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Abstract

We give a chord-diagram description of finite type invariants of
framed and unframed knots in a solid torus. The relation is established
via appropriate versions of the universal Vassiliev-Kontsevich invariant.
The framed case is treated from the singularity theory point of view
that involves knots with degenerate framings.

1 Introduction

The major aim of this paper is to introduce a necessary basis for a part of
the theory of Vassiliev type invariants of regular plane curves.

Consideration of such invariants was started recently by Arnold. In [1, 2]
he defined three order 1 invariants which are dual to the three generic bifur-
cations in families of regular plane curves. While singularities of a generic
curve are only transverse double points, in 1-parameter families there appear
triple points and two types of self-tangencies: direct (when the two velocity
vectors at the self-tangency point have the same direction) and inverse (when
the directions are opposite).
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Considering invariants that do not change during triple-point and inverse
self-tangency transformations one immediately arrives to invariants of framed
knots in a solid torus. Indeed, a regular plane curve with no direct self-
tangencies lifts to a Legendrian knot in the solid torus ST*R2?. This knot
has a natural framing. Appearance of direct self-tangencies corresponds to
singular knots, with double points. So the theory of Vassiliev type invariants
of regular plane curves without direct self-tangencies looks parallel to that of
framed knots in a solid torus. Thus a chord-diagram interpretation (similar
to [7, 11]) of the latter is very desirable.

Obviously, such interpretation should be constructed from two pieces:
that for framed knots in R?® and that for unframed knots in a solid torus.

i) The chord-diagram description of finite type invariants of framed knots
in 3-space has already been given. In [11] Kontsevich mentioned that the
space of such real-valued invariants is dual to the real linear space spanned
by circular chord diagrams modulo the 4-term relation. Later this was proved
by Lé and Murakami [12, 13] who adjusted the method used by Kontsevich
in the unframed case.

The approach by Lé and Murakami (their regularisation of the Kontse-
vich’s integral) works only for the blackboard framing. Unfortunately, this is
not sufficient for the study of plane curves. Indeed, the canonical framing of
the Legendrian lift of a regular plane curve is blackboard only with respect
to the projection which is not very convenient to consider if one wants to
construct Vassiliev type theory for plane curves.

In the present paper we fill this gap modifying the definition of the univer-
sal Vassiliev-Kontsevich invariant so that it serves knots with any framings.

ii) The first attempt to construct a chord-diagram interpretation for Vas-
siliev type theory for unframed knots in a 3-manifold was done by Kalfagiani
[10]. But, since the case considered by her was rather general, there was
no obvious way to complete the theory by, say, a definition of a correspond-
ing Kontsevich’s integral. In our special case of a solid torus the integral is
defined straightforwardly: almost the only difference with the original Kont-
sevich’s idea [11] is that now we use the decomposition C x S! of the solid
torus instead of the decomposition C x R! of R3.

Those are two basic constructions of the paper. The third one is the sin-
gularity theory approach to invariants of framed knots. This is very close to
the original Vassiliev’s idea to consider singular knots instead of non-singular



ones passing from embeddings of a circle into 3-space to arbitrary smooth
mappings. Any of numerous equivalent definitions of a framing leaves obvi-
ous room to make a framing singular. We introduce one more definition of
our own and trace the framing degenerations. The considered bifurcations
show, for example, what happens with the 1-term framing-independence re-
lation of invariants of unframed knots: it does not disappear but gets new
terms which reflect the framing degenerations.

The contents of the paper is briefly as follows.

In Section 2, we introduce knots with degenerate framings and the ex-
tension of invariants of non-singular framed knots to those with elementary
singularities. We construct the diagram theory for framed knots in 3-space
which basicly coincides with that of Kontsevich [11, 12, 13] (some difference
appears only for Z,-valued invariants).

In Section 3, we define the universal Vassiliev-Kontsevich invariant for
knots in R?® that have arbitrary framings and reprove the result of Le-
Murakami in this general setting.

In Section 4, we consider Vassiliev-Kontsevich type theory for unframed
knots in a solid torus. We show that the graded space of complex-valued finite
order invariants in this case is dual to the graded linear space generated by
marked chord diagrams modulo marked 1- and 4-term relations. The marking
is defined by the fundamental group of the solid torus.

In Section 5, we obtain the similar result for framed knots in a solid
torus. We also show that all the coefficients of the version of the HOMFLY
polynomial for framed knots in a solid torus are in fact Vassiliev invariants

of finite order (cf. [7]).

Remark 1.1 Paper [9] establishes the isomorphism between the theory of
Vassiliev invariants for framed knots in a solid torus and that for regular
plane curves with no direct self-tangencies.

Remark 1.2 The constructions of the present paper are very convenient to
built up spectral sequences (similar to the Vassiliev’s one [15]) to calculate
cohomology of spaces of framed knots in R?® and unframed and framed knots
in a solid torus. This will be the topic of some other paper.

Acknowledgements. I am very thankful to Sergei Chmutov for ex-
tremely useful discussions.



2 Framed knots from the singularity point of
view

2.1 Framed knots as mappings

A smooth unframed knot in 3-space is the image of a smooth embedding
of a circle into R3. So, in singularity theory, an oriented knot is treated as
an element of the set Q of all C*®-mappings of an oriented circle into R3.
Formally, a non-singular unframed oriented knot in 3-space is a connected
component of the subset of {2 that consists of all the embeddings.

In the theory of Vassiliev invariants of knots in R? the key role is played
by so-called singular knots. Namely, consider the subset of {2 of all the im-
mersions whose images have only n double points with non-tangent branches
and no other singularities. An unframed oriented knot with n singular points
is a connected component of this subset. A singular unframed knot is a knot
with a finite number of singular points.

We introduce now similar notions for framed knots.

Let S' C R? be an oriented C*™-embedded circle and U Cc R? an open
(annular) neighbourhood of S*. Consider a C*®°-mapping g : U — R3. It
defines the mapping T'g from the restriction Ts1R? of the tangent bundle
TR? to the tangent bundle TR3.

Definition 2.1 Two mappings ¢, : U; — R?, i = 1,2, are equivalent if the
mappings T'g; : Ts1R? — TR?, i = 1,2, coincide.

We denote by {2 the set of all C"*°-mappings g : U — R? modulo this
equivalence. The class of a mapping g in Q; will be denoted by g as well.

Definition 2.2 Consider the set of all the equivalence classes of mappings
g € Qy such that the restriction T'g : T, 1 R? — TR? is an embedding. A
non-singular oriented framed knot in R? is a connected component of this
set.

The Tg : TaR? — TR? being an embedding guarantees the mapping
g:S' — R3 being an embedding too.
The image g(S') will be called the core of the mapping.



Consider a subset of {1y which consists of all the equivalence classes of
mappings g such that:

i) the mapping ¢g : S — R? represents an unframed knot with n > 0
singular points;

ii) for all s € S*, except k > 0 points none of which is mapped to a double
point of the core g(S'), the mapping T'g has rank 2 on T,R?;

iii) for the remaining k points s € S', the mapping 7'g has rank 1 on
T,R?.

Definition 2.3 An oriented framed knot in R3 with n + k singularities is a
connected component of the above subset. A singular oriented framed knot
is an oriented framed knot with a finite number of singularities.

Condition i) implies that the kernel of T'g, that appears in iii), is not
tangent to S*.

2.2 The framed equivalence

The set 2 of framed curves in R? splits into orbits of the natural equivalence
group which we denote by F (for “framed”). This is an analog of the group
of left-right equivalence of mappings (cf. [5, 4]). Namely, we consider a
representative g : U — R® of an element of Q; modulo:

i) orientation-preserving diffeomorphisms of the target R?;

ii) diffeomorphisms of the source pair (U, S') preserving the orientations
of the circle and its neighbourhood;

iii) terms of order greater than 1 in the direction in U that is transversal
to St.

There is an obvious local version of the F-equivalence for germs of map-
pings ¢ : (R?,R',0) — (R?3,0). This has the following coordinate descrip-
tion.

Let x and 7 be coordinates on the source plane with the R! being the
x-axis. We use the notations:

O,,, for the space of all real-valued C*-function-germs on (R?,0);

O3 , for the space of all C*°-map-germs of (R?,0) to R?;

O3 for the space of C*°-map-germs from the target copy of (R?,0) to R?
pulled back to (R?,0) by the germ g.



The tangent space to the F-orbit of a map-germ g € Og’y is
Ty(Fg) = O + Oy, (99/0z,ydg/0y) + y* O3

I,y

the middle summand being a module on the two generators.
Example 2.4 A non-singular germ (R? R',0) — R? can be reduced to

(z,y) = (,9,0).

The tangent space to its F-orbit is the whole of (’)S’w (so, the germ is stable).

2.3 Bifurcation diagrams of framed curve-germs

As usual, an F-miniversal deformation of g (cf. [5, 4]) is a minimal transver-
sal to its F-orbit so long as the tangent space T, (Fg) has a finite codimension
in (’)g,y.

The base of an F-miniversal deformation of a map-germ g contains the
bifurcation diagram Xx(g). That is the set of the values of the deforma-
tion parameters A for which the corresponding perturbed mappings T'gy :
Tr:R? — TR? are not embeddings. There are two options to achieve a
degeneration:

1) either the mapping gy : R' — R3 is not an embedding,

2) or, for some point s € R', the differential T'gy is not of rank 2 on T,R?.

Thus the diagram ¥ +(g) has two components which we denote by X'z(g)
and 3’ (g) respectively. Both are hypersurfaces. Forgetting the framing and
considering g as a mapping of the line alone, we stay with the component

¥ (g) only.

Example 2.5 A local normal form for the simplest singular framing on a
smooth curve in R? is

hy : (z,y) — (z,yz,0).

The differential of this mapping has rank 1 at the origin.
For a one-parameter miniversal deformation one can take

ha : (2,y) = (z,yz, ay),

where « is the deformation parameter. In Fig.1, above the parameter line,
we show the corresponding framed curves. The bold line there is the core,
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Figure 1: The simplest framing degeneration.

that is the image of the z-axis. The thin line is the framing. It represents
the Th,-image of a section of Tgi1R? which contains the generator 9, of the
kernel of Tyhg. The bifurcation diagram is Xz(hg) = X'%(hy) = {a = 0}.

The bifurcation diagram of a framed curve-germ is coorientable in the
base of an F-versal deformation at its regular points. Namely, to coorient
the component ¥ we say that the local bifurcation of Fig.1, for decreasing
« is done in the positive direction. To coorient ¥’ we say, as usual, that
the bifurcation of Fig.2 is positive. We assume here and further on that the
right orientation of R? is fixed. In both cases the positive move increases the
writhe of the framed curve.

XXX

Figure 2: Positive crossing of the stratum of non-embedded curves.

Example 2.6 The simplest local singularity of a mapping R! — R? has a
normal form
T (22, 2°, 0).

Equipping this map-germ with a generic framing we arrive to normal forms

(z,9) = (2%, 2° £yz, y)
and 2-parameter miniversal deformations
(2%, 2°+yo+az, y+ fa),
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with the parameters a, #. Bifurcations in the (+)-family are shown in Fig.3.
The cooriented bifurcation diagram of the (—)-family is absolutely the same.

A
the coorientation - -- -

P
| < v

/oo |

93

< < s

Figure 3: A miniversal deformation of a framed curve with a generic singular
point.

Example 2.7 Another particular case useful for our further considerations
is the generic degeneration of the framing at a double point of the core. Its
F-miniversal deformation is the 3-parameter family of bigerms

("Elayl) = (xl,yl,o),
(x2,y2) — (s, Toys + B + VY2, Za).
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Cooriented bifurcation diagram of this family, within the assumption that
each of the two curve-germs is oriented by the increase of the corresponding
z-coordinate, is shown in Fig.4.

J/ 7

Figure 4: Bifurcations of a double point with a degenerate framing.

2.4 Extended invariants

The obvious global version, in the space {1¢, of the bifurcation diagram will
be called the discriminant of (; and denoted by X;. This is the union of the
two hypersurfaces ¥ and X%. We coorient the discriminant by local means,
using the above coorientation of bifurcation diagrams.



An invariant of oriented framed knots is an element of the group
H(Q;\ Xy) (with any coefficients).

A regular point of m-tuple self-intersection of ¥, represents a singular
oriented framed knot. We extend an invariant v of non-singular framed
knots to the singular ones by the recursive setting:

Here and below we assume that all the framed curves that enter one and
the same equality coincide modulo the shown curve and framing fragments.
The lower line uses the bifurcation in the normal form of Example 2.5.

Application of the recursive definition to certain special degenerations of
framed knots imply

Proposition 2.8 The values of an invariant on singular framed knots are
subject to the 4-term, 3-term and commutativity relations:

el
RS
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Proof. The 4-term relation here is in fact the one that is induced from
the Vassiliev theory of invariants of unframed knots by omitting the framing.
It follows from the bifurcations of a generic triple point of the core. To
prove the 4-term relation one can follow [8] resolving the double points by
the definition (Fig.5).

Figure 5: Proof of the 4-term relation.

The two other relations are easily read from the bifurcations of Examples
2.6 and 2.7 in the similar way (Fig.6). O

2.5 Chord diagrams with distinguished points
and invariants of finite order

Consider 2n + k distinct points on an oriented circle. Join 2n of them in n
non-ordered pairs. Consider such objects up to diffeomorphisms of the circle
preserving its orientation. Each equivalence class will be called an n-chord
diagram with k distinguished points or, shortly, an (n, k)-diagram.

We associate an (n, k)-diagram to a singular framed oriented knot g :
U — R3:

i) the circle is the source S' ¢ U C R? (we take it to be a standard
counter-clockwise oriented circle on a plane and never mention this orienta-
tion in our figures);

ii) a pair of points is the inverse image of a double point;

iii) at a distinguished point the rank of the differential T'g is 1.
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Figure 6: Proof of the 3-term and commutativity relations.

Definition 2.9 An invariant of framed oriented knots in R? is a (Vassiliev)
inwvariant of order less than m if it vanishes on all oriented framed knots
with m singularities.

We denote the linear space of all invariants of order less than m by V,i_l.

Take an invariant of order m, that is an element v € V,/ \ Vr;zf—l' Its
restriction to the set of all oriented framed knots with m singularities is
called the symbol of v.

Proposition 2.10 The symbol of an order m invariant is a well-defined
function on the set of all (n, k)-diagrams, m = n + k.

Proof. Consider the set Q(D) C ; of all parametrizations g : U — R? of
singular framed knots with the same (n, k)-diagram D. We need to show that
any two elements g1, g, € (D) can be deformed one into another without
change of the value of the symbol.
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On the first step we deform g, into g5 € (D) that has the same core as
g>. This can be done by a homotopy that stays almost all the time in Q(D)
and, at the remaining finitely many instances, passes transversally through
the set of parametrizations with n 4+ 1 double points on the core.

Up to homotopies in (D), we can assume that g4 and g, have the same k
points of generic framing degeneration and coincide on small neighbourhoods
of these distinguished points. So, the two parametrizations differ only by the
rotation of the framings along the intervals between distinguished points.
Now we deform the framing of ¢} to that of g, by a homotopy that stays
almost all the time in (D) and, at the remaining finitely many instances,
passes transversally through the set of parametrizations with £ + 1 points of
framing degeneration.

During the constructed homotopy the value of the symbol could change
only on the two sets of the above mentioned finitely many instances. The
increments are the values of the invariant on framed knots with n + k+1 =
m + 1 singularities which are zeros. 0O

The relations of Proposition 2.8 immediately imply

Proposition 2.11 The values of a symbol are subject to the 4-term, 2-term
and floating-point relations of Fig.7.

(T AT ) o
R
(Vi)

Figure 7: 4-term, 2-term and floating-point relations for symbols.
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In Fig.7 and further on we show all the distinguished points and chords
based on the solid arcs and none of those based on the dotted arcs. All the
diagrams entering the same relation are assumed to differ only by their parts
based on the solid arcs.

Remark 2.12 In the Vassiliev theory of unframed knots, invariants and
their symbols are subject to the 1-term relations [15, 3, 7, 11, 6] (Fig.8).
These relations follow from Fig.3 with all the framings omitted. Propositions
2.8 and 2.11 show what happens with the 1-term relations when we pass to
the framed setting. For example, for symbols of Z,-valued invariants the
1-term relation still holds in the framed case.

Figure 8: The 1-term relations for invariants of unframed knots and their
symbols.

Remark 2.13 Twice the floating-point relation follows from the two others
of Proposition 2.11. Indeed, consider the 4-term relation in the case when
all its 7-through-1-o’clock arcs are solid. The two middle terms cancel one
another. Expressing each of the two remaining terms by means of the 2-term
relation we obtain what has been promised.

Let Am be the linear space spanned by all (n, k)-diagrams, with m = n+k,
modulo the three relations of Proposition 2.11 considered now as relations
on the diagrams rather than functions on them. Proposition 2.11 embeds the
space %4 /.Vrﬁ_1 of symbols of order m invariants into the space Az, dual to
A Set A = Dp>oAm.

Similar to [11, 6], the 4-term and floating-point relations imply that the
connected sum of two chord diagrams with distinguished points is a well-
defined element in A, that is the sum does not depend on the location of the
connecting surgery. So
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Proposition 2.14 A is an algebra with respect to the connected summation
of diagrams.

If the ground field is not of char = 2, the graded algebra A is isomorphic
to the graded algebra A = ®,,>0.4,, whose mth direct summand is spanned
by all m-chord diagrams (with no distinguished points at all) modulo the
4-term relation only. The operation on A is the connected summation as
well.

As it was mentioned in [11, 6], the 4-term relation on chord diagrams
with no distinguished points turns out to be the only relation for real-valued
invariants of framed knots in R®. Namely, indicating the real versions of the
spaces by the subscript R, we have

Theorem 2.15 Vé’R/me_LR =A R -

This fact was proved in [12, 13| by introduction of a version of the uni-
versal Vassiliev-Kontsevich invariant for knots with the blackboard framing.
In the next section we define the universal invariant that serves knots with

arbitrary framings and reprove Theorem 2.15. Our approach is distinct from
that of [12, 13].

3 The universal Vassiliev-Kontsevich invariant
for framed knots in R3

3.1 The invariant of Morse knots

We represent the FEuclidean 3-space as a direct product C x R with the
complex coordinate z and the real coordinate t.

An unframed knot in C x R is called a Morse knot if t is a Morse function
on it. A framed knot in C x R is called Morse if its core is a Morse knot.

A. Consider a non-singular oriented framed Morse knot K7/ parametrized
by a mapping g : (U, S*) — R3. Let K be its core g(S'). Fix a decomposition
(U, S') = S x (R, 0) of the annulus. Let y be the coordinate along the second
factor. Denote by u the vector field T'g(0,) on K. For small € > 0, we shift
the core K in the direction of u:

(z,t) — (2,t) + eu(z, t).
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For all sufficiently small ¢, the result K, of the shift is a Morse knot that
does not intersect K. We orient K, by the orientation inherited from K.

B. In order to have a good definition of a chord diagram later on, we
slightly adjust the Morse link K UK,. Near a local maximium of the function
t on K, t has the local maximum on K, as well. We take the lowest of the
two critical levels and remove the small arc of K U K, that is locally above
this level. In the similar way, we remove the small arc that is locally below
the highest of the two critical levels near a local minimum of ¢ on K. After
the surgery at all the local extrema, we remain with the subsets K C K and
K, CK..

The shift along the framing field u provides the one-to-one correspondence
between the sets of intervals of monotonicity of the function £ on K and K..
For each non-critical point (2',%) € f(\g this correspondence correctly defines
its unique neighbour (2",t) € K on the same t-level.

C. Now we take m different non-critical levels t,,;, < t; < t; < ... <
tm < tmaz, Where t,,.. and t,,,, are the global extreme values of ¢ on KU f(\g.
In each section t = ¢; of K UK., we choose an ordered pair of points (25,25) =
(25, 25)(t;) € K x K.. Let P be a set of m such pairs, one pair per level.

The set P defines the m-chord diagram D(P) as follows (see Fig.9).

Figure 9: A pairing on a framed knot and the chord diagram of the pairing.

In each pair we substitute z; € K. by its neighbour z € K. The core K
is the image of the embedding of the oriented circle S* that we again take
to be a standard counter-clockwise oriented circle on the plane. If z; # 27,
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we join the preimages of the points z; and 2] on the source circle by the
chord. If z; = 27, we draw a small chord between two arbitrary points on
the circle which are very close to the preimage of z; (so that on the small arc
subtended by this chord there are no endpoints of any of the m — 1 chords
corresponding to the other distinguished ¢-levels).

D. Let A,, c be the complex linear space generated by all m-chord dia-
grams modulo the 4-term relation.
We introduce

~

Definition 3.1 Zm(K,K,) =

1 "™ dz; — dz2,
~ @2m)m / > (DPAT—FDP)eAnc,
tmin <1 <t2<...<tm<tmaz P:{(Z],Zl;)(tj)} j=1 ] ]

where P runs through all possible pairings on KUK, e, P is the number of
points in the m pairs at which the function ¢ is decreasing along the oriented
link K U K., and D(P) is the class of the diagram D(P) in A, c.

Definition 3.2 Z (K1) =lim, o Zpn(K, K,).

Theorem 3.3 (cf. [11]) i) The limit that defines Z,,(K') is finite.

i) Zm(K7) does not depend on the decomposition (U, S') = S x (R, 0)
of the annulus used in the definition.

i) Zpm (K is invariant under the homotopy in the class of framed Morse
knots.

) Zm(K') is an invariant of order less than m + 1.

Statement iv) concerns the extension (in the sense of subsection 2.4) of
the invariant to singular framed Morse knots none of whose singular points
is a local extremum of ¢.

The proof of the theorem occupies the next two subsections.

3.2 Proof of the convergence

The divergence of the limit could arise from the two dangerous types of pairs
(chords):
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infinitesimal pairs that correspond to the case z; = zj in the definition
of D(P);

short pairs whose elements z; # z; are lying on two successive intervals
of monotonicity of the function ¢ on K, so that no chord connects the two
semicircles into which z; and 2} cut K.

In both cases, the diagram D(P) is obtained from a diagram with fewer
chords by insertion of an isolated chord. Due to the 4-term relation, the
corresponding generator D(P) of A,, ¢ does not depend on the location of
the insertion. We are going to exploit this independence and group together
the terms which correspond to one and the same generator of such type so
that their individual divergences kill one another. The grouping is mainly
based on the following.

Example 3.4 Consider the family of all possible pairings on KU IA(E which
have only two pairs involving points from a neighbourhood of some local max-
imum of the function ¢ on K (Fig.10), with the upper pair being dangerous
and the lower one not.

Let £ be the local maximum value of ¢ on K U j{\s. Let t; < t be the
level of a long pair (z;,2]) that joins a point inside our neighbourhood with
a point outside.

Pairings in the family have only one infinitesimal or short pair in the slice
t; < t < t of the neighbourhood. Integration, within these limits, of the
sum of the four 1-forms corresponding to the four dangerous pairs gives the
logarithm of the cross-ratio:

(22 — %) (23 —25) | ¢
(22 — 23)(23 — 22) | 4,

The upper bound evaluation gives zero.

The divergence of the lower bound terms In(z; — z;), i = 2,3, for e — 0,
is cancelled by the integration along the pairings in which the pair (z;, z;)
dives under the level t = t;.

In the remaining lower bound term In((zy — 25)(23 — 23)), zi tends to z;
as € — 0, i = 2,3. At the same time, f tends to the local maximum value
t0 of the function ¢ on K (unless £ = #° from the very beginning). Now the
integral

In

0

/ In(25(t1) — 23(t1))

const

dzi () — dz((t)
z1(t) — 2 (t)
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along the levels of the long pair converges at t; = t°.

Figure 10: Cancellation of divergencies.

In a general case we follow the above order of integrations and passing to
the limit.

We integrate first in the prelimit setting along the t-levels of infinitesimal
and short chords for all the other levels fixed.

Consider two intervals, ] C K and I. C K., of monotonicity of the
function ¢ that correspond to each other by the shift along the framing field
u.

We say that an infinitesimal pair (z;,z}) is based on I U I, if the points
z; and z; are lying on these intervals.

We say that a short pair (z;,2}) is based on I U I, if that of the points

z; and z; which lies on I U I, cannot be moved continuously along KU f(\g
to the neighbouring couple of intervals of monotonicity on which the other
member of the pair lives. This applies in the case when the surgery that
adjusted K U K, to KU f(\g was non-trivial in the neighbourhood of the
local extremum of ¢ on K. If, on the contrary, the local surgery was trivial
(that is the framing vector u at the extremum has zero t-component) the
base-interval assignment is arbitrary (but should be fixed before we start the

integration).

Example 3.5 In Fig.10, the pairs (2, 25) and (23, 23) are based on the left
and right couples of the intervals of monotonicity respectively.
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Now, assume that in the expression for Z,,(K, K,.) we are considering an
m-pairing P that has exactly r dangerous pairs based on a certain couple
T U, of intervals. Consider this particular pairing as a member of the entire
family of all the pairings that have exactly r dangerous pairs based on I U I,
and whose remaining m — r pairs P are exactly the same as in P. The chord
diagrams of all these m-pairings define the same element in A, c.

In this family, the t-levels of the short pairs, that are based on I U I, and
join the points of this couple of intervals with the points of the other couple
of intervals that is adjacent to U I, via the two local maxima of t on KUK,
are bounded from below by the level t = ¢, of the corresponding long pair.
There is also the similar bound ¢ < ¢, for the levels of the short pairs located
by the two local minima of the function ¢t on K U K.

A small exercise in elementary calculus and combinatorics shows that
integration in Zm (K, K.) along the described family provides the form

1 5 " dzy—dz; 1 z(ty) — 2'(ta)
—1)7 et N A SV YA
e VA g A w )

where after the reodering of the pairings of the family we set P = {(21, 21),

ey (Zm—r, 20n—r) }- The evaluations of the differences under the logarithm are
done on the two short pairs based on I U I, and lying on the corresponding
t-levels. The obtained form is to be integrated along the various ¢-levels of
the pairings P.

After similar integration for all the couples of intervals is done, we do
not finish the integration in Z,, (K, K.) but immediately pass to the limit for
e — 0 to get Z,,(K7). This means the substitution of 2/ (and z"”) for 2} (and
') everywhere in the above (m — r)-form or in the lower degree form that
has emerged from it.

So obtained limiting integral is absolutely convergent since its only sin-
gularities (cf. [11, 6]) are estimated by constant multiples of the integrals

like .
cons Ts T2 1
/ (/ . (/ (/ In" zodxy)dxy)...dzx,_i)dz,,
0 0 o Jo

that are convergent at 0.

20



3.3 Invariance of the limit under horizontal moves

The prelimit integrals Zom (K, K.) do not need to be invariant under horizontal
perturbations (that is when each point stays in its ¢-level) of the link K UK. .
On the contrary, the limit Z,,(K/) is invariant under horizontal isotopies of
the framed link. Let us show this assuming, at first, that none of the critical
levels of the function £ on K moves.

From the previous subsection we see that it is enough to assume that
the framing is such that, out of sufficiently small neighbourhoods of critical
points of ¢ on K, the framing field u is lylng in the levels ¢ = const and is of
length 1. So the distance between a point z; € K. and its neighbour z] € K
is e:

2y — 2 =ee¥i, p; € R/21Z.

Consider a slice a < t < b such that the closed interval [a,b] contains
no critical values of ¢ on K. The part of K in this slice consists of, say,
r branches going upwards and r branches going downwards. Consider a
horizontal isotopy of our framed knot which is non-trivial only in ¢ < ¢ <
b. Absolutely similar to [11, 6], the invariance of the elements Z,,(K7) €
Am.c, m > 0, under such isotopy is implied, according to Stokes’ formula,
by flatness of the following Knizhnik-Zamolodchikov type connection.

This formal connection, which we denote by @TT, is defined on the di-
rect product of two spaces. One of them is the set of all ordered 2r-tuples
(21,...,2y,) of pairwise distinct complex numbers. The other is the 2r-
dimensional torus with the coordinates ¢, € R/27Z.

We set
I —
Ol = D 5p5Oppq,
1<p,q<2r
where
s, 1s 1 for p < 7 and —1 otherwise;
dzp—dzg

Wpg = i when p # ¢;
Wpp = dipp;

©,, and ©,, are the 1-chord diagrams based on 2r ordered parallel arrows,
first r of which point upwards and the others downwards:
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The 1-form @,{T is closed.

Now, the product of two chord diagrams based on our 27 ordered arrows
is, as usual, drawing the first of them below the second. Formal linear com-
binations of chord diagrams are considered modulo the 4-term relation. For
example, the special “diagonal” case of the 4-term relation says that ©,,
commutes with any ©,, (this is actually twice the floating-point relation).
Within this understanding the fact ©f, A ©f, = 0 is obvious (cf. [6]).

Thus connection @f,, is flat.

The proof of invariance of Z,,(K/) under all other moves which preserve
the class of Morse framed knots is almost word-to-word repetition of subsec-
tion 4.3.3 of [6].

Part ii) of Theorem 3.3 is a paricular case of part iii).

Finally, as in [11], part iv) of Theorem 3.3 is obvious.

3.4 The universal invariant

Similar to the unframed case [11, 6], the integrals Z,,(K”) are not invariant
under the move that cancels two neighbouring local extrema of ¢ on K. We
fix the problem exactly in the same way as it was done in [11, 6].

Set

Z(K) =Y Znm(K') € A,
m>0

where Ac = 1,0 Am.C-

Let U/ be the curve of Fig.11 lying in the plane Imz = 0 and equipped
with the trivial framing i0,.

The series Z(U/) € Ag is invertible since it starts with 1 € Ao c-

Let ¢ be the number of critical points of the function ¢ on the core of a
framed Morse knot K7.

Definition 3.6 The element
Z(K') = Z(K?) x ZU¥) 5 e Ag
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Figure 11: The curve U.

is called the universal Vassiliev-Kontsevich invariant of the framed Morse
knot K.

Example 3.7 Let w € A; ¢ be the 1-chord diagram. Consider an unknot
with the framing that makes one positive rotation around it. The value of Z
on this unknot is exp(w).

Theorem 3.8 (cf. [11, 6]) For any framed Morse knot K, Z(K') depends
only on the topological type of K. The degree m component Zm(Kf) €
Am.c of Z(KT) is an invariant of order less than m + 1.

Since the proof completely repeats that in the unframed case [11, 6], we
omit it here.

The lowest order term of Z(K) for a singular framed knot with 7 double
points and k points of degeneration of the framing is easily seen to be 2"D(K),
where D(K) € A,,.c is the chord diagram of K/ (we use here the 2-term
relation to treat an (n,k)-diagram as the (n + k)-chord diagram). As in
[11, 6], this fact implies the claim Vw{ r/ Vrﬁq r = A;, g of Theorem 2.15 on
the description of the space of symb(,)ls of order m real-valued invariants of
framed knots in R3.

Remark 3.9 Similar to Exercise 4.5 of [6], it is easy to see that the series
Z(K/) is real.

4 Unframed knots in a solid torus

4.1 Marked chord diagrams

Starting with the space Qg7 of C'*°-mappings of an oriented circle to a solid
torus (ST), we construct the theory of Vassiliev type invariants of oriented
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unframed knots in ST in the obvious way. We get notions of non-singular
and singular knots, extended invariants, chord diagrams, etc. The main new
feature here is that the chord diagram of a singular knot possesses a natural
integer marking (cf. [10]).

Namely, let us fix a generator of the fundamental group m;(ST) = Z.
A double point of an oriented singular knot in ST cuts the knot into two
subloops each of which has its class in 7 (ST). We write the corresponding
fundamental integer on the side of the corresponding chord in the diagram
that faces the preimage of the corresponding subloop (Fig.12). For conve-
nience we also mark the circle of the diagram with the fundamental class of
the whole knot. The sum of the two markings on each chord is equal to the
marking of the circle.

Figure 12: The marked chord diagram of a singular knot in a solid torus.

Let A, C Qgr be the set of parametrizations of knots with exactly n
generic double points. We say that two elements of A, are related (cf. [15])
if they can be joined by a C°°-homotopy that stays almost all the time in
A, and, at the remaining finitely many instants, crosses A, ,; transversally.
We also say that two singular knots are related if their representatives are
related.

We have evident

Proposition 4.1 Two singular knots in a solid torus are related if and only
iof their marked chord diagrams coincide.

Recall that we consider chord diagrams up to diffeomorphisms of the
circle which preserve the orientation. In the marked case diffeomorphisms
should preserve the markings as well.
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4.2 Marked relations

Of course, the values of invariants on oriented singular knots in a solid
torus are subject to the 4-term relation of Proposition 2.8 and the framing-
independence 1-term relation of Fig.8. On the other hand, due to Proposition
4.1, the values of a symbol of order n invariant on singular knots in ST are
in fact functions on marked n-chord diagrams. This implies

Proposition 4.2 The values of a symbol v on marked chord diagrams are
subject to the marked 1- and 4-term relations:

) vy vy vy o

Here we give only partial markings that allow us to restore the complete
ones.

Proof. Indeed, the marked 1-term relation corresponds to the contraction
of a small subloop of a singular knot which is unlinked with the remaining
part of the knot (see Fig.3 and omit all the framings there). The fundamental
class of a contractible subloop is 0.

The marked 4-term relation comes from the bifurcation of a triple point.
So the partial markings are inherited from that of the marked chord diagram
of a triple point:
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4.3 Module of marked chord diagrams

An abstract marked n-chord diagram is an n-chord diagram with integer two-
side marking of its chords and integer marking of the circle such that the sum
of the two markings of each chord is the making of the circle.

Let M? be the linear space of finite linear combinations (with some fixed
coefficients) of all abstract marked chord diagrams modulo the marked 1-
and 4-term relations (that is, once again, the relations of Proposition 4.2
for diagrams themselves rather than for functions on them). We denote by
M? the order n part of M° generated by n-chord diagrams. Unlike the
non-marked case, M? is infinite-dimensional for any n > 0.

In the non-marked case the linear space A° generated by all chord dia-
grams modulo the 1- and 4-term relations is an algebra with respect to the
connected sum operation [11, 6] (A° is the quotient-algebra of the algebra
A = @50, considered above). It is pretty obvious that M?Y does not have
similar algebra structure: in general, the markings of chords of the connected
sum of two marked chord diagrams depend on the arcs on which the con-
necting surgery is done. The marking on the side of a chord that faces the
surgery increases by the marking of the circle of the added diagram (Fig.13)
as this should be for the connected sum of singular knots in a solid torus.

Figure 13: Connected sum of marked chord diagrams.

Nevertheless the connected sum is a well-defined operation on M? in the
following special case.

Consider the embedding ¢ : A% — M? that assings identically zero mark-
ing to a non-marked diagram.

Theorem 4.3 The connected summation defines on M° the structure of a
module over ((A%).
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The proof, based on the marked 4-term relation, repeats the proof of the
fact that A° is an algebra with respect to the same operation (Lemma 2.1 of
[11]). One needs only to be slightly attentive to the markings.

4.4 The universal invariant for unframed knots
in a solid torus

We consider a solid torus (ST) as a direct product C x S* with the com-
plex coordinate z and circular coordinate # mod 27. We take a generator
of m(ST) being a loop that runs once around the torus in the direction of
increase of 6.

A knot in ST is a Morse knot if 6 is a Morse function on it.

Let K be an oriented non-singular Morse knot in ST.

Take n different non-critical levels 0 < 6; < 0, < ... < 6, < 2mw. In each
section f = 0; of K, choose an unordered pair of points (z;, 2;) = (z;, 2;)(0;)-
The set P of n such pairs, one pair per level, defines the n-chord diagram
in the obvious way. The diagram is marked. Its circle is marked by the
class of K in 7(ST). The marking on a chord is given by the fundamental
classes of the two loops obtained by a homotopy of K in ST that glues
together the points of the corresponding pair and is the identity outside a
small neighbourhood of the #-level of the pair.

We denote by D(P) € M o the class of the obtained marked diagram.

Using the obvious notations we introduce

Definition 4.4 Z5T(K) =
1 » dz; — dZ)
oy S DA TED(P) e Mig

0<01<02<...<0n <2 P=1{(2,2})(0;)} j=1

—_ I,
Zj ZJ

Absolutely similar to [11, 6], adding only the locality of the marked 4-
and 1-term relations to trace the markings in homotopies, one gets

Theorem 4.5 i) The integral that defines Z5T(K) is absolutely convergent.

ii) Z3T(K) does not depend on the choice of the zero-level of the circular
coordinate 0 on the solid torus.

ii1) Z3T(K) is invariant under the homotopy in the class of Morse knots
in the solid torus.

w) Z3T(K) is an invariant of Morse knots of order less than n + 1.
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We set Z5T(K) = Y50 257 (K) € Mg, where Mg = [T M0 c.

Consider the curve U of subsection 3.4, this time unframed and lying in
a sector of our solid torus (the coordinate ¢ is replaced by #). The series
Z5T(U) belongs to the subspace ¢ (./Tloc) C MOC spanned by chord diagrams
with identically zero markings. As we have already mentioned, M(é is a
module over the algebra ((A’). The element Z5T (1) is invertible in ¢(A).

Definition 4.6 Let ¢ be the number of critical points of the function 6 on
an oriented non-singular Morse knot K in the solid torus. The element

Z5T(K) = 25T (K) x (25T (U))'* € Mc
is called the universal Vassiliev-Kontsevich invariant of K.

Theorem 4.7 The element ZST(K) depends only on the topological type of
the Morse knot K in the solid torus. The degree n component Z5T(K) €
M « of Z5T(K) is an invariant of order less than n + 1.

n,

The proof of the statement completely repeats that for knots in R? given
in [11, 6].

For any abstract marked chord diagram D one can find a singular knot in
ST whose marked diagram is exactly D. Calculation based on the definition
of the Vassiliev type extension of an invariant of non-singular knots shows
that the lowest degree term of the series Z5T for such a knot is exactly D
(cf. subsection 4.4.2 of [6]). This provides

Theorem 4.8 The space of symbols of complez-valued order n Vassiliev
inwvariants of oriented unframed knots in a solid torus coincides with the space
of all complex-valued functions on the set of all marked n-chord diagrams
subject to the marked 1- and 4-term relations.

5 Framed knots in a solid torus

5.1 Finite type invariants
in terms of marked chord diagrams

This case is the obvious symbiosis of the two above cases of framed knots in
R? and unframed knots in a solid torus. We do it very sketchy.

28



We extend invariants of non-singular oriented framed knots in ST to those
singular following the two recursive settings of subsection 2.4.

Making the mixture of Definitions 3.1 and 4.4, for a non-singular oriented
Morse framed knot K7 in ST we obtain the elements Z57 (K, K,) € Mp.c-
The M,, c are the degree m components of the C-linear space M¢ generated
by all marked chord diagrams modulo the marked 4-term relation. Passing
to the limit for £ — 0, we define the elements Z5''(K/). Similar to Theorems
3.3 and 4.5, we have

Theorem 5.1 i) The limit element Z35' (K') is a finite element of M., c.
i) Z5T(K7) is invariant under homotopies in the class of framed Morse
knots in the solid torus.
iii) Z3T(K7) is an invariant of framed Morse knots of order less than
m+ 1.

Making the mixture of Definitions 3.6 and 4.6, we define the element
Z5T(K¥) € M. This time we take the curve &/ of Fig.11 lying in a sector
of the annulus Imz = 0 in the solid torus and equipped with the framing 0, .
We also use the fact that M is a module over its subspace generated by
chord diagrams with all the markings zero.

We have (cf. Theorems 3.8 and 4.7)

Theorem 5.2 The element ZST(Kf) € Mc depends only on the topological
type of the Morse framed knot K¥ in the solid torus.

The final classification result now is

Theorem 5.3 The space of symbols of complex-valued order m Vassiliev
wnwariants of oriented framed knots in a solid torus coincides with the space
of all complez-valued functions on the set of all marked m-chord diagrams
subject to the marked 4-term relation.

Remark 5.4 The space of symbols of arbitrarily-valued order m Vassiliev
invariants of oriented framed knots in ST embeds into the space of functions
(with the same values as invariants) on the set of all marked (n, k)-diagrams.
Symbols satisfy the marked 4-term relation of Proposition 4.2 as well as the
marked 2-term and floating-point relations of Fig.14.
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Figure 14: The marked 2-term and floating-point relations.

5.2 Coefficients of the polynomial invariants
as invariants of finite order

As in the case of knots in 3-space [7], coefficients of the polynomial invariants
of knots in a solid torus, when properly understood, turn out to be invariants
of finite order. To illustrate this we consider in detail the framed version of
the HOMFLY polynomial.

In the definition of the HOMFLY polynomial of framed knots and links
in ST, we follow the definiton of [14] given for the unframed setting.

This time we consider the solid torus I x I x S, where I is the interval
[0,1]. The polynomial is defined on representatives of framed knots and links
whose framing is blackboard with respect to the projection of the solid torus
that forgets the first factor I.

Definition 5.5 For a non-singular link L C I? x S* the polynomial H(L) €
Zlz,z ' y,y 21,21, 29, 2_9,...] is defined by the recursive and initial data
of Fig.15.

In the last relation of Fig.15 the links L' and L” are lying in the solid tori
[0,1/2) x I x S and (1/2,1] x I x S* respectively. The curves L3 show the
pattern for the whole of the basic series {L;};—41 49 . .

The results of [14] imply

Theorem 5.6 Function H is a well-defined function on the isotopy classes
of framed links in ST.

Example 5.7 The value of H on an unknot with the blackboard framing is
(x — x7')/y. Participation in this fraction is the only way for y~' to enter
the polynomial of any link.
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Figure 15: Definition of the framed version of the HOMFLY polynomaial for
links with the blackboard framing in a solid torus.

Fix an integer n # —1 and set

—t/2

z = emt2

y=el? —e
in H(L). Since y~! enters H(L) only in the combination (z — z71)y ™!, the
result W, (L) of the substitution is an element of Q[z41, 244, - . .]{t}. Consider
the expansion in powers of ¢:

o0

Wa(L) = 3 wym(L)™,

m=0

where the w,, ,,,(L) are polynomials in the variables z;.

Theorem 5.8 For a knot K each polynomial w, ,,,(K) is a framed knot in-
variant of order not greater than m.

Proof (cf. [7, 11]). Extend the function H to the set of singular framed
knots in ST via the two recursive relations of subsection 2.4. Consider the
value of H on a framed knot K, with a double points and b points of framing
degeneration. We can assume that one of the 2¢*® non-singular resolutions of
K used for the calculation of H(Kj,) is a knot with the blackboard framing
and all the others are obtained from that one by the local moves of Fig.16.

The differences of the values of H on the resolutions that define the value

H(K,) are given by the first line of Fig.15 and by Fig.17.
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Figure 16: Resolutions of local singularities of a singular framed knot in the
blackboard setting.
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Figure 17: Calculation of the polynomial of a knot with a degenerate framing.
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|

Thus the value H(K,) is y*(z — 1)° times a polynomial in z, 271, y, (x —
™Y /y, 241, 249, . . .. Since both y and z—1 vanish at ¢ = 0, the series W,,(K)
is divisible by t***. O

Example 5.9 Assume that the class of the knot K in 7 (ST) coincides with
that of the basic loop L;. Then the t-free term w,, o(K) is z; = H(L;). For a
contractible K the t-free term is n + 1.

The statements analogous to Theorem 5.8 hold for the Kauffman poly-
nomial and the unframed version of the HOMFLY polynomial [14].
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