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Abstract

We show that every unframed knot type in ST*R? has a represen-
tative obtained by the Legendrian lifting of an immersed plane curve.
This is the positive answer to the question asked by V.I.Arnold in [3].
The Legendrian lifting lowers the framed version of the HOMFLY poly-
nomial [18] to generic plane curves. We prove that the induced poly-
nomial invariant can be completely defined in terms of planes curves
only. Moreover it is a geniune, not Laurent, polynomial in the fram-
ing variable. This provides an estimate on the Bennequin-Tabachnikov
number of a Legendrian knot.

According to Arnold [2], theory of regular plane curves is a kind of non-
commutative knot theory. It is not so difficult to see the “commutative” part
there: this is the theory of plane curve invariants which change only in ho-
motopies involving direct self-tangencies, that is when the tangent branches
have coinciding orientations. Indeed, one can rise a generic plane curve to a
Legendrian knot in the solid torus ST*R? or, if the winding number of the
curve is zero, to R3. Such a knot will experience cross-changings only at the
instants of the above self-tangencies.
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It has been observed that the theory of regular plane curves without
direct self-tangencies possesses a far-going parallel with the theory of framed
knots. For example, the space of Vassiliev type invariants is the same in both
cases [10, 11]. Of course, this does not ensure that any framed knot can be
represented by a Legendrian lift of an immersed plane curve equipped with
the canonical Legendrian framing. If fact, this is not true in this generality:
the Bennequin’s inequality [5] tells that the twisting numbers of the canonical
framings of Legendrian representatives of a fixed unframed knot type are
bounded from one side. On the other hand, while the classical result in the
area claims that any unframed knot type in the standard contact solid torus
or 3-space has a Legendrian representative (see, e.g., [12]), the canonical
projection to the plane of such a representative may have cusps.

In the present paper we are trying to make the parallel between knots and
regular plane curves more explicit. We show that, in fact, the Legendrian
reperesentatives can be chosen to be the lifts of regular curves. We also
investigate restrictions on the Legendrian framings of such lifts. We show
that there is another estimate on these framings which is often stronger than
the Bennequin’s inequality (cf. [9]). Our estimate comes from the HOMFLY
polynomial of a knot in a solid torus. Other similar estimates provided by
Legendrian lowerings of the other polynomial knot invariants to regular plane
curves and plane curves with cusps will be discussed in [7].

1 Legendrian realisation

1.1 Standard contact spaces

We recall a few basic notions.

A contact element at a point of a plane is a line in the tangent plane.
Its coorientation is a choice of one of two half-planes into which it divides
the tangent plane. The manifold M of all cooriented contact elements of the
plane is the spherisation ST*R? of the cotangent bundle of the plane. It is
diffeomorphic to the solid torus R? x S': the coorienting normal vector is
defined by the angle ¢ mod 27 which it makes with a fixed direction on the
plane. Manifold M has the standard contact structure defined as zeros of the
1-form « = (cos ¢)dx + (sin p)dy, where (z,y) are coordinates on R? with
the positive direction of the z-axis being that fixed above (see Fig.1). We



equip M with the orientation dz A dy A dp = —a A da.

Figure 1: Coordinates in the solid torus ST*R2.

A generic oriented curve C in R? is an immersed circle whose only singu-
larities are transverse double points. Such a curve lifts to a knot Lo in the
solid torus M by setting ¢ to be the direction of the normal which gives a
positive frame on the plane when followed by the orientation of C'. The knot
L will be called a regular Legendrian knot. It is everywhere tangent to the
contact structure.

Along with the solid torus M we will also be considering its universal
cover M ~ R3, with the orientation induced from that of M. Its standard
contact form is given by the same formula as o with the only difference that
now the angular coordinate ¢ is not reduced mod 27. A generic closed plane
curve lifts to a Legendrian knot in M only if its winding number (that is
the number of rotations made by the coorienting vector during one complete
walk along the curve) is zero.

1.2 Knots in R3

Theorem 1.1 Any unframed oriented knot type in M ~ R3 has a reqular
Legendrian representative.

Proof. We have to construct a regular Legendrian knot in M of a given
topological type.

Let K C M be an oriented non-Legendrian knot which represents this
type and is generic with respect to the canonical projection p : M — R2. The
plane curve D = p(K) is generic. Equipping it with the information about
the over- and under-crossings we get the knot diagram D(K) of K. We are
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going to make minor corrections of D to obtain a curve whose Legendrian
lifting to M is topologically equivalent to K.

L.
X D(K)

Figure 2: A knot diagram D(K) of the right-handed trefoil and its adjustment
to get a generic plane curve C whose Legendrian lifting Lo to M ~ R3 is
the same trefoil.

Choose any non-double point a of D (see Fig.2). Start the lifting proce-
dure from it sending a to any point of M that corresponds to the direction
of the normal to D at a which agrees with our lifting orientation convention
(the ambiguity of the choice is a shift by a multiple of 27 along the fibre of
p). Follow D in the direction of its orientation lifting it to M until nearly
the first second-time visit to a double point. Here we have to bother about
the type of crossing in D(K): the phase ¢ € R which we have gained by
this moment may be forcing us to make the crossing of a wrong type. But
we can easily decrease or increase the phase inserting a certain number of
extra small curls (either all clockwise or all counter-clockwise) before our
second-time visit and pass the double point in the right way, as prescribed
by D(K).

We continue our lifting trip along D in the same fashion adjusting the
curve before second-time visits to double points if needed. Just before coming
back to the initial point @ we may also need to insert a few small curls to
make the winding number of the adjusted curve zero. We end up with a
regular plane curve C' whose Legendrian lifting Lo to M has the topological
type of K. O



1.3 Knots in the solid torus

Theorem 1.2 Any unframed oriented knot type in the solid torus M =
ST*R? has a regular Legendrian representative.

Proof. Take a generic representative K C M of an oriented topological
knot type which we have to realise by a regular Legendrian knot. Let p :
M — R? be the canonical projection and D = p(K). The curve D is a generic
plane curve. As in the proof of the previous theorem we are going to make
some changes in D so that its Legendrian lift to M would be topologically
equivalent to K.

We can assume that K is transversal to the section ¢ = 0 of M and none
of the points of the set V= K N {¢ = 0} projects to a double point of D.

Let us first make K “looking in the regular Legendrian way” around the
set V. By a homotopy that fixes V' and is trivial outside a small neighbour-
hood of V in M we can make the velocities of D at all the points of the set
p(V) vertically upward. Moreover, we can choose our homotopy so that the
p-images of the local (around V') branches of K along which ¢ is increasing
(respectively decreasing) are lying to the left (respectively to the right) of
the above vertical velocities (Fig.3).

¢>0 p<2m
y ¢<2m $>0
L

Figure 3: Projections of increasing and decreasing branches of a knot nor-
malised in a neighbourhood of the section ¢ = 0.

Now we cut M along the section ¢ = 0 and represent it as the direct
product R? x [0,27] € R2, x R, = M (Fig.4). The knot K becomes a

.,y
tangle T in R? x [0, 27]. Projection p : M — R? sends T onto the curve D.
The points of the boudary 0T of T are glued in pairs to the become points
of p(V).

The pair (D, p(V)), with the additional information about the over- and
under-crossings of the tangle T, is the tangle diagram D(T) of T. The way



to break D at the points of p(V') to restore the boundary of the tangle is
encoded in the local pictures of D shown in Fig.3.

Let us adjust D and lift the adjusted plane curve C' to a Legendrian curve
Lo € M with boundary, such that 5(8L¢) = p(V) and L closes after the
canonical projection to M to become a knot equivalent to K .

The adjustment is very similar to that of the previous subsection (see
Fig.4).

M

Figure 4: Breaking a knot in the solid torus M into a tangle T and a modi-
fication of the tangle diagram D(T) providing a regular curve C' whose Leg-
endrian lift to M is topologically equivalent to K.

We start the straightforward lifting of D to M at an arbitrary generic
point @ and go in the direction of the orientation of D. The value of the
coordinate ¢ € R changes continuously according to the change of the direc-
tion of the normal until we arrive at a point of p(V'). Having arrived to such
a point along an increasing branch (Fig.3), we subtract 27 from the current
phase and continue our further lifting from this reduced ¢. Having arrived
along a decreasing branch, we add 27 to the current value of .

As in the proof of Theorem 1.1, just before a second-time visit to a double
point of D we may have to insert some extra curls into D to guarantee the
type of the crossing prescribed by the tangle diagram D(7T'). Now we want to
be a bit more accurate than in the case of R®: we make the absolute value of
the difference between the phases of two visits to the same double point less
than 27 (unnecessary extra curls, like the one the reader can find in Fig.2,
are not allowed now).



On the final step we may have to insert some more curls into the adjusted
D to close the Legendrian curve in M above a.

We end up with a modification C of the curve D and its Legendrian
lift Lo C M with boundary. Reduction of ¢ modulo 27 projects Lo onto
the closed regular Legendrian curve Ly € M. We claim that Ly is a knot
topologically equivalent to K.

Indeed, the condition on the difference of the phases at a double point
guarantees that Lo is an embedded curve. Moreover, the same condition
implies that there exists a smooth function f, such that the curve Leis lying
in the slice f(z,y) < ¢ < f(z,y) + 27 of Ri’y x R, with only the boundary
OL¢ being on the boundary of the slice.

Homotop the above slice to R? x [0,27] along fibres of § putting the
function (1 —t)f instead of f into the inequalities. This homotopy sends L
to a tangle whose boundary and topological type coincide with those of 7.
Our homotopy lowers to a family of diffeomorphisms of the solid torus M
which therefore sends the knot L, to a knot equivalent to K. O

Remark 1.3 The link versions of Theorems 1.1 and 1.2 are also valid. In the
case of links in R? one has to be slightly patient: starting lifting a component
of a link diagram one has to make it clear to which particular ¢-level in M
this point is lifted. This equips a starting point on each component of the
curve collection C' with a real number.

Remark 1.4 Theorem 1.2 was proved simultaneously and independently by
A. Shumakovich. The method he used is not very much different from ours.

2 Framed knots

2.1 The Bennequin-Tabachnikov number

Legendrian knots in a 3-manifold with a cooriented contact structure are
canonically framed by a transversal shift in the direction of the coorientation
of the structure.

For a regular Legendrian knot in the standard R3? = M = R? x R this
framing is exactly the framing blackboard with respect to the projection to
the base R?. The writhe 8 of it is called the Bennequin number [5].



The analog of the Bennequin number for the standard solid torus M =
ST*R?* was defined by Tabachnikov [17]. He set it to be the intersection
number of a Legendrian knot shifted in the direction of the canonical fram-
ing and a 2-film which realises homology between the unshifted knot and
the multiple of the fibre over a sufficiently distant point of the plane. To
calculate the Tabachnikov number, one can consider the knot diagram of the
projection of the Legendrian knot from M ~ R, x S, to the plane with
polar coordinates e, ¢. In terms of this diagram, the Tabachnikov number is
the usual writhe of a knot with a generic (not necessary blackboard) framing

(Fig.5).

y

23 =sumof signs= 10

Figure 5: Example of calculation of the Bennequin-Tabachnikov number 3 of
a reqular Legendrian knot in ST*R2.

Fig.5 illustrates the following algorithm to evaluate # on a regular Leg-
endrian knot L in M.

Take a cartesian coordinate system on R? generic with respect to the
curve C.

There are finitely many lines x = const which intersects C' at two points
with the velocities of the same direction (dashed lines in Fig.5). Call such a
line positive (respectively negative) if the curvature x of C' at the upper of
these two points is greater (respectively less) than that at the lower one (the
derivative of the unit orienting vector with respect to the natural parameter
on C is —kv, where v is the unit normal whose direction ¢ is used for the
Legendrian lifting). Let ¢, and ¢_ be the numbers of all such positive and
negative lines respectively.



Now consider an inflection point a of C. Assume that the phase ¢(a)
is either in the 1st or in the 3rd quater. If the phase achieves its local
maximum (minimum) at a, call this inflection positive (negative). Use the
opposite terminology for the 2nd and 4th quaters. Let ¢, and i_ be the
numbers of positive and negative inflections respectively.

Let m be the number of extrema of function y on C.

Proposition 2.1  208(Lg) =24, —0_)+ (iy —i_) +m.

Proof. Indeed only “vertical” pairs of points with the velocities of the
same direction, inflection points and extrema of function y on C' contribute
to the writhe of the diagram of L,. The signs we have attached to these
local events are easily seen to be their contributions to the writhe. O

Remark 2.2 a) The numbers ¢, and ¢ can be split in an obvious way to
provide all the coefficients of Arnold’s and Aicardi’s polynomials [4, 1].
b) Other formulas to calculate 3 can be found in [17] and [8].

2.2 The two invariants of unframed knots

Not any framed knot type in M or M can be represented by a canonically
framed Legendrain knot. The Bennequin-Tabachnikov number (3 is bounded
from one side (according to the chosen orientation) on a set of all Legen-
drian knots of the same unframed topological type [5]. For our choice of
the orientation the number is bounded from below. Indeed, insertion of a
small fragment containing two curls with opposite directions of rotation into
a generic plane curve C' does not affect the unframed type of the Legendrian
knot Lo C M. On the other hand, this operation increases 3(L¢) by 2.

On a regular Legendrian knot § is odd [3, 4] (see also Proposition 3.5
below). To increase 3(L¢) by 1 within the same unframed knot type in M
or M one can insert into the curve C' a small non-self-intersecting fragment
with two cusps and zero winding number. In the representation of the solid
torus M used in Fig.5, such a fragment provides a small smooth curl with
the blackboard framing of writhe 1.

Thus we arrive at two appriori different characteristics of an unframed
knot in M or M. Those are the minimal Bennequin-Tabachnikov numbers of
Legendrian knots of the same unframed knot type K realised as Legendrian



liftings of either regular plane curves or plane curves with cusps (the latter
corresponds to arbitrary Legendrian knots). We denote them by i, req(K)
and (,,,(K) respectively. Of course, Binreq(K) = Bmin(K)-

Example 2.3 For the left-handed trefoil knot in M ~ R?, ., is known to
be —1 (see, e.g., [15, 9]). It is easy to achieve the minimum in a regular way

(Fig.6).
A
J/
A

Figure 6: A Legendrian left-handed trefoil knot in M ~ R3? with the minimal
Bennequin number —1.

Example 2.4 For the right-handed trefoil knot in M ~ R3, Bpin = 6 [15, 9].
We show the corresponding extreme realisation with cusps in Fig.7. The best
regular Legendrian realisation of the right-handed trefoil we know has 3 =9
(Fig.7).

ﬁ “@\&@\

- pe

Figure 7: A Legendrian right-handed trefoil knot in M ~ R3 with the minimal
Bennequin number 6 and the minimal known example of a reqular Legendrian
right-handed trefoil knot with 3 = 9.
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Thus the number (3, y¢,(K) does not seem to be completely defined by
only the parity argument correction of 3,,;,(K).

The main goal of the rest of the paper is to obtain an estimate on
Brminreg(K) in M and M. In fact, the lower bound we get there works for

/Bmm(K) too [7] .

3 HOMFLY polynomial

3.1 Legendrian lowering of the polynomial
to plane curves

In a generic 1-parameter family of regular plane curves there can appear
triple points and points of self-tangency. A self-tangency can be either direct
(the two velocity vectors have the same directions) or inverse (the directions
are opposite). Topology of a regular Legendrian knot Ly in M or M can
change only under direct self-tangency perestroikas of the underlying regular
curve C.

We call an invariant of collections of regular plane curves a J'-type in-
vartant if it does not change under homotopies which involve no direct self-
tangencies. Our terminology follows the name of the first invariant of this
type introduced by Arnold in [2]. Arnold’s invarinat J* of a one-component
regular plane curve is basicly the Bennequin-Tabachnikov number of its lift-
ing to the solid torus: in [3, 4] Arnold shows that J*(C) =1 — (L¢).

JT-type invariants can be induced via Legendrian lifting from invariants
of knots in M or M. In [6] this approach was used to define polynomial
invariants of plane fronts. Now we do the same for regular plane curves.

In [18] Turaev defined the HOMFLY polynomial of an unframed oriented
link in a solid torus. This is an element of Z[z*!, y*! &1, &4, ...]. Similar
polynomial of a framed oriented link belongs to the same ring and is uniquely
defined by the relations and initial data of Fig.8. The links L' and L" there
are mutually unlinked.

For example, on an unknot with the trivial framing P = (z — 27')/y.

Definition 3.1 The HOMFLY polynomial of a plane curve collection C is
that of the Legendrian link L¢ in the solid torus ST*R?*: P(C) = P(Lc).
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Figure 8: Definition of the framed version of the HOMFLY polynomial for
oriented links with the blackboard framing in a solid torus.

Thus the Legendrian lifting lowers the polynomial to generic collections
of plane curves. Translation of the definition of Fig.8 to that case is given
in Fig.9. The collections C' and C” of the last line are lying in disjoint
half-planes. According to the second rule of Fig.8, the relation between the
Legendrian generators z; we are using now and the blackboard generators §;
is z; = zlPl¢;: it is easily seen that L, = E; as unframed knots in the solid
torus, and the canonical framing of L, differs from the blackboard one of =,
by 2|i| positive half-twists similar to those on the vertical line through the
centre of the annulus in Fig.5.

POC)=P I )=yPX)
Pldp =Pl )P} PLT =1 2=y
PlCLC)=P(C)-P(C")  P(Z)=7  Z,=(3)

Figure 9: Legendrian lowering of the definition of Fig.8 to generic collections
of reqular oriented plane curves.
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Theorem 3.2 There exists a unique JT—type invariant P(C) €
Z[z%, y*, 241, 249, - - -] of a generic collection C of oriented plane curves sat-
1sfying the relations and initial data of Fig.9.

Thus the HOMFLY polynomial of a regular plane curve turns out to be
a genuine polynomial in z, not a Laurent one. Moreover, only even powers
of z occur in it.

3.2 Basic curves

Example 3.3 Consider classes of framed knots represented by the knots =;
of Fig.8 with the blackboard framing. Since their polynomials are z~°z;,
Theorem 3.2 implies that they do not have any canonically framed regular
Legendrian representatives.

Moreover, according to Theorem 3.2, the Bennequin-Tabachnikov number
of the curve L, is the minimum of all such numbers on the set of all regular
Legendrian representatives of the unframed knot type of =;,. This minimal
number is, thus, 2|i| — 1. In fact, it is possible to show that £, ,cs(Z;) =

Example 3.4 Calculations of Fiig.10 show that the polynomial of the figure-
eight curve is (z? — 1)/y. Indeed, the curve lifts to the Legendrian unknot
in M with g =1, so its HOMFLY polynomial should be that of an unknot
with the trivial framing times z.

g = P() = PALR) +yP( (1)
=P(R0) + P0G = 24123

Figure 10: Calculations of the HOMFLY polynomial of the figure-eight curve.

In what follows, we will denote the figure-eight curve by Zj.
The oddness of the 3(L,) implies

13



Proposition 3.5 The Bennequin-Tabachnikov number of a reqular Legen-
drian knot in the solid torus M = ST*R? is odd.

Proof. By the Whitney-Graustein theorem [19], any regular plane curve
may be deformed by a regular homotopy to one of the curves Z;, 1 € Z. In
a generic regular homotopy, the Bennequin-Tabachnikov number of the cor-
responding regular Legendrian knot changes only under direct self-tangency
perestroikas. Each time the change is £2.

Example 3.6 In some cases, it is convenient to use a different system of
generators, w;, instead of z;. The w; is P(W};), where W; is the circle equipped
with outer |i| + 1 a-shaped curls and the orientation providing it with the
winding number i (see Fig.11). For example, Wy = Z; and wy; = 24,
since the curves W, can be homotoped without direct self-tangencies to the
embedded circles.

The way the two systems of generators are related is shown in Fig.12.
There and below we write the relations on polynomials as relations on the
corresponding curves.

Q_D QA_D
W=Z= (<0 W= >0 V\4=O W, =

Figure 11: The curves W;.

Definition 3.7 A simple curl of a curve collection is an a-shaped loop that
contains no fragments of the collection in its interior.

Example 3.8 A figure-eight curve that has no intersection with other com-
ponents of a curve collection passes through such a collection freely, with no
effect on the polynomial. Indeed, the homotopy of Fig.13 does not involve
any direct self-tangencies.

A circle can also pass through a line, but at the expense of a certain
change in P (see Fig.14).

In general, a basic curve Z; makes a similar pass generating many extra
summands in P (see Figs. 15 and 16). The crucial point for our further

14
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Figure 12: Recursive relation between the generators z; and w;.
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Figure 13: The figure-eight curve as a neutrino.

O+y©<

Figure 14: A circle passes through a line.

o -
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considerations is that all these summands can finally be expressed as the
polynomials of curve collections that have nothing on that side of the line
from which Z; has been removed and have only basic curves Z; on the other
side. The involved part of the line receives only a number of additional simple
curls.

- O B

SEEARAES

Figure 15: Remowving a basic curve from one side of a line generates a “cloud”
of basic curves on the other side.

4 Proof of Theorem 3.2

The existence of an invariant is guaranteed by [18]. We need only to show
that the system of the rules of Fig.9 is sufficient to define the polynomial of

16
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Figure 16: Removing a basic curve in the case of the other orientation of a
line.

any curve collection uniquely. The restriction on the powers of x that are
allowed to appear in the polynomials will immediately follow from the way
in which the proof of the uniqueness will be carried out.

To measure a complexity of a curve collection we introduce

Definition 4.1 The double point of a simple curl is called a simple double
point. An essential double point is that which is not simple.

We prove Theorem 3.2 by induction on the number of essential double
points. Some ideas of [13] will be useful for us.
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4.1 The base of induction

If all the double points of a curve collection are simple, the collection is
basicly a nest of curves Z; and W, 1,57 € Z. More precisely, calculation of
the polynomial of the collection reduces to the calculation for such a nest by
omitting a certain number of pairs of simple curls with opposite orientations
(the move of the second line of Fig.9).

Now Example 3.6 makes a further reduction to the calculations for nests
with only the curves Z; being the innermost ones. After this, Example 3.8
reduces the depth of a nest. Iterating this procedure, we finally end up with
collections of basic curves which bound disjoint domains. The polynomial of
the initial nest is easily seen to contain only even non-negative powers of x.

Thus, we have proved Theorem 3.2 in absense of essential double points.

The rest of the proof shows that calculation of the polynomial of any
curve collection reduces, via the rules of Fig.9, to polynomials of collections
with smaller numbers of essential double points. The aim is either to make
one of such points simple or to create a situation in which a self-tangency
perestroika would be able to kill two double points. In the next subsection we
are looking for some elementary domains within which such transformations
could occur.

4.2 Search for a minimal 0- or 1-gon

Definition 4.2 An embedded circular component of a curve collection is
called simple if its interior does not contain any other fragments of the col-
lection.

Consider an arbitrary generic curve collection C'. Smooth out all its
simple curls. Omit all the simple circles of the result. Let C’ be the final
result of the two-stage operation (see Fig.17).

Definition 4.3 The collection C' is called the essential part of the collection
C.

Definition 4.4 A closed disc D' is called an n-gon of the collection C” if its

boundary 0D’ is contained in C’ and has exactly n vertices, that is double
points of C’ where 0D’ fails to be differentiable.

18



Figure 17: A curve collection C and its essential part C'.

Definition 4.5 A 0- or 1-gon D' of C” is called minimal if there are neither
0- nor 1-gons of C' inside D'.

Intersection of the interior of D' with C’ may be non-empty.

Let us find such a minimal 0- or 1-gon.

Start at any generic point of C’ and walk along C’ until the first second-
time visit to some point. Take the closed path we have traced. It bounds a
closed 0- or 1-gon D'. Let us try to reduce it.

Start a similar walk as before from a point of C'ND’, but with a restriction
not to leave D'. If, during this trip, we are able to make a closed loop different
from 9D’ it will provide us with a 0- or 1-gon contained in D'. Take it for a
new, reduced disc.

If we are not able to make a closed loop, do similar try starting at another
topologically different point of C' N D'.

In a finite number of steps we will not be able to make any further re-
duction.

It is easy to see that if we end up with a minimal 1-gon it must be
a-shaped, not heart-shaped.

4.3 Reduction of the number of essential double points
for minimal 0- and 1-gons of different types

We denote by D the polygon of the initial collection C from which a minimal
0- or 1-gon D' of C' is obtained by smoothing some vertices and simple curls
out. Our stragtegy to simplify C inside D depends on the type of D'.

19



4.3.1 The boundary of a minimal 0-gon is a simple circle

This means that the disc D contains a certain number of unnested curves all
of whose double points are simple. It is sufficient to assume these curves to
be the Z,. Following Example 3.8 we remove them out of D. This does not
provide us with collections that would have less essential double points than
C. But the essential parts of these new collections differ from C’ exactly by
the absense of 9D'.

4.3.2 The boundary of a minimal 1-gon is a simple curl

Modulo Example 3.8 and omitting pairs of successive curls of opposite ori-
entations, we may assume that the disc D is bounded by one of the loops
of Fig.18. The same figure shows how to make the essential double point of
such a loop simple so that the additional collections appearing in the skein
relation would have less essential double points than C'.

@ @+y@ @+ye€@
fvo = Afve tygvo = oo ty—~dv o

Figure 18: Making a simple double point of the essential part of a curve
stmple on the curve itself.

4.3.3 The boundary of a minimal 1-gon is a non-simple curl

This is the most complicated case.

As earlier, we may assume that all the connected components of C' con-
tained in D are basic curves Z; and remove them out of D following Example
3.8.

We can also assume that there are no simple curls inside D as well as
on its boundary. Indeed, due to the relation of Fig.19, a simple curl move
through an essential double point changes the polynomial by the summand
corresponding to a collection having less essential double points.
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Figure 19: A simple curl passes through an essential double point.

By the way, altogether our assumptions mean that the reduction of C' to
its essential part C' makes no changes inside D = D'.

Now we consider several subcases which cover all possible situations. No-
tice that neither branch of C'N D has a self-intersection inside D.

a) There are no double points of C' in the interior of D.

Then D contains a 2-gon adjacent to the boundary 0D with no other
branches of C inside it. A self-tangency move kills the 2-gon either with
no effect on the polynomial (for the inverse self-tangency) or representing
H(C), by the main skein relation, as the combination of the polynomials of
collections with the number of essential double points reduced.

b) Each pair of branches of C inside D has at most one point of inter-
section.

We also assume that there is no a 2-gon adjacent to 0D similar to that
killed in a).

Lemma 4.6 The disc D contains a 3-gon A with ezactly one of its sides on
0D and with no fragments of C in the interior of A.

Pushing the inner vertex of A through dD by the triple-point move we
reduce the number of double points of (' inside D. Iteration of the process
finally reduces the situation to that of a).

Proof of the Lemma. Let B; be a branch of C'N D that intersects some
other branches inside D. We may assume that the double point of 0D and
all the branches inside D which do not intersect B; are on the same side of
B,. This is a sort of a minimality condition on B;.

Let P € B; be the double point closest to an endpoint N of B; (see
Fig.20). Let By be the other branch passing through P. One of its endpoints,
Q, is a vertex of a 3-gon N P(Q based on dD. This 3-gon may be non-minimal:
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there can be some other double points of C' on the side PQ (due to the
minimality of B; this is the only possible obstruction to the minimality of
NPQ). Choose the one, R, closest to (). Consider the branch B; through R.
It cuts the corner piece QRS of NP(). This is guaranteed by the fact that
neither pair of the branches has more than 1 point of intersection.

Now, if QRS is still not minimal, we iterate the descending procedure.

Figure 20: Search for a minimal 3-gon.

¢) There are two branches of C N D having at least two points of inter-
section inside D.

We again assume that there is no empty 2-gon adjacent to 0D.

Let B! and B? be branches with more than 1 common point. Then there
exists a 2-gon 7' C D whose boundary is lying on these branches and whose
vertices are two successive intersections of B! and B?. We may assume the
following minimality properties of 7"

1) endpoints of any branch of C N T are on the different sides of T’;

2) any pair of branches of C'N'T has at most one common point.

If there are any double points of C' inside T, we remove them out using
the triple-point moves as in b). After this we remove all the branches of C
out from 7" by the triple-point moves across the vertices of 7. Now the 2-gon
T is empty and we apply a self-tangency move to kill it.

4.3.4 The boundary of a minimal 0-gon is a non-simple circle

Gathering all the simple curls of the boundary of D in a small neighbourhood
of some point P € 0D, we reduce this case to the case of subsection 4.3.3
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with the point P playing the role of the double point of the curl.
This finishes the proof of Theorem 3.2.

5 Other versions of the HOMFLY polynomial
for regular plane curves

5.1 Regular Legendrian links in the standard 3-space

There exists an obvious analog of Theorem 3.2 that corresponds to links in
M ~ R3.

Definition 5.1 A J'-type invariant of generic one-component plane curves
of winding number zero is called a Jg -type invariant if it changes only under
direct self-tangency perestroikas in which the winding numbers of the two
subcurves into which the self-tangency point breaks the curve are zero.

This corresponds to a change of the topological type of the lifted Legen-
drian knot in M. -

A multi-component oriented regular Legendrian link in M is defined by a
collection of oriented plane curves in which each of the components has the
winding number zero. According to Remark 1.3, on each of the components
there should be a point marked by an integer number whose reduction modulo
2w is the angle ¢ of the corresponding normal. The markings define phases
@ € R at all the points of the collection.

Definition 5.2 A J*'-type invariant of the above marked oriented curve col-
lections is called a Jy -type invariant if it changes only under self-tangencies
in which the difference of the phases is zero.

Similar to Theorem 3.2 we have

Theorem 5.3 There ezists a unique J -type invariant Py(Cy) € Z[x?, y*!]
of generic collections Cy of marked oriented plane curves of winding numbers
zero satisfying the relations and the initial data of Fig.21.
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Figure 21: Legendrian lowering of the framed version of the HOMFLY poly-
nomaial of links in M ~R3toa Ji -type invariant of generic collections of
plane curves of winding numbers zero. The phases of the two interacting
branches in the main skein relation coincide.

5.2 The polynomials of unframed links and
the Bennequin-Tabachnikov number estimates

Let 3 be the Bennequin or Tabachnikov number of an oriented regular Leg-
endrian link ECO € M or Lo € M. The traditional, unframed versions of
the HOMFLY polynomials [14, 18] of these links, in terms of the underlying
plane curves, are

PO,u(CO) = .Z'iﬂP()(Co) < Z[.’L‘il, yil]

and
P,(C) =2 PP(C) € Z[z™,y*, 241, 209, .. ]

Those are topological invariants of the links.

The J*-type invariant P, is calculated by the rules of Fig.22. Omitting
the initial data of this figure related to the curves Z;, one gets the rules
to calculate the Jy -type invariant Py,. As earlier, the systems of the rules
define the plane curve polynomials inambiguously.

Theorems 3.2 and 5.3 immediately imply

Theorem 5.4 Let L be an oriented unframed link in the standard contact
manifold M ~ R3 or M = ST*R2. Let z* be the minimal power of the
framing variable x in the corresponding unframed version of the HOMFLY
polynomial of L. Then

5’min,'reg ('C) Z —k.
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Figure 22: Legendrian lowering of the unframed version of the HOMFLY
polynomaal of links in a solid torus to generic plane curve collections.

Remark 5.5 For R3 this is guaranteed by the theorem of Fuchs and Tabach-
nikov [9] which derives the same estimate for f3,,;,(£) from comparison of the
results of [5] and [16].

5.3 HOMFLY polynomials of curves with few double
points

In Fig.23 we give the results of calculations of the polynomial P for Arnold’s
list [2, 3] of all the plane curves with at most 3 double points. We set
there zy = (z° — 1)/y. The orientations of the curves with non-zero winding
numbers are chosen so that these numbers are positive. The change of the
orientation is covered by the following

Proposition 5.6 Let C' be a generic collection of oriented regular plane
curves whose polynomial P(C) is p(z,y, 21,21, 22,2_3,...). Let C~ (respec-
tively C™ ) be the collection obtained from C by the change of the orientations
of all of its components (respectively by the reflection of the plane). Then

P(Ci) = P(CT) =p(x,y,z_1,zl,2_2,z2,...) .

Proof. One can calculate P(C~) and P(C") following the chain of calcu-
lations of P(C'). All the curves collections appearing in this chain should be
respectively either eqipped with the opposite orientations or reflected. The
chain for P(C') ends up with disjoint collections of the curves Z;, i € Z. Both
the considered operations send a curve Z; to Z_;.
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Corollary 5.7 P((C™)") = P(C).

An illustration to this is seen in the 5th line of Fig.23.

There is one more rather obvious observation which follows from the
coincidence of the total winding numbers of all three curve collections par-
ticipating in the main skein relation for P.

Proposition 5.8 The sum of indices of all the z-variables appearing in a
particular monomial of P(C) is equal to the winding number of the curve
collection C.

The table of Fig.23 contains the Bennequin-Tabachnikov numbers of the
corresponding regular knots in the solid torus [2, 3, 4]. They do not depend
on the orientations of the curves and the plane.

Most of the polynomials of Fig.23 which have no obvious reason to be
divisible by z? (those are polynomials of the curves with no pairs of simple
curls of opposite orientations) are not divisible by it. Non-divisibility of
the P(C) by z? means that the Bennequin-Tabachnikov number of the knot
Lo € ST*R? is the minimal possible among all the regular knots of the same
topological type: ﬂ(LC) = ﬂmin,'reg(LC)'

The inverse does not seem to be true. For example, for the last curve
in the 4th line, P = xz(% + yz_,2;), but there seems to exist no regular
plane curve whose polynomial is that in the brackets of this formula. Another
similar example is the first curve of the 5th line. Arnold’s tables in [2] contain
some other curves of the same nature. All of them are certain modifications
of those two of Fig.23. This indicates that the estimate of Theorem 5.4 may
not be exact in all the cases. Perhaps, there are some special bounds for
powers of z in coefficients of various products of z-variables in the HOMFLY
polynomials of regular plane curves.

The polynomials Py(C) of the curves C of Fig.23 of winding number zero
are trivial: each of them is obtained from the P(C) by the formal setting
y = 0 everywhere except for the relation 2y = (z? — 1)/y. Thus, for a
table curve, Py(C) = 1%z, where o + 1 is the Bennequin number of the
corresponding Legendrian knot in M. Of course, such a reduction is not
correct in general.
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Figure 23: The HOMFLY polynomials and Bennequin-Tabachnikov numbers
of plane curves with at most 8 double points.
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