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The study of singular Lagrangian and Legendrian varieties was initiated about twenty-five
years ago by Arnold when he was investigating singularities in the variational problem of
obstacle bypassing [1]. The first examples of such varieties, open swallowtails, were re-
lated to the discriminants of the non-crystallographic Coxeter groups [8, 14]. Incorporating
these examples into a general context, Givental [8] introduced the notion of stability of La-
grangian and Legendrian varieties with respect to perturbations of symplectic structure and
Lagrangian or, respectively, Legendrian projection only, keeping the diffeomorphic type of
the variety fixed.

Later, in [13], it was shown that this stability notion has an explicit geometrical meaning
in terms of generating families, versal deformations of function singularities and inducing
mappings.

The interest in theory of singular Lagrangian and Legendrian varieties has been growing
recently due to its possible applications to Frobenius structures, D-modules and in other
areas.

The first half of these notes contains generalities about Lagrangian and Legendrian sin-
gularities. The second half is devoted to stable Lagrangian projections playing the central
rôle in the geometry of Hamiltonian systems and, in particular, in the theory of F -manifolds.
There we extend the results of [13] to a natural modification of Givental’s stability notion
and show that a wide class of Lagrangian and Legendrian varieties associated to matrix
singularities (see [5, 6, 11]) and singularities of composed mappings [10] are stable.

The lectures are based on the books [2, 4, 3] and paper [12].

1 Symplectic and contact geometry

1.1 Symplectic geometry

A symplectic form ω on a manifoldM is a closed 2-form, non-degenerate as a skew-symmetric
bilinear form on the tangent space at each point. So dω = 0 and ωn is a volume form,
dimM = 2n.

Manifold M equipped with a symplectic form is called symplectic. It is necessarily even-
dimensional.

If the form is exact, ω = dλ, the symplectic area of a 2-chain S is
∫
∂S λ. When λ exists

and is fixed M is called exact symplectic.
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Examples.
1. Let K = M = R2n = {q1, . . . , qn, p1, . . . , pn} be a vector space, and

λ = pdq =
n∑

i=1

pidqi , ω = dλ = dp ∧ dq .

In these coordinates the form ω is constant. The corresponding bilinear form on the tangent
space at a point is given by the matrix

J =

(
0 −In
In 0

)

Notice: for any non-degenerate skew-symmetric bilinear form on a linear space, there exists
a basis (called Darboux basis) in which the form has this matrix.

2. M = T ∗N . Take for λ the Liouville form defined in an invariant (coordinate-free)
way as

λ(α) = π(α)
(
ρ∗(α)

)
,

where
α ∈ T (T ∗N) , π : T (T ∗N) → T ∗N and ρ : T ∗N → N .

This is an exact symplectic manifold. If q1, . . . , qn are local coordinates on the base N , the
dual coordinates p1, . . . , pn are the coefficients of the decomposition of a covector into linear
combination of the differentials dqi:

λ =
n∑

i=1

pidqi .

A diffeomorphism ϕ : M1 → M2 which sends the symplectic structure ω2 on M2 to the
symplectic structure ω1 on M1,

ϕ∗ω2 = ω1 ,

is called a symplectomorphism between (M1, ω1) and (M2, ω2). When the (Mi, ωi) are the
same, a symplectomorphism preserves the symplectic structure. In particular, it preserves
the volume form ωn.

Symplectic group.
For K = (R2n, dp∧dq) of our first example, the group Sp(2n) of linear symplectomorphisms
is isomorphic to the group of matrices S such that

S−1 = −JStJ .

Here t is for transpose.

The dimension k of a linear subspace Lk ⊂ K and the rank r of the restriction of the bilinear
form ω on it are the complete set of Sp(2n)-invariants of L.
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Define the skew-orthogonal complement L
6

of L as

L
6

= {v ∈ K|ω(v, u) = 0 ∀u ∈ L} .

So dimL
6

= 2n−k. The kernel subspace of the restriction of ω to L is L
⋂
L
6
. Its dimension

is k − r.

A subspace is called isotropic if L ⊂ L
6

(hence dimL ≤ n).
Any line is isotropic.

A subspace is called co-isotropic if L
6 ⊂ L (hence dimL ≥ n).

Any hyperplane H is co-isotropic. The line H
6

is called the characteristic direction on H.

A subspace is called Lagrangian if L
6

= L (hence dimL = n).

Lemma 1. Each Lagrangian subspace L ⊂ K has a regular projection to at least one
of the 2n coordinate Lagrangian planes (pI , qJ), along the complementary Lagrangian plane
(pJ , qI). Here I

⋃
J = {1, . . . , n} and I

⋂
J = ∅.

A Lagrangian subspace L which projects regularly onto the q-plane is the graph of a self-
adjoint operator S from the q-space to the p-space with its matrix symmetric in the Darboux
basis.

Even in a non-linear setting symplectic structure has no local invariants (unlike Rieman-
nian structure) according to

Darboux Theorem. Any two symplectic manifolds of the same dimension are locally
symplectomorphic.

Weinstein’s Theorem. A submanifold of a symplectic manifold is defined, up to a sym-
plectomorphism of its neighbourhood, by the restriction of the symplectic form to the tangent
vectors to the ambient manifold at the points of the submanifold.

In a similar local setting, the inner geometry of a submanifold defines its outer geome-
try:

Givental’s Theorem. A germ of a submanifold in a symplectic manifold is defined, up
to a symplectomorphism, by the restriction of the symplectic structure to the tangent bundle
of the submanifold.

Proof of Givental’s Theorem. It is sufficient to prove that if the restrictions of two
symplectic forms, ω0 and ω1, to the tangent bundle of a submanifold G ⊂ M at point A
coincide, then there exits a local diffeomorphism of M fixing G point-wise and sending one
form to the other. We may assume that the forms coincide on TAM .
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We again use the homotopy method, aiming to find a family of diffeomorphism-germs gt,
t ∈ [0, 1], such that

gt|G = idG , g0 = idM , g∗t (ωt) = ω0 (∗) where ωt = ω0 + (ω1 − ω0)t .

Differentiating (∗) by t, we again get

Lievt(ωt) = d(ivtωt) = ω0 − ω1

where vt is the vector field of the flow gt. Using the “relative Poincaré lemma”, it is possible
to find a 1-form α so that dα = ω0−ω1 and α vanishes on G. Then the required vector field
vt exists since ωt is non-degenerate. 2

Darboux theorem is a particular case of Givental’s theorem: take a point as a submani-
fold.

If at each point x of a submanifold L of a symplectic manifold M the subspace TxL is
Lagrangian in the symplectic space TxM , then L is called Lagrangian.

Examples.
1. In T ∗N , the following are Lagrangian submanifolds: the zero section of the bundle, fibres
of the bundle, graph of the differential of a function on N .

2. The graph of a symplectomorphism is a Lagrangian submanifold of the product space
(it has regular projections onto the factors). An arbitrary Lagrangian submanifold of the
product space defines a so-called Lagrangian relation.

3. Weinstein’s theorem implies that a tubular neighbourhood of a Lagrangian submani-
fold L in any symplectic space is symplectomorphic to a tubular neighbourhood of the zero
section in T ∗N .

A fibration with Lagrangian fibres is called Lagrangian.
Locally all Lagrangian fibrations are symplectomorphic (the proof is similar to that of

Darboux theorem).
A cotangent bundle is a Lagrangian fibration.

Let ψ : L → T ∗N be a Lagrangian embedding and ρ : T ∗N → N the fibration. The
product ρ ◦ ψ : L→ N is called a Lagrangian mapping. It critical values

ΣL = {q ∈ N |∃p : (p, q) ∈ L, rank d(ρ ◦ ψ) < n}

form the caustic of the Lagrangian mapping. The equivalence of Lagrangian mappings is
that up to fibre-preserving symplectomorphisms of the ambient symplectic space. Caustics
of equivalent Lagrangian mappings are diffeomorphic.
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Hamiltonian vector fields.
Given a real function h : M → R on a symplectic manifold, define a Hamiltonian vector field
vh on M by the formula

ω(·, vh) = dh .

This field is tangent to the level hypersurfaces Hc = h−1(c):

∀a ∈ Hc dh(TaHc) = 0 =⇒ TaHc = v
6
h , but vh ∈ v

6
h .

The directions of vh on the level hypersurfaces Hc of h are the characteristic directions of
the tangent spaces of the hypersurfaces.

Associating vh to h, we obtain a Lie algebra structure on the space of functions:

[vh, vf ] = v{h,f} where {h, f} = vh(f) ,

the latter being the Poisson bracket of the Hamiltonians h and f .

A Hamiltonian flow (even if h depends on time) consists of symplectomorphisms. Locally
(or in R2n), any time-dependent family of symplectomorphisms that starts from the identity
is a phase flow of a time-dependent Hamiltonian. However, for example, on a torus R2/(Z2)
(which is the quotient of the plane by an integer lattice) the family of constant velocity dis-
placements are symplectomorphisms but they cannot be Hamiltonian since a Hamiltonian
function on a torus must have critical points.

Given a time-dependent Hamiltonian h̃ = h̃(t, p, q), consider the extended space M × T ∗R
with auxiliary coordinates (s, t) and the form pdq−sdt. An auxiliary (extended) Hamiltonian
ĥ = −s+ h̃ determines a flow in the extended space generated by the vector field

ṗ = −∂ĥ
∂q

q̇ = −∂ĥ
∂p

ṫ = −∂ĥ
∂s

= 1 ṡ =
∂ĥ

∂t

The restrictions of this flow to the t = const sections are essentially the flow mappings of h̃.

The integral of the extended form over a closed chain in M × {to} is preserved by the
ĥ-Hamiltonian flow. Hypersurfaces −s + h̃ = const are invariant. When h̃ is autonomous,
the form pdq is also a relative integral invariant.

A (transversal) intersection of a Lagrangian submanifold L ⊂ M with a Hamiltonian level
set Hc = h−1(c) is an isotropic submanifold Lc. All Hamiltonian trajectories emanating
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from Lc form a Lagrangian submanifold expH(Lc) ⊂M . The space ΞHc of the Hamiltonian
trajectories on Hc inherits, at least locally, an induced symplectic structure. The image of
the projection of expH(Lc) to ΞHc is a Lagrangian submanifold there. This is a particular
case of a symplectic reduction which will be discussed later.

Example. The set of all oriented straight lines in Rn
q is T ∗Sn−1 as a space of characteristics

of the Hamiltonian h = p2 on its level p2 = 1 in K = R2n.

1.2 Contact geometry

An odd-dimensional manifold M2n+1 equipped with a maximally non-integrable distribution
of hyperplanes (contact elements) in the tangent spaces of its points is called a contact
manifold.

The maximal non-integrability means that if locally the distribution is determined by
zeros of a 1-form α on M then α ∧ (dα)n 6= 0 (cf. the Frobenius condition of complete
integrability being α ∧ dα = 0.)

Examples.
1. A projectivised cotangent bundle PT ∗Nn+1 with the projectivisation of the Liouville form
α = pdq. This is also called a space of contact elements on N . The spherisation of PT ∗Nn+1

is a 2-fold covering of PT ∗Nn+1 and its points are co-oriented contact elements.

2. The space J1N of 1-jets of functions on Nn. (Two functions have the same m-jet at
a point x if their Taylor polynomials of degree k at x coincide). The space of all 1-jets at
all points of N has local co-ordinates q ∈ N , p = df(q) which are the partial derivatives of
a function at q, and z = f(q). The contact form is pdq − dz.

Contactomorphisms are diffeomorphisms preserving the distribution of contact elements.

Contact Darboux theorem. All equidimensional contact manifolds are locally contac-
tomorphic.

An analog of Givental’s theorem also holds.

Symplectisation.
Let M̃2n+2 be the space of all linear forms vanishing on contact elements of M . The space
M̃2n+2 is a “line” bundle over M (fibres do not contain the zero forms). Let

π̃ : M̃ →M

be the projection. On M̃ , the symplectic structure (which is homogeneous of degree 1 with
respect to fibres) is the differential of the canonical 1-form α̃ on M̃ defined as

α̃(ξ) = p(π̃∗ξ) , ξ ∈ TpM̃ .
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A contactomorphism F of M lifts to a symplectomorphism of M̃ :

F̃ (p) := (F ∗
F (x))

−1p .

This commutes with the multiplication by constants in the fibres and preserves α̃. The sym-
plectisation of contact vector fields (= infinitesimal contactomorphisms) yields Hamiltonian
vector fields with homogeneous (of degree 1) Hamiltonian functions h(rx) = rh(x).

Assume the contact structure on M is defined by zeros of a fixed 1-form β. Then M has a
natural embedding x 7→ βx into M̃ .

Using the local model J1Rn, β = pdq − dz, of a contact space we get the following for-
mulas for components of the contact vector field with a homogeneous Hamiltonian function
K(x) = h(xβ) (notice that K = β(X) where X is the corresponding contact vector field):

ż = pKp −K, ṗ = −Kq − pKz, q̇ = Kp.

where the subscripts mean the partial derivations.

Various homogeneous analogs of symplectic properties hold in contact geometry (the analogy
is similar to that between affine and projective geometries).

In particular, a hypersurface (transversal to the contact distribution) in a contact space
inherits a field of characteristics.

Contactisation.
To an exact symplectic space M2n associate M̂ = R ×M with an extra coordinate z and
take the 1-form α = λ− dz. This gives a contact space.

Here the vector field χ = − ∂
∂z

is such that iχα = 1 and iχdα = 0. Such a field is called a
Reeb vector field. Its direction is uniquely defined by a contact structure. It is transversal
to the contact distribution. Locally, projection along χ produces a symplectic manifold.

A Legendrian submanifold Λ of M2n+1 is an n-dimensional integral submanifold of the con-
tact distribution. This dimension is maximal possible for integral submanifolds.

Examples.
1. To a Lagrangian L ⊂ T ∗M associate Λ ⊂ J1M :

Λ = {(z, p, q) | z =
∫
pdq, (p, q) ∈ L} .

Here the integral is taken along a path on L joining a distinguished point on L with the
point (p, q). Such an Λ is Legendrian.
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2. The set of all covectors annihilating tangent spaces to a given submanifold (or vari-
ety) W0 ⊂ N form a Legendrian submanifold (variety) in PT ∗N .

3. If the intersection I of a Legendrian submanifold Λ with a hypersurface Γ in a con-
tact space is transversal, then I is transversal to the characteristic vector field on Γ. The set
of characteristics emanating from I form a Legendrian submanifold.

A Legendrian fibration of a contact space is a fibration with Legendrian fibres. For ex-
ample, PT ∗N → N and J1N → J0N are Legendrian. Any two Legendrian fibrations of the
same dimension are locally contactomorphic.

The projection of an embedded Legendrian submanifold Λ to the base of a Legendrian
fibration is called a Legendrian mapping. Its image is called the wave front of Λ.

Examples.
1. Embed a Legendrian submanifold Λ into J1N . Its projection to J0N , wave front W (Λ),
is a graph of a multivalued action function

∫
pdq + c (again we integrate along paths on the

Lagrangian submanifold L = π1(Λ), where π1 : J1N → T ∗N is the projection dropping the
z co-ordinate). If q ∈ N is not in the caustic ΣL of L, then over q the wave front W (Λ) is a
collection of smooth sheets.

If at two distinct points (p′, q), (p′′, q) ∈ L with a non-caustical value q, the values z of
the action function are equal, then at (z, q) the wave front is a transversal intersection of
graphs of two regular functions on N .

The images under the projection (z, q) 7→ q of the singular and transversal self-intersection
loci of W (Λ) are respectively the caustic ΣL and so-called Maxwell (conflict) set.

2. To a function f = f(q), q ∈ Rn, associate its Legendrian lifting Λ = j1(f) (also called the
1-jet extension of f) to J1Rn. Project Λ along the fibres parallel to the q-space of another
Legendrian fibration

π∧1 (z, p, q) 7→ (z − pq, p)

of the same contact structure pdq − dz = −qdp− d(z − pq). The image π∧1 (Λ) is called the
Legendre transform of the function f . It has singularities if f is not convex.

This is an affine version of the projective duality (which is also related to Legendrian
mappings). The space PT ∗P n (P n is the projective space) is isomorphic to the projectivised
cotangent bundle PT ∗P n∧ of the dual space P n∧. Elements of both are pairs consisting of
a point and a hyperplane, containing the point. The natural contact structures coincide.
The set of all hyperplanes in P n tangent to a submanifold S ⊂ P n is the front of the dual
projection of the Legendrian lifting of S.
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2 Generating families

2.1 Lagrangian case

Consider a co-isotropic submanifold Cn+k ⊂M2n. The skew-orthogonal complements T
6
c C,

c ∈ C, of tangent spaces to C define an integrable distribution on C. Indeed, take two regular
functions whose common zero level set contains C. At each point c ∈ C, the vectors of their
Hamiltonian fields belong to T

6
c C. So the corresponding flows commute. Trajectories of all

such fields emanating from c ∈ C form a smooth submanifold Ic integral for the distribution.

By Givental’s theorem, any co-isotropic submanifold is locally symplectomorphic to a co-
ordinate subspace pI = 0, I = {1, . . . , n−k}, in K = R2n. The fibres are the sets qJ = const.

Proposition 2. Let Ln and Cn+k be respectively Lagrangian and co-isotropic submani-
folds of a symplectic manifold M2n. Assume L meets C transversally at a point a. Then the
intersection X0 = L

⋂
C is transversal to the isotropic fibres Ic near a.

The proof is immediate. If TaX0 contains a vector v ∈ TaIc, then v is skew-orthogonal
to TaL and also to TaC, that is to any vector in TaM . Hence v = 0.

Isotropic fibres define the fibration ξ : C → B over a certain manifold B of dimension
2k (defined at least locally). We can say that B is the manifold of isotropic fibres.

It has a well-defined induced symplectic structure ωB. Given any two vectors u, v tangent
to B at a point b take their liftings, that is vectors ũ, ṽ tangent to C at some point of ξ−1(b)
such that their projections to B are u and v. The value ω(ũ, ṽ) depends only on the vectors
u, v. For any other choice of liftings the result will be the same. This value is taken for the
value of the two-form ωB on B.

Thus, the base B gets a symplectic structure which is called a symplectic reduction of
the co-isotropic submanifold C.

Example. Consider a Lagrangian section L of the (trivial) Lagrangian fibration T ∗(Rk ×
Rn). The submanifold L is the graph of the differential of a function f = f(x, q), x ∈ Rk,
q ∈ Rn. The dual coordinates y, p are given on L by y = ∂f

∂x
, p = ∂f

∂q
. Therefore, the inter-

section L̃ of L with the co-isotropic subspace y = 0 is given by the equations ∂f
∂x

= 0. The
intersection is transversal iff the rank of the matrix of the derivatives of these equations, with
respect to x and q, is k. If so, the symplectic reduction of L̃ is a Lagrangian submanifold Lr

in T ∗Rn (it may be not a section of T ∗Rn → Rn).
This example leads to the following definition of a generating function (the idea is due

to Hörmander).

Definition. A generating family of the Lagrangian mapping of a submanifold L ⊂ T ∗N
is a function F : E → R defined on a vector bundle E over N such that

L =

{
(p, q) | ∃x :

∂F (x, q)

∂x
= 0, p =

∂F (x, q)

∂q

}
.
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Here q ∈ N , and x is in the fibre over q. We also assume that the following Morse condition
is satisfied:

0 is a regular value of the mapping (x, q) 7→ ∂F

∂x
.

The latter guarantees L being a smooth manifold.

Remark. The points of the intersection of L with the zero section of T ∗N are in one-
to-one correspondence with the critical points of the function F .

Existence.
Any germ L of a Lagrangian submanifold in T ∗Rn has a regular projection to some (pJ , qI)
co-ordinate space. In this case there exists a function f = f(pJ , qI) (defined up to a constant)
such that

L =

{
(p, q) | qJ = − ∂f

∂pJ

, pI =
∂f

∂qI

}
.

Then the family FJ = xqJ +f(x, qI), x ∈ R|J |, is generating for L. If |J | is minimal possible,
then HessxxFJ = HesspJpJ

f vanishes at the distinguished point.

Uniqueness.
Two family-germs Fi(x, q), x ∈ Rk, q ∈ Rn, i = 1, 2, at the origin are called R0-equivalent
if there exists a diffeomorphism T : (x, q) 7→ (X(x, q), q) (i.e. preserving the fibration
Rk ×Rn → Rn) such that F2 = F1 ◦ T .

The family Φ(x, y, q) = F (x, q)± y2
1 ± . . . ,±y2

m is called a stabilisation of F .

Two family-germs are called stably R0-equivalent if they are R0-equivalent to appropri-
ate stabilisations of the same family (in a lower number of variables).

Lemma 3. Up to addition of a constant, any two generating families of the same germ
L of a Lagrangian submanifold are stably R0-equivalent.

2.2 Legendrian case

Definition. A generating family of the Legendrian mapping π|L of a Legendrian subman-
ifold L ⊂ PT ∗(N) is a function F : E → R defined on a vector bundle E over N such
that

L =

{
(p, q) | ∃x : F (x, q) = 0 ,

∂F (x, q)

∂x
= 0 , p =

∂F (x, q)

∂q

}
,

where q ∈ N and x is in the fibre over q, provided that the following Morse condition is
satisfied:

0 is a regular value of the mapping (x, q) 7→ {F, ∂F
∂x

} .
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Definition. Two function family-germs Fi(x, q), i = 1, 2, are called V -equivalent if there
exists a fibre-preserving diffeomorphism Θ : (x, q) 7→ (X(x, q), q) and a function Ψ(x, q) not
vanishing at the distinguished point such that F2 ◦Θ = ΨF1.

Two function families are called stably V -equivalent if they are stabilisations of a pair of
V -equivalent functions (may be in a lower number of variables x).

Theorem 4. Any germ π|L of a Legendrian mapping has a generating family. All gen-
erating families of a fixed germ are stably V -equivalent.

3 Stability of projections of Lagrangian varieties

3.1 0-stability

We shall slightly modify the standard notions introduced earlier.

3.1.1 The Lagrangian setup

A singular Lagrangian (sub)variety L of a symplectic space M2n is an n-dimensional an-
alytic subset of M which is Lagrangian in the ordinary sense at all its regular points. A
Lagrangian projection π is a projection π : M → Bn defining a fibre bundle whose fibres are
Lagrangian.

Fibres of any Lagrangian fibration posses a well-defined affine structure. Indeed, local co-
ordinates on the base rise to regular functions on the total space, which are pairwise in
involution. Hence their Hamiltonian vector fields do not vanish, commute and are tangent
to the fibres.

The restriction π|L of the Lagrangian projection π to a Lagrangian subvariety L ⊂ M is
called a Lagrangian mapping.

Two Lagrangian mappings, of Lagrangian subvarieties L′ and L′′, are called equivalent
if there exists a symplectomorphism of the ambient symplectic spaces sending L′ to L′′ and
fibres of one Legendrian projection to fibres of the other. In particular, L′ and L′′ are
symplectomorphic.

The germ of a Lagrangian map π|L of a variety L at its point m is called stable if the
germ of any Lagrangian map π̃|L close to π|L at any point m̃ close to m is equivalent to the
germ of π|L at a point near m. Notice that only the fibration π is allowed to vary in this
context while the subvariety L is fixed.

According to Givental [8], the stability introduced is essentially equivalent to the follow-
ing versality of the map-germ π|L.

Let OL be the algebra of regular functions on L and mB,m the maximal ideal in the
algebra OB,m of function-germs on the base B at the point π(m). We define the local
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algebra of the germ of π|L at m as

Qm = OL/(π|L)∗(mB,m)OL .

The algebra Qm is the algebra of restrictions of functions on L to the intersection of L with
the fiber Fπ(m) = π−1(π(m)).

Denote by Am the subspace of affine (with respect to the corresponding affine structure)
functions on the fibre Fπ(m) and by r : Am → Qm the restriction homomorphism sending a
function on the fibre to its restriction to L ∩ Fπ(m).

The germ of π|L at m ∈ L is called versal if r is surjective, and miniversal if r is an
isomorphism.

Let p, q be local Darboux coordinates on M about m: p(m) = p0, q(m) = 0 and π(p, q) = q.
The Weierstrass preparation theorem implies that the versality of π|L at m is equivalent to
the existence of a representation of any analytic function-germ ϕ on M at m = (p0, 0) in the
form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj + a0(q) , (1)

where the aj, j ≥ 0 are analytic function-germs on the base B, and the function-germ ψ
vanishes on L.

Remark. The decomposition means that any function-germ on M at m is a sum of a
function vanishing on L and a function affine on the individual fibres. Therefore, any Hamil-
tonian vector field near m is a sum of a Hamiltonian vector field tangent to L and a Hamil-
tonian vector field preserving the fibration π. Hence the homotopy method implies that any
symplectomorphism-germ of M at m close to the identity is a composition of a symplecto-
morhism preserving L and a symplectomorphism preserving the standard projection π. Since
any perturbation of the germ of π in the class of Lagrangian projections is a composition of
π with an appropriate symplectomorphism, the versality implies stability. See [8] for more
details.

We now turn to a restricted version of the above setup. Namely, we take M = T ∗B to
be the cotangent bundle of a manifold Bn, and distinguish the zero section T0 of T ∗B. Let
Sym0(M) be the subgroup of symplectomorphisms of M preserving T0.

Two Lagrangian mappings of Lagrangian subvarieties of a cotangent bundle are called
0-equivalent if they are equivalent via a symplectomorphism from Sym0(M).

Replacement of the equivalence by the 0-equivalence in the stability definition yields a
definition of the 0-stability of Lagrangian map-germs.

The zero section T0 determines a linear structure on fibres of a cotangent bundle. Re-
placing the space Am of affine functions on Fm by its well-defined subspace A0

m of linear
functions, we obtain the definition of the 0-versality which is equivalent to the existence of
the representation of any function-germ ϕ on M at m such that ϕ|T0 = 0 in the form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj , (2)
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where the germs aj and ψ are similar to those in (1) and we assume that the Darboux
coordinates p vanish on the zero section T0.

Like before, the 0-versality implies the 0-stability.

For the benefit of the exposition, we continue now with the complex case only. Every-
thing below transfers absolutely straightforwardly to the real situation.

Lemma 5. The projection π : T ∗Cn → Cn, (p, q) 7→ q, of a Lagrangian germ L at
the origin is 0-stable if and only if the germs of the products pipj, i, j = 1, . . . , n, have
decompositions

pipj = ϕij(p, q) +
n∑

k=1

pkc
k
ij(q) (3)

in which the function-germs ϕij and ckij are holomorphic, and the ϕij vanish on L.

Proof. The “only if” part is obvious. To prove the “if” part, we notice that the ideal
I generated by all the quadratic polynomials Pij(p) = pipj −

∑
ckij(0)pk, i, j = 1, . . . , n, in

the space of all holomorphic function-germs on the fibre F0 is of finite codimension. Modulo
I, any function-germ on F0 is an affine function in p. After the projection to the local algebra
Q0, that is after a further reduction modulo the functions vanishing on L (more precisely on
L ∩ F0), such a function is still affine in p. Hence, the 0-versality condition holds. 2

For the stability (rather than 0-stability) version of the lemma see [8].

The suspension of a Lagrangian fibration π : M → B is its direct product

π̂ = (π, π0) : M̂ = M × T ∗C → B ×C

with the canonical projection π0 : T ∗C → C.
A suspension of a Lagrangian variety L ⊂ M2n is an (n + 1)-dimensional Lagrangian

variety L̂ ⊂ M × T ∗C which is the product of L with the line ` = {pn+1 = const 6= 0} in
T ∗C endowed with the standard Darboux coordinates pn+1, qn+1.

The propositions below follow immediately from the definitions.

Proposition 6. A map-germ π|L at m ∈ M is (mini)versal if and only if its suspen-
sion π̂|

L̂
is 0-(mini)versal at a point of the line m× ` (hence at all the points of this line) in

M̂ .

Example. A germ of the standard projection π of a Lagrangian submanifold L ⊂ T ∗Cn =
{p, q} determined by a generating family f = f(x, q) with parameters q ∈ Cn and variables
x ∈ Ck,

L = {(p, q)|∃x : ∂f/∂x = 0, p = ∂f/∂q} ,

is stable if and only if the family-germ f(·, ·) is an R+-versal deformation of the function-
germ f(·, 0). The projection is 0-stable if f(·, ·) is an R-versal deformation of the function
germ f(·, 0).
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Proposition 7. Consider a germ of a Lagrangian subvariety L in M̂ = T ∗Cn × T ∗C
at a point not in the zero section. Assume π̂|L is 0-versal and L belongs to a regular hyper-
surface in M̂ transversal to the ∂pn+1-direction. Then π̂|L is 0-equivalent to a suspension of
a versal map-germ π|L′ of a Lagrangian subvariety L′ ⊂M = T ∗Cn.

3.1.2 The Legendrian case

A singular n-dimensional subvariety of a contact space is called Legendrian if at all its
regular points it is Legendrian in the ordinary sense. For standard (and equivalent) local
models of contact (2n + 1)-spaces we use the projectivised cotangent bundle PT ∗Cn+1 and
the space J1(Cn,C) = {p, q, z} of one-jets of functions on Cn endowed with the contact form
α = dz − pdq. The definitions of Legendrian mappings, stability and others are analogous
to the Lagrangian case (see also [8]).

Symplectisation and contactisation functors relate Lagrangian and Legendrian germs as fol-
lows.

A. The projection ρ : (p, q, z) 7→ (p, q) maps a Legendrian variety Λ ⊂ J1(Cn,C) to the
Lagrangian variety ρ(Λ) ⊂ T ∗Cn.

B. Local Lagrangian fibration and its zero section determine uniquely the Liouville prim-
itive form α = pdq of the symplectic form ω = dα. Given a Lagrangian germ L ⊂ T ∗Cn at
a point m, denote by L0,m the subset of points s ∈ L such that the integral of α along some
path γ on L joining m and s vanishes.

For simplicity we assume the values of the integral do not depend on the local path γ,
that is the cohomology class of α vanishes on L (see [8] for examples of the opposite).

If L0,m does not meet the zero section of T ∗Cn, then its projectivisation is a Legendrian
(or isotropic) variety in PT ∗Cn. Its projection W0(L,m) = π(L0,m) ⊂ Cn is called the
0-wave front of L.

C. For a Lagrangian germ L ⊂ T ∗Cn at a point m, the set ΛL,m ⊂ J1(Cn,C) of points
(p, q, z) such that s = (p, q) ∈ L and the integral of α along a path in L joining m and s
equals z is a Legendrian variety in J1(Cn,C).

A germ of a symplectomorphism θ ∈ Sym0(T
∗Cn) preserving π preserves α. Hence if

θ(L′) = L′′ then θ(L′
0,m) = L′′

0,θ(m). In Darboux coordinates, θ has the form:

θ : (p, q) 7→ (P, θ̌(q)) ,

where θ̌ is the underlying diffeomorphism of the base and P = (θ̌−1)∗p is the value at p of
the linear operator on the fibres dual to the inverse of the derivative of θ. In particular,
θ̌(W0(L

′,m)) = W0(L
′′, θ(m)).

The proof of the following statement is straightforward.

Proposition 8. Consider a Legendrian germ Λ ⊂ J1(Cn,C). Assume the variety ρ̂(Λ)
does not meet the zero section and that its standard Lagrangian projection is 0-stable. Then
the projection of Λ to J0(Cn,C) is Legendrian stable.

Conversely, if the projection of Λ to J0(Cn,C) is Legendrian stable and Λ is quasihomo-

geneous with positive weights then ρ̂(Λ) is 0-stable.
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3.2 Stability of induced mappings

3.2.1 The critical-value theorem

The images under a Lagrangian mapping π|L of singular points of the Lagrangian variety L
along with the images of critical points of the restriction of π|L to the regular part of L form
the caustic ΣL of the Lagrangian mapping.

The caustic of a Lagrangian germ L at a point m of finite multiplicity µ is a proper
analytic subset of the base B of codimension at least 1.

For q /∈ ΣL close to the distinguished point π(m), the inverse image π−1(q)
⋂
L consists

of µ distinct points mi close to m. We can assume that locally π is the standard fibration
T ∗B → B. This allows us to introduce the Maxwell set ML ⊂ B as the closure of the set
of the points q /∈ ΣL for which the µ values of z on ΛL,m

⋂
(ρ ◦ π)−1(q) are not all distinct.

If µ is finite, the Maxwell set is a germ of a proper analytic subset of the base. The union
of the caustic and Maxwell set is called the bifurcation diagram Bif(π, L) of the Lagrangian
projection.

Consider the Lagrangian projection π : T ∗Cn → Cn of a Lagrangian variety-germ L. Let
g : Ck → Cn be a germ of a smooth mapping. If the choice of the base points of the
germs is consistent, we define the induced Lagrangian mapping g∗(π|L) as the projection of
g∗(L) ⊂ T ∗Ck to Ck.

Theorem 9. Assume the germs π|L at m,m /∈ T0 and g∗(π|L) are 0-miniversal and 0-
stable respectively. Then the critical value set Ξg of the mapping g belongs to the union
W0(L,m)

⋃
Bif(π, L).

Here we consider a source point of a mapping as critical if the derivative at the point is
not surjective. In particular, all the source is critical if its dimension is less than that of the
target, in which case the theorem implies that g maps Ck into W0(L,m)

⋃
Bif(π, L).

The stability analog of the theorem was proved in [13].

Proof. Take a point q0 ∈ Cn \ ΣL close to the base point. Its π|L-inverse image con-
sists of n distinct points m1, . . . ,mn ∈ Fq0 , all different from the origin. The multi-germ of
π|L at the finite set {m1, . . . ,mn} is 0-versal (the decomposition (2) holds for multi-germs).
This is equivalent to the mi being linearly independent in the fibre Fq0 : the restriction of
any function from the fibre to this set coincides with the restriction of a linear function.

Consider now λ0 ∈ g−1(q0). Let I ⊂ Tq0C
n be the image of the derivative g∗ : Tλ0C

k →
Tq0C

n. The pullback mapping g∗ : F n
q0
→ F k

λ0
between the fibres of the cotangent bundles is

a composition of the factorisation pr of Fq0 by the subspace I∨ of covectors annihilating I
and an embedding. Assume the dimension r of I∨ is positive, that is λ0 is a critical point of
g. The 0-stability of g∗(π|L) implies that the pr-images of the linearly independent points
m1, . . . ,mn ∈ Fq0 form a linearly independent set in the (n − r)-dimensional space Fq0/I

∨

(the image points counted without the multiplicities). As a result, the vertex set {m0 =
0,m1, . . . ,mn} of the n-simplex σ ⊂ Fq0 is mapped to the vertex set {m′

0 = 0,m′
1, . . . ,m

′
n−r}

of an (n− r)-simplex in Fq0/I
∨. In particular, the rank r subspace I∨ is spanned by all the

differences mi −mj such that pr(mi) = pr(mj), that is by the vectors in all the faces of σ
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contracted by pr to points (the sum of the dimensions of such faces is r).
Near each of the mi, i = 1, . . . , n, the Lagrangian variety L is locally the graph of the

differential of a function z = ψi(q), ψ(q0) = 0. The linearly independent points mi ∈ Fq0 are
the differentials of the ψi at q0.

For any pair i 6= j, denote by ∆ij ⊂ Tq0C
n the hyperplane tangent to the hypersurface

ψi(q)− ψj(q) = 0.
For any `, let ∆` ⊂ Tq0C

n be the hyperplane tangent to the hypersurface ψ`(q) = 0. The
hyperplanes ∆` and ∆ij are dual to the directional lines of the 1-dimensional faces of the
simplex σ ⊂ Fq0 .

The condition for the multi-germ g∗(π|L) to be 0-stable at the points of Fλ0 is equivalent
to the subspace I being the intersection of all the ∆` such that pr(m`) = 0 and all the ∆ij

such that pr(mi) = pr(mj) 6= 0. Hence I is the intersection of the subspaces in Tq0C
n dual

to certain faces of the simplex σ. Since I belongs to the tangent cone at q0 of the critical
value set Ξg, the regular strata of Ξg near q0 coincide with the integral manifolds of the
distributions defined similarly to I in the spaces TqC

n by subsets of the faces of the relevant
n-simplices in the fibres Fq.

According to [4] (items 7.1 and 7.2), among such integral manifolds, those having the
highest dimension and containing π(m) in their closures are the regular strata of the caustic,
Maxwell set and, as it is easy to see, wavefront W0(L,m). Hence Ξg ⊂ W0(L,m)

⋃
Bif(π, L).

2

Theorem 10. If g is the germ of a proper mapping between spaces of the same dimen-
sion, then the 0-stability of g∗(π|L) is equivalent to g being a ramified covering with the
ramification locus contained in W0(L,m)

⋃
Bif(π, L).

Proof. In this case the regular strata of Ξg are (n − 1)-dimensional. By Theorem 9,
the 0-stability implies the ramification property. To prove the converse it is sufficient to
notice that outside the ramification locus the induced map g∗(π|L) is 0-miniversal. Also it is
versal at points of the regular strata of the ramification set, as it can be seen from the pull-
back mapping g∗ action on the corresponding simplex in the fibre. Hence any holomorphic
function-germ ϕ(p, q) possesses a decomposition (2) with the coefficients aj(q) uniquely de-
termined on the complement of the analytic subset of codimension at least 2. Now Hartog’s
theorem extends the decomposition to an entire neighbourhood of the base point. 2

Remark. Assume the Lagrangian variety-germ L at m ∈ T ∗Cn is a suspension of a La-
grangian germ L′ at a point not contained in the zero section of T ∗Cn−1. The base Cn of
the suspended Lagrangian fibration contains a distinguished coordinate function, let it be
qn, corresponding to the second factor of the decomposition L ' L′ × C. The caustic and
Maxwell set for L are also isomorphic to the products of the caustic and Maxwell set for L′

with a line, the qn-axis. On the contrary, the hyperplane tangent to the wavefront W0(L,m)
at m is dqn = 0.

If, under the conditions of Theorem 10, the ramification locus Ξg contains an (n − 1)-
dimensional component of the caustic or of the Maxwell stratum then the direction ∂qn

belongs to the image I of the differential of g at points arbitrary close to m. Hence the com-
position qn ◦ g is not singular at the base point. On the other hand, if the ramification locus
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contains an (n−1)-dimensional component of the wavefront W0(L,m), then the composition
qn ◦ g must be singular at the base point. Otherwise, the hyperplanes tangent to Ξg near the
base point are not close to the hyperplane dqn = 0.

3.2.2 Composite functions

An interesting class of 0-stable Lagrangian projections is provided by versal deformations of
composite mappings [6].

Given a function-germ f : (Cn, 0) → (C, 0) consider the group Kf (see [6]) which consists
of diffeomorphism-germs Θ of the product space (Cm×Cn, (0, 0)) fibred over the projection
to the first factor Θ : (x, y) 7→ (X(x), Y (x, y)), x ∈ Cm, y ∈ Cn, and such that f(Y (x, y)) =
f(y) for any (x, y).

The group Kf acts naturally on the space of map-germs ϕ : (Cm, 0) → (Cn, 0) sending
the graph of one map to the graph of the other.

Assume a map-germ ϕ at the origin has a finite Tjurina number τ with respect to the
group Kf . Let Φ(x, λ) = ϕ(x) +

∑
λsϕs(x), λ ∈ Cτ , be a Kf -miniversal deformation of ϕ.

Introduce the composition F = f ◦ Φ.

Theorem 11. The Lagrangian projection defined by the generating family-germ F (x, λ)
is 0-stable.

Proof. Let t ∈ (C, 0) be an additional parameter. Consider the deformation

Fij = f ◦ (Φ + t
∂F

∂λj

ϕi)

of the composite function f ◦ ϕ. Since Fij|t=0 = F and Φ is Kf -versal, there exists a family
of Kf -equivalencies depending on t and inducing Fij from F :

Fij(x, λ, t) = f ◦
(
ϕ(X(x, λ, t)) +

τ∑
s=1

Λs(λ, t)ϕs(X(x, λ, t))
)
.

Moreover, we choose the family so that for t = 0 the mapping (x, λ) 7→ (X,Λ) is the identity
mapping.

Differentiating this equality with respect to t at t = 0 we obtain

∂F

∂λi

∂F

∂λj

=
∑ ∂F

∂xr

∂Xr

∂t
+
∑ ∂F

∂λk

∂Λk

∂t
.

Since ∂F/∂λi = pi and ∂F/∂xr = 0 on the Lagrangian variety defined by the generating
family F , this means that the 0-stability criterium of Lemma 5 holds for it. 2

Assume the germ at the origin of a composed function h = f ◦ ϕ has a finite multiplic-
ity µ. The deformation F = f ◦Φ of h is induced from an R-miniversal deformation H of h
by a map-germ g : (Cτ , 0) → (Cµ, 0) between the deformation bases.
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Corollary 12. If τ = µ and the inducing mapping g is proper, then g is a covering ramified
over the 0-wavefront of the 0-stable Lagrangian manifold defined by the generating family H.

Proof. The claim is trivial when the function-germ f is regular (if so, the mapping g
is a diffeomorphism). So we may assume that f has critical point at the origin. In this
case the composition of g with the projection Cµ → C along the hyperplane tangent to the
discriminant of h at the origin is singular at 0 ∈ Cτ . Now Theorems 11, 10 and the Remark
after Theorem 10 imply the result. 2

Remark. Under the conditions of Corollary 12, the Kf -discriminant of ϕ is a free divi-
sor.

Example. The covering mapping inducing the determinantal function of a versal matrix
deformation of a simple matrix singularity from a versal deformation of the determinantal
function of the unperturbed matrix (see [11]) is a particular case of Corollary 12. At this
point, one should consider either symmetric matrices in 2 variables or arbitrary square ma-
trices in 3 variables. Skew-symmetric matrices in 5 variables will also do.

The matrix setting of the Example has been generalised in [10] to compositions f ◦ ϕ with
functions f not necessarily determinantal. One of the main results of [10] states that µ = τ
provided the critical locus of f is Cohen-Macaulay and has codimension m + 1 in Cn. In
this case the critical locus C of the inducing map g turns out to be the set of all those points
in Cτ which correspond to perturbations of ϕ whose images meet the critical locus of f [7].
Clearly, g maps this set to the discriminant of the function f ◦ ϕ which agrees with the
theorems of section 3.2.1.

Now, the space of linear functions on a fibre Fq of the cotangent bundle T ∗B → B is the
tangent space TqB. So the functions ckij defined in (3) for a 0-versal Lagrangian map-germ
determine a point-wise associative multiplication on the germs of vector fields on the base.
When B is the base of a Kf -miniversal deformation this is exactly the multiplication con-
sidered in [7]. The only difference is that in [7] certain hypersurfaces were removed from B
to guarantee the multiplication has a unity. However, degeneracy of the multiplication is an
interesting question on its own. For example, experiments suggest the following

Conjecture 13. Let T be the space of vector fields on the base of a Kf -miniversal deforma-
tion of a map-germ ϕ : (Cm, 0) → (Cn, 0). Assume the critical locus of f is Cohen-Macaulay
and has codimension m+ 1 in Cn. Assume also that the transversal type of f is A1. Then

T 2 = Der(−log C)

where C is the critical locus of the inducing map g.

The inclusion T 2 ⊂ Der(−log C) follows immediately from the results of [9]. Perhaps this
inclusion should not depend on the transversality type of f at all. The results of [9] also in-
dicate that the Conjecture can be generalised to higher Ak transversality types if we increase
to k the order of tangency of the fields in T 2 to the relevant components of C.

18



References

[1] V. I. Arnold, Critical points of functions on a manifold with boundary, the simple Lie
groups Bk, Ck, F4 and singularities of evolutes, Russian Math. Surveys 33 (1978), no.
5, 99–116.

[2] V. I. Arnold, Singularities of caustics and wave fronts , Kluwer Academic Publ.,
Dordrecht-Boston-London, 1990.

[3] V. I. Arnold, V. V. Goryunov, O. V. Lyashko and V. A. Vassiliev, Singularities II. Clas-
sification and Applications , Encyclopaedia of Mathematical Sciences, vol.39, Dynamical
Systems VIII, Springer Verlag, Berlin a.o., 1993.

[4] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable
maps. Vol. I , Monographs in Mathematics 82, Birkhäuser, Boston, 1985.
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