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Abstract

We show that Lagrangian and Legendre varieties associated with matrix singular-
ities and singularities of composite functions are stable in a sense which is a natural
modification of Givental’s notion of stability of Lagrangian projections.

The study of singular Lagrangian and Legendre varieties was initiated about twenty five
years ago by Arnold when he was investigating singularities in the variational problem of
obstacle bypassing [1]. The first examples of such varieties, open swallowtails, were related
to the discriminants of the non-crystallographic Coxeter groups [4, 8]. Incorporating these
examples into a general context, Givental [4] introduced the notion of stability of Lagrangian
and Legendre varieties with respect to perturbations of symplectic structure and Lagrangian
or, respectively, contact structure and Legendre projection only, keeping the diffeomorphic
type of the variety fixed.

Later, in [7], it was shown that this stability notion has an explicit geometrical meaning
in terms of generating families, versal deformations of function singularities and inducing
mappings.

The interest in theory of singular Lagrangian and Legendre varieties has been growing
recently due to its possible applications to Frobenius structures, D-modules and other areas.

In this paper we extend the results of [7] to a natural modification of Givental’s stability
notion and show that the stability condition holds for a wide class of Lagrangian and Legendre
varieties associated with matrix singularities (see [2, 3, 6]) and singularities of composite
functions [5].

1 0-stability

In this section we recall some standard notions and introduce their modifications we shall
use later.

1.1 The Lagrangian setup

A singular Lagrangian (sub)variety L of a symplectic space M2n is an n-dimensional analytic
subset of M which is Lagrangian in the ordinary sense at all its regular points. A Lagrangian
projection π is a projection π : M → Bn defining a fibre bundle whose fibres are Lagrangian.
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Fibres of any Lagrangian fibration posses a well-defined affine structure. Indeed, local
coordinates on the base rise to regular functions on the total space, which are pairwise in
involution. Hence their Hamiltonian vector fields do not vanish, commute and are tangent
to the fibres.

The restriction π|L of the Lagrangian projection π to a Lagrangian subvariety L ⊂M is
called a Lagrangian mapping.

Two Lagrangian mappings, of Lagrangian subvarieties L′ and L′′, are called equivalent
if there exists a symplectomorphism of the ambient symplectic spaces sending L′ to L′′ and
fibres of one Legendrian projection to fibres of the other. In particular, L′ and L′′ are
symplectomorphic.

The germ of a Lagrangian map π|L of a variety L at its point m is called stable if the
germ of any Lagrangian map π̃|L close to π|L at any point m̃ close to m is equivalent to the
germ of π|L at a point near m. Notice that only the fibration π is allowed to vary in this
context while the subvariety L is fixed.

According to Givental [4], the stability introduced is essentially equivalent to the following
versality of the map-germ π|L.

Let OL be the algebra of regular functions on L and mB,m the maximal ideal in the
algebra OB,m of function-germs on the base B at the point π(m). We define the local
algebra of the germ of π|L at m as

Qm = OL/
(
(π|L)∗(mB,m)

)
OL .

The algebra Qm is the algebra of restrictions of functions on L to the intersection of L with
the fiber Fπ(m) = π−1(π(m)).

Denote by Am the subspace of affine (with respect to the corresponding affine structure)
functions on the fibre Fπ(m) and by r : Am → Qm the restriction homomorphism sending a
function on the fibre to its restriction to L ∩ Fπ(m).

The germ of π|L at m ∈ L is called versal if r is surjective, and miniversal if r is an
isomorphism.

Let p, q be local Darboux coordinates on M about m: p(m) = p0, q(m) = 0 and π(p, q) =
q. The Weierstrass preparation theorem implies that the versality of π|L at m is equivalent
to the existence of a representation of any analytic function-germ ϕ on M at m = (p0, 0) in
the form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj + a0(q) , (1)

where the aj, j ≥ 0 are analytic function-germs on the base B, and the function-germ ψ
vanishes on L.

Remark. The decomposition means that any function-germ on M at m is a sum of
a function vanishing on L and a function affine on the individual fibres. Therefore, any
Hamiltonian vector field near m is a sum of a Hamiltonian vector field tangent to L and
a Hamiltonian vector field preserving the fibration π. Hence the homotopy method implies
that any symplectomorphism-germ of M at m close to the identity is a composition of a
symplectomorhism preserving L and a symplectomorphism preserving the standard projec-
tion π. Since any perturbation of the germ of π in the class of Lagrangian projections is
a composition of π with an appropriate symplectomorphism, the versality implies stability.
See [4] for more details.

2



We now turn to a restricted version of the above setup. Namely, we take M = T ∗B to
be the cotangent bundle of a manifold Bn, and distinguish the zero section T0 of T ∗B. Let
Sym0(M) be the subgroup of symplectomorphisms of M preserving T0.

Two Lagrangian mappings of Lagrangian subvarieties of a cotangent bundle are called
0-equivalent if they are equivalent via a symplectomorphism from Sym0(M).

Replacement of the equivalence by the 0-equivalence in the stability definition yields a
definition of the 0-stability of Lagrangian map-germs.

The zero section T0 determines a linear structure on fibres of a cotangent bundle. Re-
placing the space Am of affine functions on Fm by its well-defined subspace A0

m of linear
functions, we obtain the definition of the 0-versality which is equivalent to the existence of
the representation of any function-germ ϕ on M at m such that ϕ|T0 = 0 in the form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj , (2)

where the germs aj and ψ are similar to those in (1) and we assume that the Darboux
coordinates p vanish on the zero section T0.

Like before, the 0-versality implies the 0-stability.
The multiplicity µ of a 0-miniversal germ of a Lagrangian map, that is the rank of its

local algebra as a linear space, is n. It is at most n if the germ is 0-versal.

For the benefit of the exposition, we continue now with the complex case only. Everything
below transfers absolutely straightforwardly to the real situation.

Lemma 1. The projection π : T ∗Cn → Cn, (p, q) 7→ q, of a Lagrangian germ L
at the origin is 0-stable if and only if the germs of the products pipj, i, j = 1, . . . , n, have
decompositions

pipj = ψij(p, q) +
n∑

k=1

ckij(q)pk (3)

in which the function-germs ψij and ckij are holomorphic, and the ψij vanish on L.

Proof. The “only if” part is obvious. To prove the “if” part, we notice that the ideal I
generated by all the quadratic polynomials Pij(p) = pipj −

∑
ckij(0)pk, i, j = 1, . . . , n, in the

space of all holomorphic function-germs on the fibre F0 is of finite codimension. Modulo I,
any function-germ on F0 is an affine function in p. After the projection to the local algebra
Q0, that is after a further reduction modulo the functions vanishing on L (more precisely on
L ∩ F0), such a function is still affine in p. Hence, the 0-versality condition holds. 2

For the stability (rather than 0-stability) version of the lemma see [4].

The suspension of a Lagrangian fibration π : M → B is its direct product

π̂ = (π, π0) : M̂ = M × T ∗C → B ×C

with the canonical projection π0 : T ∗C → C.
A suspension of a Lagrangian variety L ⊂ M2n is an (n + 1)-dimensional Lagrangian

variety L̂ ⊂ M × T ∗C which is the product of L with the line ` = {pn+1 = const 6= 0} in
T ∗C endowed with the standard Darboux coordinates pn+1, qn+1.

The propositions below follow immediately from the definitions.
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Proposition 2. A map-germ π|L at m ∈M is (mini)versal if and only if its suspension
π̂|

L̂
is 0-(mini)versal at a point of the line m× ` (hence at all the points of this line) in M̂ .

Example. A germ of the standard projection π of a Lagrangian submanifold L ⊂
T ∗Cn = {p, q} determined by a generating family f = f(x, q) with parameters q ∈ Cn and
variables x ∈ Ck,

L = {(p, q)|∃x : ∂f/∂x = 0, p = ∂f/∂q} ,
is stable if and only if the family-germ f(·, ·) is anR+-versal deformation of the function-germ
f(·, 0). The projection is 0-stable if f(·, ·) is an R-versal deformation of f(·, 0).

Proposition 3. Consider a germ of a Lagrangian subvariety L in M̂ = T ∗Cn×T ∗C at a
point not in the zero section. Assume π̂|L is 0-versal and L belongs to a regular hypersurface
in M̂ transversal to the ∂pn+1-direction. Then π̂|L is 0-equivalent to a suspension of a versal
map-germ π|L′ of a Lagrangian subvariety L′ ⊂M = T ∗Cn.

1.2 The Legendre case

A singular n-dimensional subvariety of a contact space is called Legendre if at all its regular
points it is Legendre in the ordinary sense. For standard (and equivalent) local models
of contact (2n + 1)-spaces we use the projectivised cotangent bundle PT ∗Cn+1 and the
space J1(Cn,C) = {p, q, z} of one-jets of functions on Cn endowed with the contact form
α = dz − pdq. The definitions of Legendre mappings, stability and others are analogous to
the Lagrangian case (see also [4]).

Symplectisation and contactisation functors relate Lagrangian and Legendre germs as
follows.

A. The projection ρ : (p, q, z) 7→ (p, q) maps a Legendre variety Λ ⊂ J1(Cn,C) to the
Lagrangian variety ρ(Λ) ⊂ T ∗Cn.

B. Local Lagrangian fibration and its zero section determine uniquely the Liouville prim-
itive form α = pdq of the symplectic form ω = dα. Given a Lagrangian germ L ⊂ T ∗Cn at
a point m, denote by L0,m the subset of points s ∈ L such that the integral of α along some
path γ on L joining m and s vanishes.

For simplicity we assume the values of the integral do not depend on the local path γ,
that is the cohomology class of α vanishes on L (see [4] for examples of the opposite).

If L0,m does not meet the zero section of T ∗Cn, then its projectivisation is a Legendre (or
isotropic) variety in PT ∗Cn. Its projection W0(L,m) = π(L0,m) ⊂ Cn is called the 0-wave
front of L.

C. For a Lagrangian germ L ⊂ T ∗Cn at a point m, the set ΛL,m ⊂ J1(Cn,C) of points
(p, q, z) such that s = (p, q) ∈ L and the integral of α along a path in L joining m and s
equals z is a Legendre variety in J1(Cn,C).

A germ of a symplectomorphism θ ∈ Sym0(T
∗Cn) preserving π preserves α. Hence if

θ(L′) = L′′ then θ(L′
0,m) = L′′

0,θ(m). In Darboux coordinates, θ has the form:

θ : (p, q) 7→ (P, θ̌(q)) ,

where θ̌ is the underlying diffeomorphism of the base and P = (θ̌−1)∗p is the value at p of
the linear operator on the fibres dual to the inverse of the derivative of θ. In particular,
θ̌(W0(L

′,m)) = W0(L
′′, θ(m)).
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The proof of the following statement is straightforward.

Proposition 4. Consider a Legendre germ Λ ⊂ J1(Cn,C). Assume the variety ρ̂(Λ)
does not meet the zero section and that its standard Lagrangian projection is 0-stable. Then
the projection of Λ to J0(Cn,C) is Legendre stable.

Conversely, if the projection of Λ to J0(Cn,C) is Legendre stable and Λ is quasihomoge-

neous with positive weights then ρ̂(Λ) is 0-stable.

2 Stability of induced mappings

2.1 The critical-value theorem

The images under a Lagrangian mapping π|L of singular points of the Lagrangian variety L
along with the images of critical points of π|L on the regular part of L form the caustic ΣL

of the Lagrangian mapping.
The caustic of a Lagrangian germ L at a point m of finite multiplicity µ is a proper

analytic subset of the base B of codimension at least 1.
For q /∈ ΣL close to the distinguished point π(m), the inverse image π−1(q)

⋂
L consists

of µ distinct points mi close to m. We can assume that locally π is the standard fibration
T ∗B → B. This allows us to introduce the Maxwell set ML ⊂ B as the closure of the set
of the points q /∈ ΣL for which the µ values of z on ΛL,m

⋂
(ρ ◦ π)−1(q) are not all distinct.

If µ is finite, the Maxwell set is a germ of a proper analytic subset of the base. The union
of the caustic and Maxwell set is called the bifurcation diagram Bif(π, L) of the Lagrangian
projection.

Consider the Lagrangian projection π : T ∗Cn → Cn of a Lagrangian variety-germ L.
Let g : Ck → Cn be a germ of a smooth mapping. If the choice of the base points of the
germs is consistent, we define the induced Lagrangian mapping g∗(π|L) as the projection of
g∗(L) ⊂ T ∗Ck to Ck.

Theorem 5. Assume the germs π|L at m,m /∈ T0 and g∗(π|L) are 0-miniversal and
0-stable respectively. Then the critical value set Ξg of the mapping g belongs to the union
W0(L,m)

⋃
Bif(π, L).

Here we consider a source point of a mapping as critical if the derivative at the point is
not surjective. In particular, all the source is critical if its dimension is less than that of the
target, in which case the theorem implies that g maps Ck into W0(L,m)

⋃
Bif(π, L).

The stability analog of the theorem was proved in [7].

Proof. Take a point q0 ∈ Cn \ΣL close to the base point. Its π|L-inverse image consists
of n distinct points m1, . . . ,mn ∈ Fq0 , all different from the origin. The multi-germ of π|L at
the finite set {m1, . . . ,mn} is 0-versal (the decomposition (2) holds for multi-germs). This
is equivalent to the mi being linearly independent in the fibre Fq0 : the restriction of any
function from the fibre to this set coincides with the restriction of a linear function.

Consider now λ0 ∈ g−1(q0). Let I ⊂ Tq0C
n be the image of the derivative g∗ : Tλ0C

k →
Tq0C

n. The pullback mapping g∗ : F n
q0
→ F k

λ0
between the fibres of the cotangent bundles is

a composition of the factorisation pr of Fq0 by the subspace I∨ of covectors annihilating I
and an embedding. Assume the dimension r of I∨ is positive, that is λ0 is a critical point of
g. The 0-stability of g∗(π|L) implies that the pr-images of the linearly independent points
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m1, . . . ,mn ∈ Fq0 form a linearly independent set in the (n − r)-dimensional space Fq0/I
∨

(the image points counted without the multiplicities). As a result, the vertex set {m0 =
0,m1, . . . ,mn} of the n-simplex σ ⊂ Fq0 is mapped to the vertex set {m′

0 = 0,m′
1, . . . ,m

′
n−r}

of an (n− r)-simplex in Fq0/I
∨. In particular, the rank r subspace I∨ is spanned by all the

differences mi −mj such that pr(mi) = pr(mj), that is by the vectors in all the faces of σ
contracted by pr to points (the sum of the dimensions of such faces is r).

Near each of the mi, i = 1, . . . , n, the Lagrangian variety L is locally the graph of the
differential of a function z = ψi(q), ψ(q0) = 0. The linearly independent points mi ∈ Fq0 are
the differentials of the ψi at q0.

For any pair i 6= j, denote by ∆ij ⊂ Tq0C
n the hyperplane tangent to the hypersurface

ψi(q)− ψj(q) = 0.
For any `, let ∆` ⊂ Tq0C

n be the hyperplane tangent to the hypersurface ψ`(q) = 0. The
hyperplanes ∆` and ∆ij are dual to the directional lines of the 1-dimensional faces of the
simplex σ ⊂ Fq0 .

The condition for the multi-germ g∗(π|L) to be 0-stable at the points of Fλ0 is equivalent
to the subspace I being the intersection of all the ∆` such that pr(m`) = 0 and all the ∆ij

such that pr(mi) = pr(mj) 6= 0. Hence I is the intersection of the subspaces in Tq0C
n dual

to certain faces of the simplex σ. Since I belongs to the tangent cone at q0 of the critical
value set Ξg, the regular strata of Ξg near q0 coincide with the integrable manifolds of the
distributions defined similarly to I in the spaces TqC

n by subsets of the faces of the relevant
n-simplices in the fibres Fq.

According to [7] (items 7.1. and 7.2), among such integrable manifolds, those having the
highest dimension and containing π(m) in their closures are the regular strata of the caustic,
Maxwell set, and , as it is easy to see, wavefrontW0(L,m). Hence Ξg ⊂ W0(L,m)

⋃
Bif(π, L).

2

Theorem 6. If g is the germ of a proper mapping between spaces of the same dimension,
then the 0-stability of g∗(π|L) is equivalent to g being a ramified covering with the ramification
locus contained in W0(L,m)

⋃
Bif(π, L).

Proof. In this case the regular strata of Ξg are (n − 1)-dimensional. By Theorem 5,
the 0-stability implies the ramification property. To prove the converse it is sufficient to
notice that outside the ramification locus the induced map g∗(π|L) is 0-miniversal. Also
it is versal at points of the regular strata of the ramification set, as it can be seen from
the pullback mapping g∗ action on the corresponding symplex in the fiber. Hence any
holomorphic function-germ ϕ(p, q) possesses a decomposition (2) with the coefficients aj(q)
uniquely determined on the complement of the analytic subset of codimension at least 2.
Now Hartogs’ theorem extends the decomposition to an entire neighbourhood of the base
point. 2

Remark. Assume the Lagrangian variety-germ L at m ∈ T ∗Cn is a suspension of a
Lagrangian germ L′ at a point not contained in the zero section of T ∗Cn−1. The base Cn

of the suspended Lagrangian fibration contains a distinguished coordinate function, let it be
qn, corresponding to the second factor of the decomposition L ' L′ × C. The caustic and
Maxwell set for L are also isomorphic to the products of the caustic and Maxwell set for L′

with a line, the qn-axis. On the contrary, the hyperplane tangent to the wavefront W0(L,m)
at m is dqn = 0.
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If, under the conditions of Theorem 6, the ramification locus Ξg contains an (n − 1)-
dimensional component of the caustic or of the Maxwell stratum then the direction ∂qn

belongs to the image I of the differential of g at points arbitrary close to m. Hence the com-
position qn ◦ g is not singular at the base point. On the other hand, if the ramification locus
contains an (n−1)-dimensional component of the wavefront W0(L,m), then the composition
qn ◦ g must be singular at the base point. Otherwise, the hyperplanes tangent to Ξg near the
base point are not close to the hyperplane dqn = 0.

2.2 Composite functions

An interesting class of 0-stable Lagrangian projections is provided by versal deformations of
composite mappings [6].

Given a function-germ f : (Cn, 0) → (C, 0) consider the group Kf (see [6]) which consists
of diffeomorphism-germs Θ of the product space (Cm×Cn, (0, 0)) fibred over the projection
to the first factor Θ : (x, y) 7→ (X(x), Y (x, y)), x ∈ Cm, y ∈ Cn, and such that f(Y (x, y)) =
f(y) for any (x, y).

The group Kf acts naturally on the space of map-germs ϕ : (Cm, 0) → (Cn, 0) sending
the graph of one map to the graph of the other.

Assume a map-germ ϕ at the origin has a finite Tjurina number τ with respect to the
group Kf . Let Φ(x, λ) = ϕ(x) +

∑
λsϕs(x), λ ∈ Cτ , be a Kf -miniversal deformation of ϕ.

Introduce the composition F = f ◦ Φ.

Theorem 7. The Lagrangian projection defined by the generating family-germ F (x, λ)
is 0-stable.

Proof. Let t ∈ (C, 0) be an additional parameter. Consider the deformation

Fij = f ◦ (Φ + t
∂F

∂λj

ϕi)

of the composite function f ◦ ϕ. Since Fij|t=0 = F and Φ is Kf -versal, there exists a family
of Kf -equivalences depending on t and inducing Fij from F :

Fij(x, λ, t) = f ◦
(
ϕ(X(x, λ, t)) +

τ∑
s=1

Λs(λ, t)ϕs(X(x, λ, t))
)
.

Moreover, we chose the family so that for t = 0 the mapping (x, λ) 7→ (X,Λ) is the identity
mapping.

Differentiating this equality with respect to t at t = 0 we obtain

∂F

∂λi

∂F

∂λj

=
∑ ∂F

∂xr

∂Xr

∂t
+

∑ ∂F

∂λk

∂Λk

∂t
.

Since ∂F/∂λi = pi and ∂F/∂xr = 0 on the Lagrangian variety defined by the generating
family F , this means that the 0-stability criterium of Lemma 1 holds for it. 2

Assume the germ at the origin of the composed function h = f ◦ϕ has a finite multiplicity
µ. The deformation F = f ◦Φ of h is induced from an R-miniversal deformation H of h by
a map-germ g : (Cτ , 0) → (Cµ, 0) between the deformation bases.
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Corollary 8. If τ = µ and the inducing mapping g is proper, then g is a covering
ramified over the 0-wavefront of the 0-stable Lagrangian manifold defined by the generating
family H.

Proof. The claim is trivial when the function-germ f is regular (if so, the mapping g
is a diffeomorphism). So we may assume that f has a critical point at the origin. In this
case the composition of g with the projection Cµ → C along the hyperplane tangent to the
discriminant of h at the origin is singular at 0 ∈ Cτ . Now Theorems 7, 6 and the Remark
after Theorem 6 imply the result.

Remarks. 1. The covering mapping inducing the determinantal function of a versal
matrix deformation of a simple matrix singularity from a versal deformation of the determi-
nantal function of the unperturbed matrix (see [6]) is a particular case of Corollary 8.

2. The space of linear functions on a fibre Fq of the cotangent bundle T ∗B → B is the
tangent space TqB. So the functions ckij defined in (3) for a 0-versal Lagrangian map-germ
determine a point-wise associative multiplication on the germs of vector fields on the base.

3. Under the conditions of Corollary 8, the Kf -discriminant of ϕ is a free divisor. We
postpone a proof of this to a forthcoming paper.
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Birkhäuser, Basel, 2002.

[4] A. B. Givental, Singular Lagrangian manifolds and their Lagrangian mappings, in: Itogi
Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 33 (Russian),
55–112, 236, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988;
translated in J. Soviet Math. 52 (1990), no. 4, 3246–3278.

[5] V. V. Goryunov and D. Mond, Tjurina and Milnor numbers of matrix singularities,
arXiv:math.AG/0307025, 23 pp.

[6] V. V. Goryunov and V. M. Zakalyukin, Simple symmetric matrix singularities and the
subgroups of Weyl groups Aµ, Dµ, Eµ, Moscow Math. J. 3 (2003), no. 2, 507–530.

[7] R. M. Roberts and V. M. Zakalyukin, Stability of Lagrangian manifolds with singularities,
(Russian) Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 28–34; translation in Funct.
Anal. Appl. 26 (1992), no. 3, 174–178.

[8] O. P. Shcherbak, Wave fronts and reflection groups, Uspekhi Mat. Nauk 43 (1988), no.
3, 125–160 (Russian); translation in Russian Math. Surveys 43 (1988), no. 3, 149–194.

8


