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Abstract

We show that the Bennequin number of a transverse knot in the
standard contact 3-space or solid torus is bounded by the negative of
the lowest degree of the framing variable in its HOMFLY polynomial.
For R3, this fact was established earlier by Fuchs and Tabachnikov [7]
by comparison of the results of [1] and [5, 11]. We develop a different,
direct approach based on the lowering of the polynomial to transver-
sally framed regular planar curves and the results of [4]. We show,
by providing explicit examples, that for knots in R3 with at most 8
double points in their diagrams the estimate is exact.

It is very well known (see, for example, [8]) that any topological knot
type in a contact 3-manifold has a Legendrian representative. If the contact
structure is coorientable a Legendrian knot gets a natural framing. The
question of Legendrian representability of an arbitrary framed knot type has
in general a negative answer: according to the classical result by Bennequin
[1], the self-linking numbers (called in this case also Bennequin numbers) of
all canonically framed Legendrian representatives of a fixed unframed knot
type in R? are bounded from one side.

Paper [1] gives an estimate for the Bennequin number in the standard
contact 3-space in terms of the genus of a knot. This has a disadvantage of
being insensitive to passing from a knot to its mirror image. One feels this
immediately, considering the two trefoils: the Bennequin estimate is exact
for one of them and is far from being such for the other.

In recent papers [7, 4, 2, 3] there was obtained a series of estimates for
the Bennequin number of a Legendrian knot in the standard 3-space (and

1



its analog for the solid torus introduced by Tabachnikov in [13]) which do
respect the change of the orientation of the ambient space and are more
efficient than that original by Bennequin. According to them, the self-linking
number of a Legendrian knot K is at least the negative of the lowest power
of the framing variable in (the unframed versions of) the HOMFLY and
Kauffman polynomials of K (all the signs here follow our further choice of the
orientations). The estimate coming from the Kauffman polynomial is usually
better: for example, it copes with the Legendrian trefoils immediately, while
the HOMFLY information falls a little short of being sufficient.

Another type of knots which are natural to consider in a contact 3-
manifold are transverse knots, that is those everywhere transverse to the
contact distribution. Their theory is parallel to the Legendrian one: any
knot type has a transverse representative, they possess the canonical framing
if the contact structure is parallelisable, the self-linking (Bennequin) number
of a canonically framed transverse knot in the standard contact 3-space is at
least the Euler characteristic of any Seifert surface of the knot [1]. Similar
to the Legendrian case, the Bennequin number of a transverse knot in R3
cannot be less than the lowest degree of the framing variable in its HOMFLY
polynomial [7] (it is not very reasonable to consider the Kauffman polyno-
mial in the transverse setting, since the set of transverse knots is not closed
under the main skein relation of that polynomial). In fact, it did not take
too much effort to obtain the latter estimate in [7]: it came immediately
from the comparison of some intermediate results of [1] with the results of
[5, 11]. Asin the Legendrian case, this easier estimate has proved to be more
effective than that by Bennequin (once again, the example of the trefoils is
the simplest to demonstrate this).

The main goal of the present note is to obtain an estimate on the Ben-
nequin number of a transverse knot in the standard solid torus ST*R? anal-
ogous to that of [7] for the 3-space. We do this by direct methods, rather
different from those of [7]. Namely, we follow the approach of [4, 2, 3] to
the study of Legendrian knot invariants in the 3-space and solid torus via
invariants of their planar fronts, and study transverse knots in ST*R? via
their projections to the plane. The latter are regular curves equipped with a
natural transverse framing. We lower the framed version of Turaev’s HOM-
FLY polynomial for the solid torus [14] to our planar curves. After this,
a straightforward application of the results of [4] immediately implies the



desired estimate. Passing to the universal cover of our solid torus, we get
another proof of the Fuchs-Tabachnikov estimate.

We also give experimental results which demonstrate rather surprising
exactness of the Fuchs-Tabachnikov estimate for transverse representations
of all the knots in R? with at most 8 double points in their diagram.

Acknowledgements. The authors are grateful to H. Morton and S. Ta-
bachnikov for useful discussions.

1 Links in the solid torus and 3-space,
and framed planar curves

1.1 The two standard contact spaces

A cooriented contact element at a point of R? is a line in the tangent space
at this point along with a choice of one of the two half-planes into which
it divides the tangent plane. Any such element can be represented by the
unit normal n to the line pointing into the chosen half-plane (Fig.1). Thus

Figure 1: A cooriented contact element on the plane and its coordinates in
the solid torus ST*R?.

the variety of all cooriented contact elements of the plane is the spherisa-
tion ST*R? of its cotangent bundle. This solid torus possesses the standard
contact structure, that is maximally non-integrable field of tangent planes:
at each point of ST*R? one takes the tangent plane which is mapped by
the canonical projection p : ST*R? — R? onto the contact element repre-
sented by that point. In the coordinates of Fig.1 this is the field of kernels



of 1-form o = (cos ¢)dx + (sin ¢)dy. The standard contact structure is natu-
rally cooriented: the coorientation of a contact element lifts against p to the
coorientation of the tangent plane.

In what follows we will need orientation on ST*R?. We fix it to be the
orientation of R? followed by the direction of positive (counter-clockwise)
rotation in the plane. This is opposite to the orientation oo A de traditionally
taken in contact geometry.

Along with ST*R? we will be considering its universal cover R? with
its standard contact structure (induced via the covering mapping). The
orientation of the 3-space will be that inherited from the solid torus.

1.2 Links as framed planar curves

Any link L, that is an embedded collection of circles, in ST*R? can be put
by an arbitrary small perturbation in a generic position with respect to the
projection p. Then its p-image F; in the plane is an immersed collection
of circles whose only singularities are transverse double points. At every
point p(a) € Fj consider the normal n, coorienting the contact element
a € L. We equip F; with the unit framing e, e(p(a)) € a, such that the
pair {e(p(a)),n,)} orients the plane positively (see Fig.2). For our further
considerations, framing e is more visual than n, itself.

Figure 2: Canonical framing e of the projection of a generic curve from
ST*R? to the plane.

For a Legendrian link, for example, thus defined framing is everywhere
tangent to the planar curve. But this is an infinitely-degenerate case. In
general position, e is transverse to F} except for a finite number of isolated
points of their tangency. The latter are projections of the points of tangency
of the link L to the contact structure.



For a generic link L, the two framing vectors at any double point of
F; are distinct. On the other hand, making an elementary change of the
link topology via a generic homotopy in ST*R? involving a double point,
we instantaneously observe a regular planar curve with a double point at
which the two vectors coincide (Fig.3). Such a double point will be called an
elementary framing degeneracy point.

Figure 3: An elementary framing degeneracy at a double point of a framed
planar curve.

Reversing our construction we can start with a generic framed planar
curve F. Then the direction of the framing lifts F' to a link Ly in ST*R2.

To represent a link in R? in the similar way, we need each of the compo-
nents of a framed immersed planar collection F' of circles to have the rotation
(or Whitney winding) number zero. If F' has more than one component, to
make its lifting to the universal cover of ST*R? well-defined we must choose a
point on each of the components and specify one of countably many possibili-
ties to assign a phase ¢ to the framing at that point. The elementary framing
degeneracy at a double point now requires coincidence of the corresponding
real phases (not reduced modulo 27).

1.3 Transverse links and transverse invariants

Definition 1.1 A link in a contact space is called transverse if it is every-
where transverse to the contact structure.

Definition 1.2 A transverse link L in ST*R? is positive if it is oriented and
the framing e, followed by the orientation of Fp,, orients the plane positively.

For a generic transverse link L C ST*R?2, the framing e is everywhere
transverse to Fy. We can consider e up to homotopy which does not change



the topology of L. This means that we may assume e to be normal to F7j,
except for small neighbourhoods of some double points. Such double points
will be called abnormal and marked by a dot aside in the figures (see Fig.4).
Such specification of the double points, along with the coorientation of F,
by e, is obviously sufficient to restore the link type of L C ST*R2. All the
other information about the framing may be suppressed.

For a one-component or positive transverse link L, even the coorientation
of Fj, can be omitted. Thus any such link in the solid torus can be identified
with an oriented planar curve with some double points marked. The R3-
version of this approach is obvious.

Example 1.3 The move of Fig.3 is a homotopy from a normal to abnormal
double point.

Figure 4: The convention to depict normal and abnormal double points of
transversally framed planar curves.

We will be searching for invariants of transverse links in terms of transver-
sally framed regular planar curves. This means that we will be interested
only in such invariants of those curves which change only in generic 1-
parameter families that involve curves with elementary framing degeneracy
double points. Such invariants will be called transverse invariants. Thus
we are ignoring generic degenerations of transversally framed regular planar
curves which have no relation to the framing, that is self-tangencies and triple
points. Only families of immersed planar curves will be considered. Their
framing is not allowed to be tangent at any time. At a double point, any
interaction between a framing vector and the tangent to the other branch is
ignored.

Remark 1.4 The above shows that, in fact, we will be working within the
space of immersions of a collection of finite number of circles into ST*R?



which are transversal to the contact structure. Let us call such immersions
transverse curves.

The description of the set of connected components of the space of 1-
component transverse curves is as follows.

A generic oriented transverse knot K in ST*R? has two obvious invariants
read from its projection Fi to the plane: the rotation number w(Fy) € Z,
and the orientation € € Z, of the frame made up by the framing e and the
velocity of Fi.

The Whitney-Graustein theorem [15] implies

Proposition 1.5 Connected components of the space of 1-component ori-
ented transverse curves in the standard solid torus are enumerated by the
numbers (w,e) € Z X Zs.

1.4 Self-linking of transverse links

Consider any oriented framed link L in ST*R?. Following Tabachnikov [13],
we define its self-linking number as the index of intersection of a small shift
of L along the framing with a film that realises homology between L and the
multiple of the fibre of p : ST*R? — R? over a sufficiently distant point of
the plane.

This is a natural generalisation of the traditional definition for R3.

For a generic transversally framed oriented planar curve, consider a coun-
ter-clockwise rotation of its framing by a small angle. Lifting this to ST*R?
or, if possible, to its universal cover we obtain a canonical framing of the
corresponding transverse link.

Definition 1.6 The self-linking number /3 of a canonically framed transverse

oriented link in the solid torus or 3-space is called the Bennequin number of
the link.

In the solid torus, the Bennequin number of a link L is read from the link
diagram as usual, that is as half the sum of the signs of crossings of L and
its shift along the framing (see Fig.5).

To calculate 38 for a transverse link L in R3, given as an oriented and
cooriented regular curve F;, C R? with marked double points (see section
1.3), one may resolve all the double points of Fj, according to the phases
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Figure 5: Lifting of a planar curve to a positive transverse knot in ST*R?
with the canonical framing. In absence of abnormal double points, ¢ is the
direction of the velocity. The Bennequin number is 5.

¢ € R and thus obtain a link diagram of L. Then the canonical framing is
blackboard with respect to the projection back to R%. Thus, 3(L) is the sum
of the signs of all the double points.

1.5 Transverse representation of topological knot types

Proposition 1.7 Any oriented topological link type in R® and ST*R? has a
positive transverse representative.

This follows, for example, from the validity of the same statement for
Legendrian representatives whose fronts are regular curves (the constructive
proof of this fact for knots given in [4] can be easily generalised for links).
Indeed, a shift of such a Legendrian representative by a small non-zero con-
stant along the fibres of the fibration p : ST*R? — R? provides a transverse
link.

According to [1], the Bennequin numbers of canonically framed transverse
knots of a fixed topological type are bounded from below (for our way to
orient the solid torus). This was proved by Bennequin for knots in R3?, but
implies the result for the solid torus as well via a contact embedding of the
solid torus into the 3-space. Thus, the analog of Proposition 1.7 for framed
knots and links is not true.



In the next section we derive a new restriction on the Bennequin number
of a transverse knot in the standard solid torus. This is the main result of
our paper.

2 The HOMFLY polynomials

From now on we are considering only positive transverse links and corre-
sponding transversally framed planar curves.

2.1 The solid torus

Following Turaev [14], we introduce the framed version of the HOMFLY
polynomial of an oriented link in a solid torus [4].

Theorem 2.1 For any framed link L in a solid torus, there exists an ele-
ment P(L) € Z[z*, y*', €41, 49, . ..] which is uniquely defined by the skein
relations and initial data of Fig.6.

Figure 6: Definition of the framed version of the HOMFLY polynomial for
oriented links with the blackboard framing in a solid torus. In the last line,
the links L' and L" are mutually unlinked.

-1

Example 2.2 For an unknot with trivial framing P = =



Now we assume a link L C ST*R? to be transverse. We set P(Fy) = P(L)
and would like to calculate P(L) entirely in terms of the planar curves. To do
this we use the following obvious observation concerning the representation
of section 1.3 (see Fig.3).

Lemma 2.3 A generic homotopy of positive transverse curves in ST*R?
passing from a negative crossing to a positive one is seen, in terms of the
underlying framed planar curves, as a homotopy from a normal to abnormal
double point via an elementary framing degeneracy.

Now, for positive transverse links in their represention as oriented regular
planar curves with some of the double points marked (as in section 1.3), the
rules of Fig.6 imply the set of rules shown in Fig.7. The collections F' and
F" of its last line are lying in disjoint half-planes. According to the second
rule of Fig.6, the relation between the transverse generators z; we are using
now and the blackboard generators &; is z; = z/!l;: it is easy to show that
the lift of Z; has the unframed knot type of =;, and its canonical framing
differs from the blackboard one of =; by 2|i| positive half-twists (see Fig.5,
where i = 3).

P X )=POX =P ()

peerll) e
P(FLF")=P(F)-P(F" R ST pys

Figure 7: Lowering of the definition of Fig.6 to generic transversally framed
planar curves.

Theorem 2.4 The rules of Fig.7 uniquely define a transverse invariant
P(F) € Z[z,y*', 241, 249,...] for any generic transversally framed planar
curve F'.

The major observation here is the absence of negative powers of the fram-
ing variable x. That is what our forthcoming estimate will be based on.
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Corollary 2.5 The polynomial P(L) of any positive transverse link L in
ST*R? is a genuine polynomial in z, not a Laurent one.

Remark 2.6 Allowing components with both positive and negative orien-
tations we would not be able to stay within the set of transverse links after
application of the main skein relation.

To prove Theorem 2.4 we need the following

POCPI0)=vP X
RSP S I

Proof of Theorem 2.4. 1f a transversally framed planar curve has no
abnormal double points, we calculate its polynomial P using the relation of
the above lemma instead of the main skein relation of Fig.7. The renewed
set of rules is exactly that which uniquely defined the framed version of the
HOMFLY polynomial of a regular plane curve in [4]. According to [4], the
element so defined is unique and lies in Z[z, y=', 241, 249, .. .].

If a planar curve has some abnormal double points, we start with applying
the main skein relation of Fig.7 to reduce their number. Now the assertion
of the theorem follows by induction. O

Lemma 2.7

2.2 The standard contact 3-space

The set of rules which uniquely defines the framed version of the HOMFLY
polynomial Py(L) € Z[z*!,y*!] for a link L with the blackboard framing in
R3 is that of Fig.6 with all the information about the variables &; omitted.
According to what was said about the representation of transverse links in
the universal cover of ST*R? in section 1.2, the restriction of P, to positive
transverse links in the standard R?, in terms of transversally framed planar
curves, is that defined by Fig.7 without mentioning the z;. The main skein
relation is now applicable only when the homotopy between the normal and
abnormal framings in its left-hand side passes through a double point at
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which the phases ¢ € R of the planar framing coincide. In all the other cases
the change normal-abnormal does not affect the polynomial (along with the
link type in the 3-space). We refer to thus obtained rules as modified.

As in the previous subsection, we have

Theorem 2.8 For any transverse link Ly in the standard 3-space, the mod-
ified rules of Fig.7 uniquely define an element Py(Ly) € Z[z, y*!].

2.3 The estimate

Let ¢ be the self-linking number of an oriented framed knot L or L in either
the solid torus or 3-space respectively. Then the polynomials

PYL)=2z"DP(L) and  PY(Ly) = 2L P(L,)

are invariants of unframed knot types [14, 6].
Corollary 2.5 and Theorem 2.8 imply

Theorem 2.9 Let k be the lowest power of the framing variable x in the un-
framed version of the HOMFLY polynomial of an oriented knot K in the solid
torus or 3-space. Equip the ambient space with the standard contact struc-
ture. Then the Bennequin number B of any transverse knot, whose topological
type s that of K, 1s at least —k.

Remark 2.10 The Bennequin number 3 of a transverse knot is odd. Indeed,
according to Proposition 1.5, one can pass from any transverse knot to the
lift of either a basic curve of Fig.7 or of the curve oo by a series of ordinary
change-crossings which change 3 by £2. Now the lift of any basic curve, as
well as that of the curve oo, has odd £.

Example 2.11 Due to Example 2.2, for an unknot § > 1 [1]. The lift of the
curve oo is minimal, with § = 1.

Example 2.12 The transverse knots represented by the curves Z; of Fig.7
have minimal possible Bennequin numbers 2|i|—1 allowed for their topological
type. On the other hand, the original Bennequin’s estimate provides, via a
contact embedding of the solid torus into the 3-space which unknots all such
knots, a weaker lower bound 1 independent of :.
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Example 2.13 For (2, ¢)-torus knots in R3, our lower bounds are 2 — ¢ and
2+q for the left- and right-handed cases respectively. Those bounds are exact
as Fig.8 shows. For better illustration the double points there are resolved
according to the phase .

e ()

Figure 8: Transverse representatives of left- and right-handed (2,q)-torus
knots in the standard 3-space with minimal Bennequin numbers 2 — q and
24gq.

3 Minimal representatives of knots
in the 3-space with a few double points
in a knot diagram

Proposition 3.1 The estimate of Theorem 2.9 is exact for all knots in the
standard contact 3-space with at most 8 double points in a knot diagram.

This rather surprising fact follows from the explicit examples given in
three pages below. There we show the minimal realisations of the table
knots [12, 9] and, in case of difference in the topology, of their mirror images.
The lowest degrees of the HOMFLY polynomials Pj* were taken from [10]
(the entry for the knot 8,3 there required correction).

Remark 3.2 We do not know any examples of more complicated knots for
which the estimate is not exact.

Remark 3.3 Similar to the approach used in this note, it looks very conve-

nient to study links in the variety of all cooriented contact elements of any
Riemannian surface in terms of framed curves on the surface.
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