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Abstract

We survey some of the recent results on Legendrian knots and
links in the standard contact 3-space and solid torus. These include
the description of finite order invariants and estimates of the self-
linking number coming from the classical polynomial link invariants.
We also describe the combinatorial invariant introduced by Chekanov
and Pushkar which allowed them to prove Arnold’s conjecture on the
necessity of four-cusp curves in generic eversions of a circular front in
the plane.

1 Arnold’s conjecture

A generic plane wave front is a curve whose only singularities are transversal
double points and semi-cubical cusps. In this paper, all fronts will be co-
oriented (hence, in particular, each of them will have an even number of
cusps).

Figure 1 shows the family of equidistants of an ellipse. The fronts are
naturally co-oriented by the direction of propagation. The family is an ex-
ample of a generic eversion of a circular front: starting with a non-singular
curve having the inward co-orientation we end up with a front co-oriented
outwards.

The family of Figure 1 has two remarkable features:

(i) it does not contain fronts with so-called dangerous self-tangencies at
which the co-orientations of the tangent branches would coincide, and

(ii) it contains curves with four cusps.
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Figure 1: FEwversion of a circular front in the family of equidistants of an
ellipse.

Arnold attempted to construct a generic eversion of a circular front satisfying
only condition (i) but not (ii), and failed. This led him to the following
conjecture.

Conjecture 1.1 [2] Any generic eversion of a smooth circular front in the
FEuclidean plane which does not contain curves with dangerous self-tangencies
must contain curves with four cusps.

Arnold’s conjecture has been a considerable stimulus in the development
of the theory of invariants of Legendrian knots and links over the last decade.
In 1999 it was positively solved by Chekanov and Pushkar [9] who introduced
a new, rather delicate invariant of Legendrian knots in the 3-space for doing
this [7, 9]. In the present paper, we describe the invariant of Chekanov-
Pushkar (see Section 5) as well as some of the recent results on Legendrian
knots.

Remarks 1.2 (a) Prohibiting dangerous self-tangencies is a natural physical
condition: speed of propagation of a front at a given point is defined by the
direction of propagation.

(b) It is not so difficult to construct a generic eversion of a circular front
involving only curves with at most two cusps once dangerous self-tangencies
are allowed (see [2] for an example).



2 Legendrian links in ST*R? and J!(R,R)

2.1 The standard contact spaces

To remind the reader of the relation between plane fronts and Legendrian
links, we have first to recall a few basic notions.

A contact element at a point of a plane is a line in the tangent plane. Its
co-orientation is a choice of one of two half-planes into which it divides the
tangent plane. The manifold M of all co-oriented contact elements of the
plane is the spherisation ST*R? of the cotangent bundle of the plane. It is
diffeomorphic to the solid torus R? x S': the co-orienting normal vector is
defined by the angle ¢ mod 27 which it makes with a fixed direction in the
plane. The manifold M has the standard contact structure defined as zeros
of the 1-form a = (cos p)dx + (sin p)dy, where (z,y) are co-ordinates on R?
with the positive direction of the z-axis being that fixed above (see Figure
2). We equip M with the orientation dz A dy A dp = —a A da.

Figure 2: Co-ordinates in the solid torus ST*R2.

The universal cover M of M is of one the realisations of the standard
contact R®. However, we shall work with its isomorphic realisation which is
the space J!(R,R) of 1-jets of functions on the line. The contact structure
on it is du — pdq, where ¢ and u parametrise the source and target lines
respectively, and p is the derivative. The mapping

U = T COS® + ysin ¢ p = —xsiny + ycos ¢ qg=¢

is a contactomorphism between M and the jet-space.



2.2 Fronts

Definition 2.1 A Legendrian curve in a contact 3-manifold is a mapping of
a disjoint union of a finite number of circles for which the pull-back of the
contact form vanishes. A Legendrian link is an embedded Legendrian curve.

The image F' of the canonical projection of a Legendrian link L from M
to the plane is called the front of L. An arbitrary small perturbation in
the class of Legendrian links is able to bring a link in general position with
respect to the canonical projection. The front of such a generic Legendrian
link is exactly what we called above a generic wave front, that is, it has only
transverse double points and semi-cubical cusps as its singularities.

There is a natural co-orientation at any point of a front by the co-orienting
normal of the contact element a € L whose projection this point is.

A co-oriented multi-component generic plane front is the front of a unique
Legendrian link in M.

A generic homotopy in the class of Legendrian immersions produces
generic perestroikas of the front (Figure 3). Only dangerous self-tangencies
of fronts correspond to topological changes in the links. A Legendrian link in
the solid torus ST*R? acquires a double point and experiences the change-
crossing at each of these instants (Figure 4).

For Legendrian links in J'(R,R) = R} the natural fronts are the
images of their projections to the (¢, u)-plane J°(R,R). These are fronts
without vertical tangents since their gradient p is always finite. The canonical
co-orientation is that by the positive direction of the u-axis. Therefore, all
self-tangencies of such fronts are dangerous.

Definition 2.2 An invariant of plane fronts is called a J'-type invariant
if it does not change under homotopies which involve no dangerous self-
tangencies.

Our terminology follows the name of the first invariant of this type intro-
duced by Arnold in [1, 2].

From the above discussion, we see that the theory of invariants of Leg-
endrian links in ST*R? (respectively in J'(R,R)) is isomorphic to that of
J*-type invariants of fronts (respectively of fronts without vertical tangents).
So in what follows we will make no distinction between invariants of Legen-
drian links in any of the two standard contact spaces and their lowerings to
the JT-type invariants of the relevant fronts.
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Figure 3: Perestroikas of generic fronts.

2.3 The Bennequin-Tabachnikov number

Any unframed link type in M and J'(R, R) has a Legendrian representative
(see, e.g. [18]). Moreover, according to [12], in the case of M it is possible
to choose a representative whose front has no cusps. However, this does not
hold in the framed setting.

A Legendrian link in a 3-manifold with a co-oriented contact structure
has a canonical framing by the co-orienting vectors of the contact planes. In
the cases of the standard 3-space and solid torus, this is isomorphic to the
framing by the Legendrian lift of the front of the original link slightly shifted
in the direction of its co-orientation (Figure 5).

Definition 2.3 The self-linking number 8 of a canonically framed oriented
Legendrian link in J*(R,R) is called the Bennequin number of the link.

The Bennequin number can be calculated in terms of singular points
of the underlying generic oriented plane front in J°(R,R) = Rg,u. Every
double point of the front, at which the g-components of the two velocities
have different signs, contributes +1 in 5. When the horizontal components
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Figure 4: A dangerous self-tangency of a front rises to the change-crossing
of the Legendrian link.

have the same sign, a double point contributes —1. The contribution from
every cusp is +1/2.

One of the main results of [4] shows that the Bennequin number is
bounded from below (for our choice of orientation) on the set of all Leg-
endrian knots representing the same unframed knot type in R3:

Theorem 2.4 For a Legendrian knot L in the standard contact R3,
B(L) >1-2g(L),
where g(L) is the genus of L.

Insertion of a two-cusp zig-zag (as in Figure 5) preserves the unframed
topological type of a Legendrian knot and increases § by 1.

Examples 2.5 a) For an unknot in the standard contact R3, 8 > 1 [4].
This fact allowed Bennequin in [4] to show that a certain contact structure
on R? is not isomorphic to the standard one.

b) The estimate of the Theorem provides the same bounds for a knot and
its mirror image. For example, for both the right- and left-handed trefoils it
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Figure 5: The Legendrian lifting of a plane front to a canonically framed knot
in the solid torus M = ST*R?2.

gives # > —1. This bound is exact for the left-handed trefoil. In [20, 14] it
was shown that for the right-handed trefoil the exact lower bound is 6.

An analog of the Bennequin number for an oriented Legendrian link L in
ST*R? was introduced by Tabachnikov in [26]. He set it to be the index of
intersection of the shift L' of L in the direction of the framing and a 2-film S
realising the homology between L and a multiple of the fibre of the projection
ST*R? — R? over a sufficiently distant point. The orientation of S is chosen
so that L enters its boundary with a positive sign. For example, § = 4 in
Figure 5.

Via the inclusion of the standard solid torus into the standard 3-space, the
boundedness of the Bennequin numbers mentioned above implies a similar
boundedness of the Tabachnikov numbers.

3 The Kauffman polynomial of a front

There exists a series of other estimates of the Bennequin-Tabachnikov num-
ber, coming from the classical polynomial link invariants. These estimates,
in particular, differentiate between a link and its mirror image. Here we
consider in detail the Kauffman polynomial.



3.1 The polynomial of Legendrian links
in the standard solid torus

In [28] Turaev introduced the Kauffman polynomial of a framed non-oriented
link in a solid torus. This is an element of Z[z*! y*! & &), .. ] uniquely
defined by the relations and initial data of Figure 6. The links L; and L,
there are mutually unlinked. As usual, all the links participating in each
particular relation coincide except for the fragments shown. All the links
are equipped with the framing which is blackboard with respect to a fixed
projection of the solid torus to the annulus. The knot =3 provides a pattern
for the whole series =;.

Figure 6: Definition of the framed version of the Kauffman polynomial for
links with the blackboard framing in a solid torus.

Example 3.1 On an unknot with the trivial framing K = z_;_l + 1.

The Legendrian lifting lowers the polynomial to generic plane fronts.
Translation of the rules of Figure 6 to fronts gives rise to the rules of Figure
7. The fronts F; and F; of the third line are lying in disjoint half-planes. The
relation between the Legendrian generators z; and the blackboard generators
& of Figure 6 is easily seen to be z; = 2°¢; [12].

Theorem 3.2 ([10]) There exists a unique J*-type invariant K(F) € Z[z,
y* 21, 2, .. .| of a generic front F' satisfying the relations and initial data of

Figure 7.
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Figure 7: Definition of the Kauffman polynomial for fronts.

Note that there are no negative powers of the framing variable z now.

Example 3.3 Consider the lips front, with two cusps and no double points.
To calculate its Kauffman polynomial, one can proceed as follows (the curves
used in the second equality are connected by a homotopy involving one safe
self-tangency and one cusp death):

PE(—) = K(+M\=)=K(~My—)=K(z )
= K(-eg¢h ) +y(K(<D ~ )~ K(<5 )
= KL ) +uK(~ -~ ) —yK(asy +)

= K(—)+yK(

) = yK(A>—")

= K(—)+yK(< ) K(— ) - yok(—)

So, K(<>) = ’”2;1 + x. Indeed, the lips front lifts to the Legendrian
unknot in M with 8 = 1, so its Kauffman polynomial should be that of an
unknot with the trivial framing times x.



3.2 The Bennequin-Tabachnikov number estimate

It follows from Theorem 3.2 that the Kauffman polynomial of a plane front
is a genuine polynomial in x, not a Laurent one. This implies the following
restriction on the values of the Bennequin-Tabachnikov numbers of oriented
Legendrian links in the solid torus and 3-space.

For an oriented link L with the blackboard framing in a solid torus (like
those considered in Turaev’s definition of the Kauffman polynomial in Figure
6), we define the self-linking number w(L) as the difference between the
numbers of positive and negative crossing in its link diagram in the annulus
(this just repeats the corresponding definition for a link in 3-space in terms
of its plane diagram; the natural generalisation of this procedure to the case
of non-blackboard framings gives the Tabachnikov number of a Legendrian
knot). Now define the unframed version of the Kauffman polynomial as

K,(L) =z "*PK(L).

Following [28, 21], this polynomial depends only on the unframed topological
type of L. Thus we can speak about the polynomial K, of unframed oriented
links. In the case of knots the orientation does not matter.

Theorem 3.4 [10] Let £ be an unframed oriented link in the standard solid
torus M = ST*R?. Let o* be the minimal power of the framing variable
z in K,(L). Then the Bennequin-Tabachnikov number of any Legendrian
representative of L is at least —k.

Example 3.5 For an unknot (see Example 3.1) this coincides with the clas-
sical bound 5 > 1 [4].

Example 3.6 The Theorem implies that the minimal Bennequin-Tabachni-
kov number of a Legendrian representative of the basic knot =; in the solid
torus (Figure 6) is that of the Legendrian lifting of the front Z;, which is
2i — 1. Note that the inclusion of the standard contact solid torus into the
standard contact 3-sphere gives only 4 > 1 for any 4: all the Z; get unknotted
in S3.

An estimate for the Bennequin-Tabachnikov number similar to that of
Theorem 3.4 but based on the HOMFLY polynomial for links in the solid
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torus also exists [10, 11]. Of course, there exist versions of both estimates for
links in the standard R? [14, 10, 11]. The one coming from the HOMFLY
polynomial in R? was easily derived [14] from one of the intermediate results
of Bennequin’s original paper [4] and from a result of Morton and Frank-
Williams [23, 13].

The HOMFLY polynomial also provides similar estimates for the Benne-
quin-Tabachnikov number of transverse knots in J'(R,R) [14] and ST*R?
[17]. Such knots are everywhere transversal to the contact structure. The
Kauffman polynomial is not defined for them.

Remark 3.7 The estimate for the Bennequin number of Legendrian knots in
J'(R,R) by the lowest degree of the framing variable in the mod 2 Kauffman
polynomial was derived in [14] from the results of [25]. It is not known if the
lowest degrees in the integer and mod 2 Kauffman polynomials for R® may
differ. In all the examples we know they coincide. The work [27] implies that
for alternating knots they are equal. See also [24].

4 Finite order invariants

One of the most powerful tools of modern knot theory are Vassiliev’s finite
order invariants. Their definition is based on the inductive extension of
invariants of ordinary knots to immersed spatial curves with a finite number
of double points. In a similar way one constructs a theory of finite order
invariants of Legendrian knots in our standard spaces or, equivalently, a
theory of finite order J*-type invariants of their fronts [19]. As an illustration,
we shall consider now a slightly simpler case of fronts with no cusps at all,
that is immersed plane curves (more details can be found in [16]). Our
curves will be oriented and have just one component. We assume that the
co-orientation used for the Legendrian lifting to ST*R? is obtained from the
orientation by the clockwise rotation through 7/2.

The list of generic perestroikas of Figure 3 now reduces to just three
cases: triple point, direct self-tangency (when the two velocity vectors at
the self-tangency point have the same direction) and inverse self-tangency
(when the velocities are opposite). Each of the three degenerations defines
a hypersurface in the space of all C*®-immersions S' — R? (see Arnold’s
papers [1, 2] for details on order one invariants Strangeness, J* and J~
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dual to these hypersurfaces). J*t-type invariants which we are considering
are invariants of plane curves without direct self-tangencies and do not change
in homotopies crossing only the first and third hypersurfaces.

In the spirit of the Vassiliev theory, a J'-type invariant extends induc-
tively to curves with finitely many quadratic direct self-tangencies by setting

WD) = w0 V) - X)

A Jt-type invariant is said to be of order at most n if its extension
vanishes on any regular curve with n quadratic direct self-tangencies.

It is not very difficult to see that the extensions are subject to the 2- and
4-term relations of Figure 8.

e
S M=) -
EVASVALS=a 7k
IV VALV

Figure 8: Relations for extended invariants: 2-term (the top line) and 4-term.

After raising plane curves to Legendrian curves in the solid torus ST*R?,
the 4-term relation becomes the 4-term relation of the theory of knots in a
solid torus (ST, for short) [15]. Moreover, the following theorem is valid.

Theorem 4.1 [16] The graded spaces of finite order complez-valued invari-
ants of oriented framed knots in a solid torus and of oriented plane curves
without direct self-tangencies are isomorphic. The isomorphism is provided
by the Legendrian lift of plane curves to the solid torus ST*R?2.
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The grading here is that by the order of an invariant.

The graded space of complex-valued finite order invariants of oriented
framed knots in ST was described in [15]. It turned out to be isomorphic
to the graded C-linear space M spanned by all marked chord diagrams on
a circle modulo the marked 4-term relation. M is graded by the number of
chords in a diagram.

The above-mentioned diagram marking is actually the marking by the
fundamental group Z of the solid torus. Namely, consider an immersion of
an oriented circle into ST with a finite number of double points. As usual,
on the oriented source circle, we connect the two preimages of a double point
by the chord. We mark each chord on both sides by the classes of the images
of the subtended halves of the circle in 7 (ST). We mark the whole circle
with the fundamental class of its image. The sum of the two markings on a
chord is the marking of the circle. The space M is spanned by all the chord
diagrams with this restriction on the marking.

For regular plane curves, the marking described is by the Whitney wind-
ing numbers of a curve and of the arcs into which the curve is cut by its direct
self-tangencies (Figure 9). Every marked chord diagram is the diagram of a

L €

Figure 9: A plane curve and its marked chord diagram.

plane curve. Moreover, the set of immersed plane curves whose direct self-
tangencies are subject to a given marked chord diagram is connected [16],
due to the Whitney-Graustein theorem [30] and the ‘2-term-relation’ move.
So, the value of an order n J'-type invariant on an immersed plane curve
with n direct self-tangencies depends only the marked chord diagram of this
curve. In this case, the 4-term relation of Figure 8 implies the marked 4-term
relation on marked diagrams which is exactly the one in the definition of the
graded space M:
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Here we mark the chords just on one side since the circle marking implies the
rest of the data. With all the markings omitted, the relation is exactly the
ordinary 4-term relation of the Vassiliev theory for knots in R3? [29, 3, 5, 22].

Remark 4.2 As was shown in [12] and independently by A. Shumakovich
(unpublished), the Legendrian lift of regular curves provides representatives
for all unframed topological types of knots in the solid torus M = ST*R?
(the question of the existence of such realisations was formulated by Arnold
in [2]). The same is of course valid for the lift of regular plane curves with
zero winding number to M = R3 and unframed knots in R3. However, the
Bennequin-Tabachnikov number S of a lifted regular curve is always odd.
Moreover, it seems that the lower bound for § in this case must be (as it
may a priori be) higher than for lifted fronts with cusps. For example, for
‘regular’ representatives of right-handed trefoils in M, 8 apparently cannot
be less than 9 [12], while in the general case the minimum of 6 is achieved.

Remark 4.3 The 4-term relation for Vassiliev type invariants of knots in
3-manifolds comes from the bifurcations of a triple point on a singular knot.
The 4-term relation for invariants of curves on surfaces comes from the bifur-
cations of a triple self-tangency point. Both relations are locally isomorphic.
In Figure 10 we show the bifurcation diagrams (that is, germs of generic sec-
tions of the hypersurfaces of non-generic maps in the corresponding spaces
of mappings) of the two degenerations. The diagrams are not diffeomorphic.

Now consider J*-type finite order invariants of cusped co-oriented one-
component plane fronts. Such a generalisation turns out to add only one
more invariant, of order 0, to finite order invariants of framed knots in ST
[19]. The extra invariant is the Maslov index p of a front: u is twice the
number of rotations made in the contact plane by the velocity vector of the
Legendrian knot (the contact structure on ST*R? is parallelisable, hence
this number is well-defined). Thus finite type invariants cannot distinguish
Legendrian knots in ST*R? which are topologically isotopic and have the
same Bennequin-Tabachnikov number and Maslov index. A similar result
for Legendrian knots in the standard contact 3-space was proved in [14].
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Figure 10: Bifurcation diagrams of a triple point of a space curve and of a
triple self-tangency of a plane curve.

5 The Chekanov-Pushkar combinatorial in-
variant of Legendrian links in the standard
contact three-space

The problem of finding invariants that could distinguish Legendrian knots
which are not Legendrian isotopic but have the same topological type, Ben-
nequin number and Maslov index is very hard. The first invariant that is
able to do this in the standard 3-space J'(R,R) = R},  was introduced by
Chekanov in 1997 [6, 7]. In 1999 Chekanov and Pushkar defined the second
invariant of this kind [7, 8, 9]. This section concentrates on their construc-
tion.

Let F c J°(R,R) = R, be a one-component front without vertical
tangents, which is g-generic that is, all of its singular points (cusps and
transversal self-intersections) have distinct g-coordinates.

Consider a decomposition of F,

F=X,U...U...Xn,

into a set of closed curves with a finite number of mutual intersections.

We call a decomposition admissible if the four conditions (a)-(d) below
hold.

(a) Each X; bounds a topological disc: X; = 0B;.

(b) Every vertical slice B;, = B; N {q = const} of each disc is either an
interval, or a single point (in which case we allow it to be only a cusp of F),
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or empty.

Condition (b) in particular implies that the number n of the curves X;
in our decomposition is half the number of cusps of F. It also implies that
double points of F' are of two types shown in Figure 11, which we call switch-
ing and non-switching. The remaining two conditions provide constraints on
switching double points.

— <

switching non-switching

Figure 11: Types of double points.

(c) Sufficiently close to a switching double point of curves X; and X, the
endpoints of the corresponding intervals B;, and Bj, do not alternate, that
is, the intersection of these intervals is either empty or coincides with one of
them.

To formulate the final condition, we have to introduce the notion of a
Maslov potential of F. Recall that the Maslov index of F' is equal to the
difference between the numbers of its ascending and descending cusps. Con-
sistently with this, a Maslov potential of F' is a modu(F') integer marking of
smooth branches of F' joining its cusps, such that at each cusp the marking
of the locally upper branch is the marking of the locally lower branch plus
1. Such a marking is uniquely defined up to addition of a constant.

We call a double point of F' Maslov if the values of the potential on the
two branches of F' meeting at this point are equal.

(d) Each switching double point is Maslov.

Example 5.1 The first three fronts in Figure 12 have one admissible decom-
position each. The forth has none (like any front with the zig-zag fragment).
The last front has three admissible decompositions: two decompositions with
one switching double point and one decomposition with three switches.

Consider a function © on the set Adm(F') of admissible decompositions
of a front I, which is the difference between the number n of the curves in
a decomposition and the number of switching double points in it.
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Figure 12: Sample fronts with respectively 1, 1, 1, 0 and 3 admissible decom-
positions.

Theorem 5.2 [7, 9] Let L and L' be two Legendrian knots in J'(R,R),
which are Legendrian isotopic. Assume that the corresponding fronts, F' and

F' are q-generic. Then there exists a one-to-one mapping from Adm(F) to
Adm(F") preserving ©.

Example 5.3 [7, 9] The two Legendrian knots whose fronts are shown in
Figure 13 have the same topological type (both are 5y-knots), the same
Maslov index = 0 and the same Bennequin number 5 = —1. However,
the knots are not Legendrian isotopic: the first front has only one admissible
decomposition (with all its four Maslov double points switching) while the
second front has two (one with all six double points switching and one with
four switches).

A (5

Figure 13: Fronts of two Legendrian representatives of the ba-knot having
the same . = 0 and B = —1, but which are not Legendrian isotopic due to
Theorem 5.2.

Chekanov and Pushkar have also proved a version of Theorem 5.2 for
fronts of Legendrian knots in ST*R?. It is that version which implies a
positive solution of Arnold’s Conjecture 1.1. The details will appear in [9].
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