the \; € C
are parameters. We assume here the equivariant Tjurina number T of f to
be finite.

The base C7 of an Rz, -miniversal deformation of an equivariant function
f contains the equivariant discriminant A of f, that is, the set of those values
of the deformation parameters for which the zero-level set of the correspond-
ing function is not smooth. The discriminant is a hypersurface which has
two top-dimensional strata if m > 3 and only one if m = 2. The strata cor-
respond to two possible degenerations of zero-levels in generic one-parameter
families of Z,,-equivariant functions:

e m Morse singularities A; occupying one complete Z,,-orbit in C?, all
out of the origin;

e singularity D,, at the origin, m > 3 (we set D3 = Aj).



Indeed, a Z,,-equivariant series

f(xvy) =x- ¢1($ma ym’ .’Ey) + ym—l ) 1[]2(-7;7”7 ym’ 'Z‘y) ; m Z 37

has a singularity at the origin if and only if the monomial x is absent. In
this case the principal weighted-homogeneous part of f is, in general,

either D,,: azx’y+by™ ", m >4,

or As: az* +b2’y+cy®, m=3, a,b,ce C.

The mA; stratum of the discriminant may be reducible. The D,, stratum
is obviously always smooth.

Remark 2.3 An Rz, -miniversal deformation of an equivariant function f
can be extended to an R-miniversal deformation of f. Therefore the equiv-
ariant discriminant A(f) is the section of the ordinary, non-equivariant bi-
furcation diagram of zeros of f lying in the base of the larger deformation.

2.2 Equivariant homology

Let V be the zero-level of a generic member of an Rz, -miniversal deformation
of an equivariant function f (in fact V' is a Milnor fibre of f). The action
of Z,, on V induces the action on the homology of V' which splits H;(V, C)
into a direct sum of the character subspaces:

Hl(V) = @szlHX .

The generator g, acts on H, by multiplication by x.
Let V' be the orbit space V/Z,,, pr : V. — V' the projection, and p the
first Betti number of V.

Proposition 2.4 tk Hy = p.

Proof. The Z,,-action on V has one fixed point, the origin 0 € V c C2.
The action is free on V' \ {0}.

Smooth curve V' retracts to a bouquet of p circles wedged at pr(0).
The curve V retracts to the inverse image of this bouquet which consists
of mu circles wedged at 0. The group Z,, cyclically permutes each m of
them making the pr-preimage of one of the circles in V'. Each such orbit
contributes 1 to the rank of each H,. O



Definition 2.5 The number ;1 = rk H, is called the equivariant Milnor num-
ber of V.

Proposition 2.6 w=rT.

Proof. Consider the local algebra @)y of f, that is, the quotient of the
ring of all holomorphic function-germs on (C?,0) by the ideal generated by
the first partial derivatives of f. We have

dimc Qf =mu,

as the latter is the ordinary Milnor number of f.

Slightly adjusting the arguments of [14] to the case of cyclically equivari-
ant functions, one can establish the relation between the natural representa-
tions of Z,, on @y and on H;(V, C). The relation implies that the dimensions
of all the character subspaces in ) are the same, equal to . The character
¢ subspace of () is exactly the quotient £/T'f. O

Standard elements in each of the H,, analogous to ordinary vanishing
cycles, can be obtained in the following way.

Let * be a point in C” \ A which corresponds to the function whose
zero-level set is V. Take a generic straight line £ ~ C in C” through *. It
transversally meets the discriminant at certain points, exactly one of which
in the case m > 3 belongs to the D,, stratum and all the others are in the
mA; stratum.

Moving along a non-self-intersecting path from * to a point of £N (mA;),
we define on V' the m vanishing 1-cycles oy, ..., 0, 1. They do not intersect,
and we orient and order them so that the generator g of Z,, permutes them
cyclically: g(0;) = 0(j+1)moam- For each x we introduce the cycle

m—1

Y x*os € Hy.

s=0

We call it a long vanishing x-cycle.

To choose a similar equivariant cycle vanishing at a point of the D,,
stratum, we consider a miniversal equivariant deformation of the singularity
D,,, and analyse the family of zero-levels:

Vo = {2°y +y™ " + 20z =0} C C*. (3)
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In Figure 4 we show a way to glue V,o from two copies of the coordinate
y-axis which are cut along rays from the m branching points y = o*/™. The
left sheet has a puncture at the origin. In the same figure we show the
system of 1-cycles on which the generator g acts by the clockwise shift by
one element. Taking the cycles with the coefficients shown in the figure we
obtain an element of H,(V,) which we call a short vanishing x-cycle. It
vanishes along the straight path from « to 0.

Cy XZ’\ X/ 1 \‘/(

BRI :: S
. [)“—’\X\ .

. L \ . \N?\

Figure 4: The D,, curve z?y+y™ ' +2ax = 0 as a branched double covering
of the y-axis and a Z,,-symmetric system of vanishing 1-cycles on it.

k.

Now a system of paths on ¢ from the point * to all the points of £ N A,
without mutual- and self-intersections, defines a system of long and short
vanishing x-cycles in each of the H, (V). We call it a distinguished system
of vanishing y-cycles.

We have a traditional

Proposition 2.7 A distinguished system of vanishing x-cycles generates the
character subspace H, .

A distinguished system may not form a basis.

Remarks 2.8 Both long and short x-cycles are defined up to multiplication
by —1 and by powers of y.

The m cycles of Figure 4 form a distinguished (in the ordinary, non-sym-
metric sense) basis in vanishing homology of the D,, function singularity. It
corresponds to the family of curves 2y +y™ 1+ 2az + 8 = 0, in which a # 0
is fixed and 3 varies. Its Dynkin diagram is a regular m-gon (see figures in
Section 4.1).
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2.3 Monodromy group
2.3.1 Long vanishing x-cycles

The self-intersection of a long vanishing y-cycle e is 0.

Similar to [7], the Picard-Lefschetz operator of the Z,,-equivariant mon-
odromy on H;(V, C), corresponding to the path in the line ¢ along which e
vanishes (as well as the other m — 1 cycles in the other character subspaces),
splits into a direct sum of operators h, : H, — H,,

hy: a+— a—(a,e)e/m,

where (-, -) is the skew-Hermitian form on H,(V, C) defined by the intersec-
tion number of cycles.

2.3.2 Short vanishing x-cycles

This case is a bit more complicated.

Figure 4 shows that the self-intersection number of a short x-cycle e is
m(x ' = x)-

To understand the Picard-Lefschetz operator, we consider first its action
on the y-cycle e itself. This is described by the monodromy of the family
(3). We see, by the weighted-homogeneous argument, that the change of the
parameter o — « - €2 induces the mapping

2mi-(m—2)/m 27ri-2/m) —

(37, y) = (x-e y Y- € ($‘€_2,y-€2):g_2(.’17, y)

of V, into itself. Therefore h,(e) = x 2e.
This implies that, for an arbitrary element a € H,, we have

(a,€)
(e, €)

The final result is easily checked to be true even for y = £1.

hy:aw a+(x2-1) e=a+x '(a,e)e/m.

3 Stabilisation

An attempt to stabilise a Z,,-equivariant function f = f(z,y), by adding a
square of a new variable, gives rise to a Zy,,-equivariant function. Indeed,
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the function f(z,y,2) = f(z,y) + 22 must still be sent by the generator g of
Z.m to £ f which means that ¢ has to multiply z by /2.

In what follows we denote the objects related to the one-variable stabil-
isations of Z,,-equivariant functions by putting tilde over the notations of
the corresponding objects we had in the two-variable case. For example, the
generator g of Zy,, is the transformation

g : (.T, Y Z) = ({—:N2$’ g_2y7gz) ) where € = e”i/m )

and the functions f(z,vy,2) = f(z,y) + 2% we are considering now are such
that B B
fog=2f. (4)

One can straightforwardly develop the ﬁzzm—equivalence theory for func-
tion-germs on (C3,0) satisfying the equivariant condition (4), without re-
quiring that the germs be stabilisations of functions on the plane. Within
this theory, a miniversal deformation of a stabilisation f = f + 22 is obtained
by the stabilisation of an Rz, -miniversal deformation of f (just add 2% to
the family (2)).

The symmetry group Zsy,, acts on the zero-level V of a generic member of
an Rz, -miniversal deformation of a function f = f+2%. The corresponding
action on Hy(V,C) is generated by the operator §, such that §™ = —id
(indeed, the transformation §™(z,y, z) = (x,y, —z) changes orientation of all
suspended cycles). Therefore we have a splitting

Hy,(V) = EBzm:_IH;.
The operator g, acts on a rank u subspace Hy by multiplication by X.

As in the planar case, distinguished vanishing generators for the H;; come
from the mA; and D, bifurcations. The following minor modifications are
needed.

Consider the m 2-cycles on 1% vanishing at a point of the mA; stratum.
We orient them so that

g*l50H51F—)...F—)&m,2F—)5’m,1F—)—5’0. (5)

This gives a long vanishing x-cycle

m—1

e=Y Y5, € H. (6)

s=0
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The self-intersection number of this cycle is —2m, and the corresponding
Picard-Lefschetz operator on H is a Hermitian reflection of order 2:

h~: a — a—2(a~’f)
X (e,€)

e=a+ (a,€)e/m.

To obtain a short vanishing X-cycle, we suspend the 1-cycles of Figure 4
and number and orient them so that the action of g, is again given by (5).
Then the short & € Hy, is again defined by (6). Now (&,€) = m(—2+X+X"').

Similar to Section 2.3.2, consider the quasi-homogeneous mapping, in-
duced in the family

Vo = {2%y + y™ ' + 22 + 2az = 0}

by the rotation o — « - €?™. The consideration shows that the monodromy
operator, corresponding to a short ¥-cycle €, multiplies € by ¥~2 and hence
defines on Hy a Hermitian reflection

hy: aw a+(X2-1)

(a,8)&/m

(5’5) 1-Xx

of the order equal to the order of ¥ 2.

4 Elliptic singularities

Definition 4.1 A Z,,-equivariant function-germ f on (C2,0) is called ellip-
tic if the Zy,,-equivariant monodromy group of its stabilisation f = f + 22 is
finite.

Theorem 4.2 The complete list of Rz, -equivalence classes of elliptic Z,-
equivariant function-germs is as follows (the notation includes the symmetry

13



group):

notation | normal form restrictions unitary group
Ao/ 2, T m > 2 —
Asn/Z3 | y? + 23! n>1 G(3,1,n)

Duin /2, | 2%y + y™ 1 m>2,n>1,mn>4| G(2m,2,n)
Eg/Z, x3 4+ 9P — G
Eg/Z, 3+ 9P — Gy

If X 1s a primitive root of unity of order 2m, the monodromy group acting on
the character vanishing homology subspace Hy of the corresponding function-
germ on C2 is the unitary reflection group of the last column of the table.

The proof that there are no other elliptic singularities is very similar to
the proof of the analogous classification theorem in [7] and we are not giving
it here. In Section 4.1 we show that the monodromy groups are as claimed.

Remarks 4.3 (a) We use the settings of Remark 1.1: G(3,1,1) = Z3 and
G(2m,2,1) = Z,,.

(b) In the case Az,/Z3, the monodromy acts on H;_ , as G(1,1,n) (see
Remark 1.1).

(c) In the case D,/ Zyy,, for a non-primitive root X, Y™ = —1, the mon-
odromy group on the character subspace Hx is G(ord(X),2,n).

(d) All possible adjacencies of the elliptic singularities come from the
adjacencies of the R-simple functions.

4.1 The intersection diagrams

The proof of the claim that the monodromy groups of the stabilised ellip-
tic equivariant singularities are exactly the unitary reflection groups follows
from the comparison of the Picard-Lefshetz operators, corresponding to a dis-
tinguished set of vanishing y-cycles, with the generators given by the group
graphs in Section 1. In this section we draw similar graphs, Dynkin diagrams,
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for the singularities in which the roots are the vanishing x- or X-cycles and
the (skew-)Hermitian product of the roots is the intersection index of the
cycles (in the three-variable case, the product is negative-definite as all the
participating non-symmetric functions are R-simple). The Dynkin diagrams
obtained show that, for the functions on C? and ¥ = e*™/™ only very simple
rescaling of the cycles is required to make their intersection numbers equal
to the negatives of the Hermitian products of the corresponding roots of the
groups. For the other primitive characters X, an additional minor change in
the set of generating reflections of the group also gives the distinguished set
of the Picard-Lefschetz operators.

The Dynkin diagrams for the plane curves introduce skew-Hermitian ver-
sions of the unitary reflection groups under consideration.

We obtain the intersection diagrams for the character subspaces from
symmetric Dynkin diagrams of the corresponding R-simple functions by the
operation of m-folding which is very similar to the folding used in [12] and
[7]. This is analogous to the folding by which one gets the canonical Dynkin
diagrams of the Weyl groups By, C, Fy from those of Ao 1, Dgi1, Fg. In
fact the m-folding has already been described in Sections 2 and 3 where we
obtained one vanishing y- or Y-cycle from the m ordinary.

Our conventions for drawing the Dynkin diagram of a distinguished sys-
tem of vanishing x-cycles in H, of the equivariant function singularity on C?
are as follows (cf. Section 2.2):

e a long vanishing x-cycle, of square 0, is represented by a white vertex;

a short vanishing x-cycle, of square m(x ! — x), is represented by a
black vertex (in fact there is no difference between short and long cycles
when m = 2);

e we number the paths in the line ¢ counter-clockwise as they leave the
base point * (see Section 2.2) and give the same numbers (written in
bold) to the corresponding vanishing x-cycles;

e there is no edge between two skew-orthogonal x-cycles;
e an oriented weighted edge, v, — vy, stands for (v, v) = ma;

e the weight a = 1 is not written.
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Drawing cyclically symmetric Dynkin diagrams of ordinary functions, we
follow the same agreements taking formally m = 1 and making all the vertices
white.

The conventions for the diagrams of the stabilised singularities, in three
variables, are almost the same as above except for that we do not need to
orient an edge with a real weight and the weight @ = —1 is represented by
a dashed edge. Of course, the squares of short and long Y-cycles are now
m(—=2+ X + X') and —2m, and the orders of the related Picard-Lefschetz
operators are the order of x¥* and 2 (see Section 3).

Traditional calculations imply

Proposition 4.4 There exist distinguished bases in the vanishing homology
of stmple singularities As,, Dy, and FEg, in two and three variables, with
the intersections given by the symmetric Dynkin diagrams of Figures 5 and
6. They define, in the way described in Sections 2.2 and 3, the distinguished
systems of vanishing x- and X-cycles in the character homology subspaces of
the equivariant functions with the Dynkin diagrams represented in the same
Figures.

Below are some comments on the construction of the Dynkin diagrams
of the equivariant functions and on the coincidence of the monodromy and
reflection groups.

A3n/Z3.

All the vanishing x- and Y-cycles in the distinguished bases are in one-
to-one correspondence with the triples of the cycles in the Aj, diagrams
lying on the concentric circles. The fact that the monodromy group on Hy,
X = e*™/3 is G(3,1,n) is obvious.

Duin/Zy.

The diagrams for the singularities Ds,, /Zs given in Figure 5 provide a clear
pattern for the entire series. The numbering of the vertices in the tails of the
Dynkin diagrams of the character spaces of this series is 5,4,7,6,9,8, ...,
ending with ..., n,n —1,n+1ifnisoddn and ..., n—2.n+ 1,n if n is
even. There is one relation between the cycles:

€y = €1 — €3 iIlHX and 52:€1+53i11H;. (7)

Geometrically, the second cycle is the image of the first under the square root
of the monodromy operator corresponding to the third (short) cycle. All the
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Figure 5: m-folding Dynkin diagrams of simple functions to Dynkin diagrams
of the equivariant series in two and three variables.
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Figure 6: m-folding Dynkin diagrams of function Eg to Dynkin diagrams of
the exceptional equivariant singularities in two and three variables.

character cycles, except the second, are again in one-to-one correspondence
with the concentric m-tuples of the cycles in the D,,, diagram.

The division of all the long Y-cycles by y/m and of the short one by
(X—1)y/m, along with the change of the sign of the intersection form, provide
the intersection diagram of the group G(2m,2,n) (Figure 2) in which a = ¥.
For a primitive Y, reflecting the rescaled €; an appropriate number of times
(if any) in &, we make a = e™/™. Therefore G(2m,2,n) is indeed the
monodromy group of H.

Es/Zz.

The Dynkin diagrams of the equivariant singularities are constructed in
the obvious way from those of Dg/Zs by adding one more character cycle
corresponding to two opposite peripherical cycles in the Eg diagrams. The
linear relation on the vanishing character cycles in this case is (7) again.
When ¥ = —1, the diagram of the three-variable singularity is, up to the sign,
exactly that of the group G3; given in Figure 3. For ¥ = ¢, reorientation of
the triangle 123 and reflection of the Dynkin diagram about the vertical axis
also provide us with the diagram of Figure 3.

Es/Z,4.
For Y = e , the sign change of the form and rescaling transform the
Dynkin diagram of the three-variable singularity into the standard diagram

+wi/4
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of Gy (Figure 3). For ¥ = e*3™/4, the same procedure gives the graph similar
to that of Gy, but with the edge of weight —2cos37/8. As Gy D I5(8), this
graph aslo defines Gy.

4.2 Discriminants of the singularities
and of the groups

The Tjurina number of an equivariant elliptic singularity coincides with the
dimension of the standard representation of the related reflection group.

In all the cases when the group discriminants are known, it is easy to
check that they coincide with the discriminants of the function singularities.

Example 4.5 The discriminants of the complex singularities Dy, /Z,, and
D3,/ Z,, are shown in Figure 7. There and in what follows, we omit the group
from the notation of the equivariant singularities in the figures. If m = 2, the
D, stratum is just another component of the 2A4; stratum (clearly Dy = 24,
as groups).

Figure 7: Discriminants of the complex singularities Doy, /2 and D3y, Zi, .-

Example 4.6 It makes sense to consider real versions of Zy-equivariant sin-
gularities, along with the corresponding discriminants. The discriminants of
the initial members of the real series

D3, /Zy: 3’y +y*™ !
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Figure 8: Discriminants of the real singularities DF /Zy and DF | Z,.

are shown in Figure 8. They are just appropriate fragments of the discrimi-
nants of the previous figure.

The only unknown group discriminant is that of G3;. Hence we have

Conjecture 4.7 The discriminant of the group Gs1 is isomorphic to the
discriminant of the singularity Fg/Z,.

A nice description of the latter is as follows.
Consider the family of planar curves defined by the Rz,-miniversal de-
formation of Eg/Z,:

y° + 223 4+ 20y + 28y — vz — 0y = 0. (8)

We set z = uy in (8), then divide the result by y and introduce v = 2.
This provides a family of hyperelliptic curves which after the substitution
w = v+ u® + ou + 3 takes the form

w? = (u® + au+ B)° + yu + 6. (9)

It is easy to see that our transformations did not change the discriminant.
Hence the discriminant of the function Eg/Z, is a section of the standard
discriminant A5 by a smooth hypersurface. The discriminant is represented
in Figure 9 by its three spatial sections. Halving the surfaces along the
D, stratum, one obtains the sections of the discriminant of the real Z,-
equivariant singularity.
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Figure 9: Three-dimensional sections of the discriminant of the singularity
Es/Zy and of its real version.
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