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Abstract

We study two series of spaces of special real trigonometric polyno-
mials of fixed degree having the maximal possible number of distinct
critical values. Those are functions such that either g(¢ +7) = —g(yp)
or g(—p) = —g(p). For each of the spaces, we calculate the number
of its connected components and identify, within the mirror arrange-
ment of the Weyl group of series B, a convex polyhedral model for its
closure.

A real trigonometric M-polynomial of degree m is one with the maxi-
mal number 2n of real critical points. In his recent paper [4], V. I. Arnold
constructed a polyhedral model for the manifold of such polynomials and
calculated the number of topologically different M-polynomials with all their
critical values distinct. The model was provided by a convex cone in the
space equipped with the mirror arrangement of the reflection group A,,_;.
The enumeration was done in terms of updown sequences (also called A-
snakes) of [1, 2].

In the present note we establish a similar result for Mobius trigonometric
M-polynomials, that is those with the property g(p + 1) = —g(¢). The
polyhedral model is now a simplex within the mirror arrangement of the
reflection group of series B. Analogous constructions are carried out for odd
trigonometric functions.

Also we enumerate topological types of our M-functions with non-coinci-
ding critical values. The enumeration is given by so-called - and 7y-snakes
(see [2]), which have been lacking a direct singularity theory interpretation.

All our results describe properties of the real Lyashko-Looijenga mapping
which associates to an M-function the ordered set of its critical values. They



are parallel to the results on the sets of real M-functions in the other natural
families (see [2, 6, 7] and papers cited there).

1 Mobius polynomials

1.1 Functions of degree 3

We start with an example that illustrates general properties of Mobius M-
polynomials which we are going to establish.
Consider the 2-parameter family

1
flp,a,b) = §c0s3g0 +acosp + bsing

of all possible real Mébius trigonometric polynomials of degree 3 with the
fixed leading term £ cos 3¢.

The bifurcation diagram 3 of the family is the set of all the values of the
parameters (a,b) for which the function f(-,a,b) is non-generic. It consists
of three curves:

Y., caustic, — functions f(-,a,b) have non-Morse critical points;

Y, Maxwell stratum, — functions f(-,a,b) have coinciding non-zero criti-
cal values;

Yo, special Maxwell stratum, — functions f(-, a,b) have critical points on
their zero-levels.

To find X, one can proceed as follows. Rewrite the family as

1
F((p,A,(S):§c083g0+Acos(<p—6), a=Acosd, b=Asind.

Let prime denote the derivation with respect to ¢. Then the equation for
Y, 1s
0= —F"—iF' =2¢% 4 ¢73% 4 Ae'v70)
Thus, Ae ™ = —2¢%% — ¢~%%_ This is a hypocycloid with 3 cusps, the bigger
one of Fig.1.



of

Figure 1: Stratification of the space of Mdbius functions of degree 3 with a
fized leading term and the mirror arrangement of the reflection group Bs.
The spherical triangles are marked with the corresponding [3-snakes (see

Sect.1.2).

The smaller hypocycloid of Fig.1is ¥; defined by the equation F'—iF" = 0,
that is Ae % = —2e% 4 Le tw,

The Maxwell stratum ¥, consists of the three intervals. The calculations
for it are, as usual, a bit more complicated. We do not show them here.

The set of M-functions f(-,a,b), with all 6 critical points real, is that
inside ¥,. The subdivision of its closure by the strata ., and X, is seen to be
homeomorphic to that of the spherical domain in the cone ¢; < ¢y > ¢3 < —¢3
in the coordinate 3-space by the mirrors of the group B3. The elementary
triangles of the domain are in one-to-one correspondence with permutations
described in the next section.

1.2 [-snakes

Consider a Mobius trigonometric M-polynomial of order n (n is odd). Walk
counterclockwise along the source circle starting from some initial point so
that the first critical point to meet is a local minimum. This provides us



with a sequence {c;} of the critical values satisfying the relations
cp<cyg>c3<...>Coppr1=c6 and ¢ ,=—¢,1=12...,n.

The space of Mobius M-functions will be shown to be closely related to the
space of such sequences. So let us consider the latter in some detail.

An arbitrary sequence of 2n real numbers subject to the above relations in
which all the inequalities are allowed to be non-strict will be called a Mdbius
snake of order 2n. A snake all of whose elements are distinct will be called
generic.

Since a Mobius snake is completely defined by its initial half, the set .S,
of all Mobius snakes of order 2n is the cone

01§02203<...>C

— —]

< —¢

in R". The set S2 of non-generic snakes is its intersection with the set of
mirrors

of the reflection group B,,.

Theorem 1.1 The number M, of connected components of the set of generic
Mdébius snakes of order 2(2r + 1) is equal to (2r + 1)S,, where the numbers
S, are given by the exponential generating function

ZOST @) =sec2t .

Thus M, = (2r + 1)2*"E,., where the sequence {E,} is that of the Euler
numbers: 1, 1, 5, 61, 1385, ... . Fig.1 is an illustration to M; = 12.

Proof. Let n = 2r + 1. Each of the connected components under con-
sideration is contractible and contains one and only one n-sequence which is
the initial half of a normalised Mobius snake, that is a Mobius snake which

is a permutation of the numbers +1,£2,...,£n. So we need to show that
the number of the normalised snakes is that claimed in the theorem.
Let us delete the absolute maximum ¢, = n and minimum ¢,,, = —n

of a normalised M&bius snake and consider the (n — 1)-sequence s; = ¢;y;,



i=1,...,n — 1 (the indexation in the original snake is taken modulo 2n).
The obtained integer sequence satisfies the conditions:

51 < 83> 83<...5,1 and  {|s;|} ={1,2,...,n—1}.

Following [2], we call such a sequence a (3,_;-snake (we do not call it nor-
malised since we will not need any others).

Denote by B,,_; the number of all possible (3,_;-snakes. The following
lemma, allowing n to be of any parity (so that the last inequality in the above
chain is 7>” for even n), identifies the generating function B(t) = > ;>0 kac—k,.

Lemma 1.2 (part of Theorem 24 of [2])
B(b) = sec 2t + tan 2t .

The lemma implies our theorem. Indeed, S, = B,, and the maximal-
minimal pair (¢g, ¢pyy) = (n,—n) of a normalised M&bius snake of order
2n = 2(2r + 1) can stay in any of the 2r 4 1 different positions. O

1.3 Homeomorphism of the configurations

Consider the space R?" of all Mobius trigonometric polynomials

r—1
cos (2r + 1)+ D> agcos (2k + 1)p + by sin (2k + 1)

k=0
of degree 2r + 1 with fixed leading term. Let M, C R?" be the closure of the
set of all M-functions, and M C M, its intersection with the bifurcation
diagram of the family. The following theorem relates these two sets to the
set Sy, 11 C R of all Mobius snakes of order 2(2r + 1) and its subset S3. 4
of all non-generic snakes.

Theorem 1.3 The pair (M,, M?) is homeomorphic to the intersection of
the pair (Sy,41,S541) with a sphere in R* 11 centered at the origin. The
homeomorphism is a diffeomorphism at any of the internal points of M,.

Proof. Our statement will follow from the main result of [4] which asserts
that the real analog of the Lyashko-Looijenga mapping [5, 3] provides a sim-
ilar homeomorphism for trigonometric M-functions which are not necessarily
Mobius. We recall the definiton of the mapping and the result.
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Consider the space R?"~2 of all trigonometric polynomials of degree n
with the fixed leading term cos(ny) and no free term. Take one of M-
functions in it and order its 2n critical points as in Section 1.2 starting from
alocal minimum. Since the closure N, C R?"~? of the set of all M-functions is
contractible [4], this induces the ordering of the critical points of any function
in the interior of V,,. Now to each of the functions in the interior we associate
the ordered set ¢; < ¢y > ¢35 < ... < ¢, > c; of its critical values. Shift all the
values by their arithmetic mean. This gives a mapping into the hyperplane
¢+ ¢+ ...+ ¢y, = 0 in the 2n-dimensional coordinate c-space equipped
with the diagonals ¢; = ¢;. Its composition with the radial projection onto a
sphere in it centred at the origin is a diffeomorphism between the interior of
N,, and the spherical domain defined by the above chain of inequalities. The
diffeomorphism maps the Maxwell stratum to the diagonals, and extends to
a homeomorphism £,, of the closures [4].

Returning to the Mébius M-functions, consider M, as a subset of Ns, ;.
The composition of the restriction of Ly,.,; to M, with the further projec-
tion forgetting the last half of the coordinates in the c-space R* "2 is the
homeomorphism required in the claim of the theorem. O

In Fig.1, the ordering of the critical values is induced by that for the
function 3 cos 3¢ starting from its local minimum at ¢ = /3.

1.4 Monodromy

Now consider trigonometric polynomials of order n with the leading term
varying and no free term:

> apcoskp+bpsinke = > Agcos(kp —6;), A, #0.
k=1 k=1
The set of all such polynomials is S' x R?"~!,
For any real 7, the shift
p—p+T, op— 6+ kr, k=1,...,n,

does not change the value of a function. Thus, when 6, changes from 0 to
27, the bifurcation diagram of a subfamily with the fixed leading term maps
onto itself with the twist by 2k7/n in the coordinate (ay, by )-plane. For the
diagram of Fig.1 this is the counterclockwise rotation by 27 /3.
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In terms of the critical values, the above monodromy cancels the difference
between every m snakes obtained from each other by rotation of the source
circle. Thus the number of different topological types of generic Mdbius
trigonometric M-functions is given by

Corollary 1.4 In the set S*xR?*! of all Mébius trigonometric polynomials
of degree 2r + 1 with an arbitrary leading term, the subset of M-functions
with all their critical values distinct has 2*"E, connected components each
contractible onto a circle.

2 0Odd trigonometric polynomials

2.1 Degree 3 family
Again we start with an illustration to our other general statement.
Consider the family
sin ¢ (cos” ¢ + a cos ¢ + b)

of degree 3 odd trigonometric polynomials.
The set of non-generic functions in the family (Fig.2) consists of:

Y., caustic, — functions with non-Morse critical points not at multiples of
5

Y, boundary caustic, — functions with non-Morse critical points at multi-
ples of 7, thus on their zero-levels;

Ym, Maxwell stratum, — functions with coinciding critical values on the
open interval (0, 7);

Y., anti-Maxwell stratum, — functions with anti-coinciding critical values
¢; = —c; on the open interval (0, 7);

Y, special Maxwell stratum, — functions with critical points on their zero-
levels not at multiples of .



In Fig.2, the asymptote for the anti-Maxwell strata is b = —3. The strata
¥, and X, intersect at b = —%, that is at sin3¢p. The strata ¥, and %,
meet at the origin. The intersections of ¥, and X, are at (+3(1 —27%/3),2 —
3.271/3),

The shaded region in the parameter space is that of M-functions. Its
configuration is isomorphic to the spherical domain 0 < ¢; > ¢y < ¢3 > 0 in
the 3-space containing the B3 arrangement.

Figure 2: Stratification of the space of odd functions of degree 3 compared
with the Bs mirror arrangement. The spherical triangles are marked with the
Bs-snakes of critical values of the functions in the open interval (0, 7).

2.2 The polyhedral model

Up to the choice of the sign of a function, we may assume that any real odd
trigonometric polynomial of degree n enters the family

®, =sinp(cos™ T +ajcos” Fp+...+ay_9C08p+an_1).

Consider the restriction of the real Lyashko-Looijenga mapping £,, from
the space of all trigonometric M-polynomials of degree n with the fixed lead-
ing term 1sinng to M-functions of the family ®,. Let the ordering of the
critical values for £,, be induced by that of the function % sin ny with respect
to the increase of the coordinate ¢ € (0, 27) of its critical points. According
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to [2], our restriction of £, maps the set of all M-functions of the family &,
diffeomorphically onto the spherical domain in R?" lying in the cone

c1>c < ...> 0y <0, ;= —Cypi1—;, t=1,...,m.

Thus, the set of all M-functions in ®,, is connected. Denote by O,, its closure.

The subset of functions in O,, for which ¢; = 0 (and thus ¢,, = 0) lies on
the boundary of O,,. Indeed this special critical value in general corresponds
to a cubical critical point at ¢ = 0.

So, for any M-function from ®,,, the above ordering of the critical values
is that given by the increase of the coordinate ¢ € (0,27) of its own critical
points. In particular, for such a function the first critical point is a local
maximum and ¢; > 0. Similarly, (—1)" !¢, > 0.

Now let OF C O, be the subset of non-generic odd functions in the
parameter space R"~! of the family ®,,. Denote by P, the intersection of the
cone

0<c>c<c3>...c,, (-1)" ¢, >0

with the sphere in the coordinate space R" centred at the origin. Let P> be
the intersection of P, with the mirror arrangement of the group B,.
The above discussion proves

Theorem 2.1 The pairs (0,,0Z%) and (P,, P¥) are homeomorphic. The
homemorphism between them is a diffeomorphism at the internal points.

The homemorphism is provided by the composition of the restriction of
the mapping £,, with the projection forgetting the critical values ¢, 1, ..., coy.

2.3 Enumeration of the topological types

Theorem 2.2 The numbers O,, of topologically distinct real odd trigonomet-
ric M-functions of degree n fit in the exponential generating function

o0 n
Y On— =sec2t + tan2t.
b S

For n = 0 this makes a reasonable sense: there is only one odd function,
g = 0, of degree 0 with the maximal possible number 1 of distinct critical
values.



The topological equivalence of the theorem is that via odd diffeomor-
phisms of the source circle preserving its orientation and fixing ¢ = 0, and
orientation-preserving odd diffeomorphisms of the target real axis. Thus the
family ®,, contains only half of all the types. For example, in Fig.2 we see
8 = 03/2 of them.

Proof of the theorem. Consider for the moment only the topological types
represented in ®,,. From the previous section we see that their number is
that of (,-snakes (more precisely, of the negatives of them) which might be
continued to the left and right by zeros so that the inequality chain stays
alternating:

0<pi>pa<ps>...pp, (1D)"'pn>0, {lpl} ={1,2,...,n}.

An odd diffeomorphism of the real axis adding 1 to each natural number
establishes a one-to-one correspondence between the above snakes and se-
quences

1=Dg <Py >Ps<P3g>...0n, {Im:]} =1{1,2,...,n+1}.

extendible by 0 to the right in the similar way. Giving up the restriction
Do = 1 we get exactly the definition of Arnold’s 7, ;-snakes [2].

Let GF., be the number of v, ;-snakes with the fixed beginning p, = F,
and thLl the number of (3, ;-snakes starting with £ = p, < p; > .... We
have to identify G} ; = O,/2.

Lemma 2.3 (part of Theorem 15 of [2])  For k >0,

— k—(n n —k
n—]ﬁl = gn—l—g +2) + g’fb—:iz) .

Setting £k =n + 1 we get
Corollary 2.4 2Gh 1 = B,.

Indeed, according to the lemma, B,Zﬂﬂ) = G, 11 + Gli1. On the other
hand, B,{1*" = B, and G, 1, = G,

According to Lemma 1.2, the exponential generating function for the
numbers B, is sec2t+tan2t. O

Remark 2.5 The exponential generating function 3, En1 L for the num-
bers &, of topological types of real even trigonometric M-functions of degree
n is easily seen to be 2(sect+tant), with a very formal setting £ ; =2 = &.
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