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Abstract

We show that the framed versions of the Kauffman and HOMFLY
polynomials of a Legendrian link in the standard contact 3-space and
solid torus are genuine polynomials in the framing variable. This proves
a series of conjectures of [5] and provides estimates on the Bennequin-
Tabachnikov numbers of such links.

In a series of recent papers [1, 2, 3], Arnold revived attraction of the
study of plane curve invariants. The topic whose name sounds extremely
elementary is highly complicated. For example, it contains the entire knot
theory as its proper subset.

Many definitions and problems of knot theory can be reformulated in
terms of plane curves. The language of generic plane fronts, that is cooriented
curves with transverse double points and cusps, provides a convenient tool
to study invariants of Legendrian links in the standard contact solid torus
ST*R? and 3-space. In terms of fronts, one can define restrictions of classical
framed link invariants to the subset of all Legendrian links. Considering,
say, polynomial invariants in this context it is rather easy to write out the
corresponding skein relations for fronts. The obtained relations often clearly
indicate that there are rather obvious bounds on the values of some basic knot
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invariants, like the writhe, restricted to Legendrian curves. Unfortunately,
it is not so easy to show that the obtained system of axioms defines the
polynomials inambiguously: the ordinary cross-changings in link diagrams
and other moves are not Legendrian.

The programme of evaluation of the polynomial link invariants on Legen-
drian knots and links was formulated in a series of conjectures in [5]. Partly,
for the HOMFLY polynomials of Legendrian links whose fronts are regular
curves, it has been carried out in [6].

In the present paper we give up the condition of regularity of a front
and work with arbitrary Legendrian knots and links in the standard contact
solid torus and R3. We prove a series of conjectures of [5] on certain non-
Laurent polynomiality of the framed versions of the Kauffman and HOMFLY
polynomials of canonically framed Legendrain links. This implies a series of
estimates on the Bennequin-Tabachnikov numbers of Legendrian knots. The
one coming from the HOMFLY polynomial for R® was recently obtained by
Fuchs and Tabachnikov [8] by comparison of the results of [4] and [14, 7].

The Bennequin-Tabachnikov number bounds we obtain for the solid torus
are stronger than that induced by an inclusion of the solid torus into the
standard contact 3-sphere. For example, for a knot topologically equivalent
to the ascending one running around the solid torus ¢ > 0 times, our estimates
immediately give the exact bound of 2 — 1.

The paper is organised as follows. In Section 1 we recall the definitions
we are using. Section 2 contains the statements of our main results on the
Kauffman polynomials and the corresponding bounds for the Bennequin-
Tabachnikov numbers. In Sections 3 and 4 we prove that our system of
axioms for the Legendrian Kauffman polynomial is complete. Section 5 treats
another realisation of the standard contact 3-space as the 1-jet bundle of
functions on a line. Section 6 is devoted to the HOMFLY polynomial and
corresponding estimates. In Section 7 we conjecture on existence of certain
modifications of the classical link polynomials in Legendrian case.

Very often we treat the solid torus ST*R? and its universal covering
3-space in parallel: the solid torus considerations are much more natural
when one studies plane fronts, while the R? case is more reasonable from the
point of view of contact geometry. However, the main statement is proved
only for the Kauffman polynomial of links in the solid torus: all the other
cases are absolutely analogous. The proof uses certain ideas of Hoste’s proof
[10] of well-definedness of the HOMFLY polynomial. The exposition is self-
contained (modulo the existence of the classical knot polynomial invariants).



1 Legendrian links and their fronts

1.1 Standard contact spaces

We recall a few basic notions.

A contact element at a point of a plane is a line in the tangent plane.
Its coorientation is a choice of one of two half-planes into which it divides
the tangent plane. The manifold M of all cooriented contact elements of the
plane is the spherisation ST*R? of the cotangent bundle of the plane. It is
diffeomorphic to the solid torus R? x S': the coorienting normal vector of
a contact element is defined by the angle ¢ mod 27 which it makes with a
fixed direction on the plane. Manifold M has the standard contact structure
defined as zeros of the 1-form a = (cos¢)dz + (sin¢)dy, where (z,y) are
coordinates on R? with the positive direction of the z-axis being that fixed
above.

We equip M with the orientation dx A dy A dp = —a A da. It is opposite
to the orientation usually taken in the contact geometry.

Along with the solid torus M we will also be considering its universal
cover M ~ R3, with the orientation induced from that of M. Its standard
contact form is given by the same formula as o with the only difference that
now the angular coordinate ¢ is not reduced mod 2.

1.2 Fronts

Definition 1.1 A Legendrian curve in a contact 3-manifold is a mapping of
a disjoint union of a finite number of circles for which the pull-back of the
contact form vanishes. A Legendrian link is an embedded Legendrian curve.

__ The image of the canonical projection of a Legendrian link L from M or
M to the plane is called the front of L. An arbitrary small perturbation in the
class of Legendrian links is able to bring a link in general position with respect
to the canonical projection. The front of such a generic Legendrian link has
only transverse double points and semi-cubical cusps as its singularities.

At any point of a front there is a natural cooriention by the coorienting
normal of the contact element a € L whose projection this point is.

A cooriented multi-component plane curve is a front of a unique Legen-
drian curve in M. So such a curve will be called a front, with no reference
to the corresponding Legendrian curve.

A necessary and sufficient condition for an above plane curve to be the
front of a Legendrian curve in M is vanishing of the winding numbers of all
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of its components. The winding number is the number of full rotations made
by the coorienting normal as we trace the component once. The Legendrian
link in M is well-defined by its front only if there is chosen a point on each
component of the front and there is an indication to which ¢-level of Z-
many possible ones this point should be rised. We call such fronts marked
winding-free.

A generic homotopy in the class of Legendrian immersions produces gene-
ric perestroikas of the front (see Fig.l; the non-immersive case is briefly
discussed in Section 7). Only dangerous self-tangencies of fronts, when the
coorientations of the two tangent branches coincide, correspond to topological
changes in the links. A Legendrian link in the solid torus ST*R? gets the
double point and experiences the change-crossing at each of these instants

(Fig.2).

o A

triple point cusp crossing
cusp birth-death dangerous self-tangency
safe self-tangency safe self-tangency

Figure 1: Perestroikas of generic fronts.

Definition 1.2 An invariant of fronts is called a J*-type invariant if it does
not change under homotopies which involve no dangerous self-tangencies.

Our terminology follows the name of the first invariant of this type intro-
duced by Arnold in [1].

From the above discussion, we see that the theory of invariants of Legen-
drian links in ST*R? is isomorphic to that of J*-type invariants of fronts. So
in what follows we will make no distinction between an invariant of Legen-
drian links in the standard contact solid torus and its lowering to the J*-type
invariant of fronts.
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Figure 2: A dangerous self-tangency of a front rises to the change-
crossing of the Legendrian link.

Example 1.3 The following local homotopies with no dangerous self-tan-
gencies will be very useful for our further considerations:
safe

a) _Q Bel T
self-tangency

b) OO‘a—)’<><<:<>

cusp crossing i cusp crossing
Q cusp births ><><( safe m safe § cusp deaths @
self-tangency self-tangency

Definition 1.4 An invariant of marked winding-free fronts is called a J; -
type invariant if it does not change under homotopies which involve no direct

self-tangencies with coinciding phases ¢ € R of the branches at the points
of tangency.

cusp birth

c) <> <>

The theory of such invariants coincides with the theory of invariants of
Legendrian knots in M ~ R?3.



1.3 The Bennequin-Tabachnikov number

Any unframed link type in M and M has a Legendrian representative (see,
e.g. [9]). This is not the case for the framed setting.

A Legendrian link in a 3-manifold with a cooriented contact structure
has a canonical framing by the coorienting vectors of the contact planes. In
the cases of ST*R? and its universal cover, this is isomorphic to the framing
by the Legendrian lift of the front of the initial link slightly shifted in the
direction of its coorientation (Fig.3).
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Figure 3: Legendrian lifting of a plane front to a canonically framed
knot in the solid torus M = ST*R2.

Definition 1.5 The writhe (3 of the canonical framing of a Legendrian knot
in M ~ R3 is called the Bennequin number of the knot.

The Bennequin number can be calculated as follows. The front, with its
double points correctly resolved, is in fact a knot diagram of its Legendrian
knot. This assigns “4” or “—” to each of the double points, as if we were
calculating the writhe of the blackboard framing. Now [ is the sum of all
these signs plus half the number of the cusps.

One of the main results of [4] tells that the Bennequin number is bounded
from one side on the set of all Legendrian knots representing the same un-
framed knot type in R3. For our choice of orientation the numbers are
bounded from below.

Example 1.6 a) For an unknot 5 > 1 [4].

b) The original estimate of [4] provides the same bounds for a knot and
its mirror image. For example, for both the right- and left-handed trefoils it
gives 3 > —1. This bound is exact for the left-handed trefoil. In [12, 8] it
was shown that for the right-handed trefoil the exact lower bound is 6.

6



An analog of the Bennequin number for knots in ST*R? was introduced
by Tabachnikov in [16]. He set it to be the index of intersection of the knot
shifted in the direction of the framing and a 2-film realising homology between
the initial knot and a multiple of the fibre of the projection ST*R? — R? over
a sufficiently distant point. According to one of equivalent definitions, this
is also the writhe of the canonically framed Legendrian knot with respect to
the projection (z,y, ) — (€%, ) to the annulus R?\ 0 with polar coordinates
(p, ) (see Fig.3 in which g = 4).

The mentioned boundedness of the Bennequin numbers implies similar
boundedness of the Tabachnikov numbers.

Remark 1.7 By the Bennequin and Tabachnikov numbers of oriented Leg-
endrian links we will mean the corresponding writhes of the canonically
framed links.

2 Kauffman polynomials of fronts

2.1 The polynomial of Legendrian links
in the standard solid torus

In [19] Turaev introduced the Kauffman polynomial of a framed non-oriented
link in a solid torus. This is an element of Z[:vil,yil,gl,fz, ...| uniquely
defined by the relations and initial data of Fig.4. The links L; and L, there
are mutually unlinked. All the links are equipped with the framing which
is blackboard with respect to a fixed projection of the solid torus to the
annulus. The knot =5 is a pattern for the whole series =,.

k() =k (X) =o(x() ) -5 (X))
k(S )=ar( /) K(9))=k( /)

K(Li U Ly) = K(Ly) - K(Ls)

K(Z;) =¢&;, wherei>1 25 =

Figure 4: Definition of the framed version of the Kauffman polyno-
mial for links with the blackboard framing in a solid torus.
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Example 2.1 On an unknot with the trivial framing K = “_;”_1 + 1.

The Legendrian lifting lowers the polynomial to generic plane fronts.
Translation of the rules of Fig.4 to fronts gives rise to the rules of Fig.5.
The fronts F; and F; of the third line are lying in disjoint half-planes. The
relation between the Legendrian generators z; and the blackboard generators
& is easily seen to be z; = z'¢; (cf.[6]).

K()()-x(3) =o(x(X) - (X))
k() =& (5X) ==x( /)

K(F UF,) = K(F)-K(F)

K(Z;) =z, wherei>1and Z;= @j_%

Figure 5: Definition of the Kauffman polynomial for fronts.

Theorem 2.2 There ezists a unique J'-type invariant K(F) €
Zz,y*', 21, 29,...] of a generic front F satisfying the relations and initial
data of Fig.5.

Note that there are no negative powers of the framing variable z now.

The existence of a polynomial invariant satisfying the rules of Fig.5 is
guaranteed by [19]. Basicly we only need to show that our system of axioms
defines the polynomial inambiguously. This will be done in Section 4. The
non-Laurent polynomiality in x will follow from the reduction procedure we
will be using in the proof: the zigzag relations will be applied only to reduce
the number of cusps.

Example 2.3 The lips front, with two cusps and no double points, is the
simplest possible. To calculate its Kauffman polynomial one can proceed as
follows (making use of Example 1.3):



PE(—) = K(+M\=)=K(-My— ) =K(2 )
= K(-egb ) +y (K<~ ) - K(<s —)
= K(‘6\‘—)+9K(\Y/—)_9K(*—@/—)

= K(—)+yK(

) —yK(AH~—")
= K(— )+yK(<>) K(—)—yzK(—)

So, K(<>) = % + z. Indeed, the lips front lifts to the Legendrian
unknot in M with 8 = 1, so its Kauffman polynomial should be that of an
unknot with the trivial framing times x.

In what follows, we will denote the lips front by Z,.

2.2 The polynomial of Legendrain links
in the standard R?

The Kauffman polynomial K, € Z[z**, y*!] of framed links in R? is defined
by the rules of Fig.4 with all the information about the curves =; omitted
[13]. Its Legendrian version in terms of fronts is respectively given by Fig.5
without mentioning the fronts Z;. Only generic marked winding-free fronts
are now considered. The phases of the two interacting branches in the main
skein relation must coincide. We call this modification of Fig.5 its J; -version.

Theorem 2.4 There exists a unique Ji -type invariant Ky(Fy) € Z[z,y*!]
of a generic marked winding-free plane front Fy satisfying the relations and
initial data of the Jy -version of Fig.5.

Since the proof of this Theorem simply repeats that of Theorem 2.2, we
do not give it in the paper.

2.3 The Bennequin-Tabachnikov number estimates

Due to Theorems 2.2 and 2.4, the Kauffman polynomial of a (marked win-
ding-free) plane front is a genuine polynomial in z, not a Laurent one. This
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implies the following restriction on the values of the Bennequin-Tabachnikov
numbers of oriented Legendrian links in the solid torus and 3-space.

Let wr(L) be the writhe of an oriented link L either in the solid torus or
R?3. Define the unframed versions of the Kauffman polynomial as

K, (L)y=2"""WK(L) and Kg,(L)=2"""BKyL).

Following [19, 13|, these polynomials depend only on unframed topological
type of L. Thus we can speak about the polynomials K,, and K, of unframed
oriented links. In the case of knots the orientation does not matter.

Theorem 2.5 Let L be an unframed oriented link in the standard contact
manifold M ~ R3 or M = ST*R?. Let z* be the minimal power of the
framing variable x in the corresponding unframed version of the Kauffman
polynomial of L. Then the Bennequin-Tabachnikov number of any Legendrian
representative of L is at least —k.

Example 2.6 For an unknot this coincides with the classical bound G > 1
[4].

Example 2.7 The Theorem implies that the minimal Bennequin-Tabachni-
kov number of a Legendrian representative of the basic knot =; in the solid
torus (Fig.4) is that of the Legendrian lifting of the front Z;, which is 2 — 1.
Note that inclusion of the standard contact solid torus into the standard
contact 3-sphere gives only 3 > 1 for any 4: all the =; get unknotted in S3.

Example 2.8 For the left- and right-handed (2, ¢)-torus links in M ~ R3,
Theorem 2.5 gives > 2 — g and 3 > 2q respectively, ¢ > 2. The exactness
of these estimates in all these cases follows from the examples of Figs. 6 and
7. The double points of the (marked) winding-free fronts in these Figures
are resolved respecting the phases ¢ of the branches.

®p =0, Q_
(i——)

Figure 6: Legendrian representative of the left-handed (2, q)-torus
link in R3 with the minimal possible Bennequin number 2 — q.
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Figure 7: Legendrian representatives of the right-handed (2,4)-torus
link and (2,5)-torus knot in R with the minimal possible Bennequin
numbers 8 and 10. Minimal representatives, with § = 2q, of all the
other right-handed (2, q)-torus links are obtained by either omitting the
distinguished fragments (for ¢ =2 and q = 3) or by their consecutive
repetition (for ¢ > 6).

Remark 2.9 A similar to ours estimate of the Bennequin number for knots
in R3 by the lowest degree of the framing variable in the mod 2 Kauffman
polynomial was derived in [8] from the results of [17]. It is not known if the
lowerest degrees in the integer and mod 2 Kauffman polynomials for R? may
differ. In all the examples we know they coincide. The work [18] implies that
for alternating knots they are equal. See also [15].

3 Supplementary moves

In this section we collect a series of facts which will be used as blocks in the
proof of Theorem 2.2. In all the formulas of this section the relations on the
fronts are in fact the relations on their Kauffman polynomials K.

3.1 Pulling a cusp through a line

A cusp can be pulled through a line either with no affect on the polynomial
or modulo the polynomials of fronts with one double point less:

(==Y
e

|
Tt

11



3.2 Another series of basic curves

Consider the curves

21 + 2 cusps

Let w; be the Kauffman polynomial of W;.

Lemma 3.1 The w;, © > 1, may be taken as independent variables in the
definition of the Kauffman polynomial of fronts instead of the z;, 1 > 1.

Proof. Example 1.3.d shows that w, = K(W;) = K(Z,) = z;.
For the other curves, a rather long chain of applications of the elementary
rules and Example 1.3.a provides a recursive relation between the z; and w;:
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3.3 Pulling basic curves through a line

Example 1.3.c shows that the lips front Z, passes through a line with no
change in the Kauffman polynomial.
The similar move for the circle Z; is not trivial:

of - & - fo s b - fo -}

Due to Example 1.3.d, the coorientation of the circle does not matter.

The polynomial of a front containing a generic curve Z; to one side of
a line can be similarly expressed in terms of the polynomials of fronts con-
taining various curves Z<; to the other side of the line. This is an inductive
implication of the following relations which are based on the observations of
Section 3.1:
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4 Proof of Theorem 2.2

We prove that the system of axioms of Theorem 2.2 uniquely defines the
polynomial. We do this by induction on the number of double points of a
front. Our method is rather similar to that of [6].

All the fronts we are considering are generic. We say that a front reduces
to a number of some others if the calculations of the Kauffman polynomial
of this front can be reduced to calculations for these others.

4.1 Fronts with no double points

Due to the zigzag and multiplicativity rules of Fig.5, we assume we are dealing
with a nest of curves Z;, i = 0,1,2,..., and W}, j = 1,2,.... According to
Section 3.2, we may assume all the innermost curves to be the Z;. Now
Section 3.3 reduces our nest to the nests of depth one lower. Iterating the
procedure we end up with collections of curves Z; bounding disjoint regions.
This provides the base for our induction.

4.2 Reduction of the number of double points
4.2.1 Easy cases

There are several situations in which it is very easy to make the induction
step and reduce a front to fronts with fewer double points.

Definition 4.1 A simple curl of a front is a cusp-free a-shaped loop that
contains no fragments of the collection in its interior. A semi-simple curl is
a similar a-shaped loop with a number of cusps on it.

Lemma 4.2 A front with a simple curl reduces to a front with one double
point less.

Proof. This is Example 1.3.a.

Lemma 4.3 A front with a semi-simple curl reduces to fronts with fewer
double points.

Proof. The observations of Section 3.1 reduce the situation to that of the
previous lemma.
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Definition 4.4 A closed disc D is called an n-gon of a front F' if its bound-

ary 0D is contained in F' and has exactly n vertices, that is double points of
F where 0D fails to be differentiable.

Note that cusps are not considered as vertices of an n-gon.

Adjective semi-simple (simple) will be applied to an n-gon whose interior
contains no other fragments of the front (and whose boundary has no cusps).
For example, a simple curl bounds a simple 1-gon.

A simple 2-gon is one more configuration for which the reduction of the
number of double points is obvious. The moves of Section 3.1 allow similar
reduction for a semi-simple 2-gon.

Our reduction tactics in more complicated situations is either to find or
create a simple 2-gon within certain minimal configurations.

4.2.2 Minimal 0- or 1-gons

Definition 4.5 A 0- or 1-gon D of a front F' is called minimal if there are
neither 0- nor 1-gons of F' inside D.

Intersection of the interior of D with F' may be non-empty.
A 0-gon will be called isolated if it is lying apart from the rest of the
front.

Search for a minimal 0- or 1-gon. To find a minimal 0- or 1-gon we can
proceed as follows.

Start at any generic point of F' and walk along F' until the first second-
time visit to some point. Take the closed path we have traced. It bounds a
closed 0- or 1-gon D. Let us try to reduce it.

Start a similar walk as before from a point of F'N D, but with a restriction
not to leave D. If, during this trip, we are able to make a closed loop different
from 0D it will provide us with a 0- or 1-gon contained in D. Take it for a
new, reduced disc.

If we are not able to make a closed loop, do similar try starting at another
topologically different point of F'N D.

In a finite number of steps we will not be able to make any further re-
duction.

It is easy to see that if we end up with a minimal 1-gon it must be
a-shaped, not heart-shaped. Of course, cusps on its boundary are allowed.

A minimal 0-gon should be assumed non-isolated. Otherwise, in absense
of minimal 1-gons, the entire front is an unnested disjoint union of curves
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with no double points, and we know how to calculate the polynomial of such
a configuration.

Now we are going to reduce our curve within a minimal O- or 1-gon. Since
we have already shown that it is possible for a semi-simple 1-gon, we are left
with three options to consider:

a) D is a non-isolated semi-simple 0-gon;

b) D is a non-semi-simple 1-gon;

¢) D is a non-semi-simple 0-gon.

We treat these cases one after another.

A non-isolated minimal 0-gon is semi-simple. As earlier, we may as-
sume its boundary to be a basic curve Z;, 1 = 0,1,2,.... Following Section
3.3, we pull this curve in a fixed direction through the branches away from
the rest of the front. Using the same direction, we do the same with all the
cloud of additional basic curves created by our pulling-away.

From this moment on we assume no minimal semi-simple 0-gons in our
front.

A minimal 1-gon D is not semi-simple. According to Section 3.1, we
may assume the disc D, along with its boundary, to be cusp-free. Due to the
minimality, any branch of the front visiting D has no self-intersection. All
the options are covered by the following three cases.

a) There are no double points of the front F inside D. This means that
we are able to kill a simple 2-gon adjacent to the boundary 0D of D either
with no change of the polynomial (if the killing move is a safe self-tangency)
or applying the main skein relation (if the killing self-tangency is dangerous).

b) FEach pair of branches of F visiting D has at most one point of inter-
section. We assume there are no simple 2-gons adjacent to dD.

Lemma 4.6 The disc D contains a simple 3-gon A with exactly one of its
sides on 0D.

Pushing the inner vertex of A through 0D by the triple-point move we
reduce the number of double points of F' inside D. Iteration of the process
finally reduces the situation to that of a).

Proof of the Lemma. Let B; be a branch of F'N D that intersects some
other branches inside D. We may assume the double point of D and all
the branches inside D which do not intersect B; are on the same side of B;.
This is a sort of a minimality condition on B;.
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Let P € B; be the double point closest to an endpoint N of B; (see Fig.8).
Let B, be the other branch passing through P. One of its endpoints, @, is a
vertex of a 3-gon NP(Q based on 0D. This 3-gon may be non-simple: there
can be some other double points of F' on the side PQ (due to the minimality
of B this is the only possible obstruction to the simplicity of N PQ). Choose
the one, R, closest to (). Consider the branch B3 through R. It cuts the
corner piece QRS of NP(). This is guaranteed by the fact that neither pair
of the branches has more than one point of intersection.

Now, if QRS is still non-simple, we iterate the descending procedure.

Figure 8: Search for a minimal 3-gon.

¢) There are two branches of F'N D having at least two points of inter-
section inside D.

We again assume there is no simple 2-gon adjacent to dD.

Let B! and B? be branches with more than one common point. There
exists a 2-gon 7' C D whose boundary is lying on these branches and whose
vertices are two successive intersections of B! and B%. We may assume the
following minimality properties of 7"

1) endpoints of any branch of F'N T are on the different sides of T’;

2) any pair of branches of F' NT has at most one common point.

If there are any double points of F' inside 7T, we remove them out using
the triple-point moves as in b). After this we remove all the branches of F'
out from 7" by the triple-point moves across the vertices of 7. Now the 2-gon
T is simple and we apply a self-tangency move to kill it.

A minimal 0-gon D is not semi-simple. Following Section 3.1, we collect
all the cusps of D in a small neighbourhood of its arbitrarily distinguished
generic point. This reduces the case to the previous one with this distin-
guished point playing the role of the only vertex of the 1-gon.

This completes the proof of Theorem 2.2.
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5 Another approach to Legendrian links in R3

The standard contact 3-space can also be treated as the space J!(R,R) of
1-jets of functions on a line. The contact form « is then dy — pdx, where y
corresponds to values of a function, x to its argument, and p to its derivative.
We again orient R? with the form —a A da = dz A dy A dp.

Now Legendrian links are represented by their projections to the (z,y)-
plane. A generic front in this plane is a curve collection whose only singulari-
ties are cusps and transverse double points and which has no tangents parallel
to the y-axis. We call such a collection a front with no vertical tangents. In
order to restore the Legendrian link in J'(R,R) from a generic front one
resolves each double point putting the branch with the greater slope dy/0x
to the higher p-level (Fig.9). The canonical Legendrian framing now is that
by the positive y-direction.

3

Pg%m </

Figure 9: Lifting of a front with no vertical tangents to the left-handed
trefoil in J*(R,R).

Generic homotopies in the class of Legendrian immersions in J'(R,R)
provide the same list of generic perestroikas of fronts in the (z,y)-plane as
earlier (see Fig.1), except for safe self-tangencies. Of course, no vertical
tangents are allowed in any of these perestroikas.

Definition 5.1 An invariant of generic fronts with no vertical tangents is
called a Jjgt—type invariant if it does not change under homotopies which
involve no self-tangencies.

The theory of J ;;t—type invariants is that of invariants of Legendrian knots
in J'(R,R) (and, thus, is isomorphic to the theory of J; -type invariants).

In terms of fronts with no vertical tangents, the rules of the Kauffman
polynomial in R? are those of Fig.5 with the curves Z; omitted and all the
front fragments rotated by 90 degrees clockwise to avoid vertical tangents.

Such a modification of Fig.5 will be called its tht—version.

Theorem 5.2 There exists a unique J;;t—type invariant K(Fj.;) € Z]z,y*']

of a generic front Fj., with no vertical tangents satisfying the relations and
initial data of the tht—version of Fig.b.
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The proof is very similar to that of Theorem 2.2, and there is no reason
to give it here. The major difference is that now, instead of pulling all cusps
away from the minimal domains, one should reduce the number of cusps
by applying the zigzag skeins. This reduces the considerations to a certain
number of elementary situations each of which can be easily treated.

For example, consider a semi-simple curl of a front with no vertical tan-
gents. It is easy to see that, if there are at least 3 cusps of the curl, there
must be a zigzag on it (see [8]). Take a minimal zigzag, that is a one for
which the strip between the vertical lines through its cusps contains no other
zigzags of the curl. By an obvious homotopy of the front, we can make such
a zigzag arbitrarily small comparing with the other elements of the front,
and eliminate the zigzag.

Of course, the concept of simplicity of the fragments should also be
changed so that the simple fragments now would be those with minimal
possible numbers of cusps. Among curls these are swallowtails and one-cusp
curles. There is a similar, and even more particular, splitting of the other
minimal configurations.

6 HOMFLY polynomials

6.1 The Legendrian versions

Fig.10 recalls the definition of the framed version of the HOMFLY polynomial
of oriented links in the solid torus [19].

P(X)-P(X) =vr() ()
P )=er( /) P(Q)=arr( /)

P(LyU Ly) = P(Ly) - P(Ls)

Figure 10: The definition of the HOMFLY polynomial for oriented
links with the blackboard framing in the solid torus.
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Omitting in Fig.10 all the information about the knots = and correspond-
ing variables one gets the definition of the HOMFLY polynomial for knots in
the 3-space [11, 13].

Fig.11 translates the rules of Fig.10 to fronts. Relations of its first three
lines are also valid for the fragments with all the orientations reversed; F} LI F;
is the disjoint union of the two fronts on different sides of a certain straight

P(X)-r()()=(X)
() () -2 =0e(Y)

P(2)=r(55)==r( /)

P(FUFy) = P(F) - P(F,)

P( 6;% ) = z; for the curve of winding number 7 # 0

Figure 11: The definition of the HOMFLY polynomial for oriented

plane fronts.

The definitions of the Ji- and J3i,
Section 2.2 and Section 5).
As earlier, one proves (cf. [6])

-versions of Fig.11 are obvious (cf.

Theorem 6.1 There ezist

1) a unique J*-type invariant P(F) € Z[z,y*, 241, 249, ...] of a generic
plane front F;

2) a unique Ji -type invariant Py(Fy) € Zz,y*'] of a generic marked
winding-free plane front Fy;

-type invariant Py(F;.) € Z]x,y™] of a generic plane front

- +
3) a unique J; i

jet

Fje with no vertical tangents

satisfying the relations and initial data of Fig.11, and of its Jy - and J;’et—
versions respectively.
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6.2 Maslov index

It is easy to strengthen the last theorem and establish divisibility of the
HOMFLY polynomials by certain powers of the framing variable.

Consider an oriented and cooriented plane front. A cusp of such a front
is called positive if the velocity vectors of its outgoing branch have positive
projections to the normal of the coorientation at the cusp point. Otherwise
the cusp is called negative.

Definition 6.2 Half a difference y = 3(u, — p_) between the numbers of
positive and negative cusps is called the Maslov indezx of the front or of the
corresponding Legendrian link.

The Maslov index is easily seen to be integer.

All the basic fronts of Fig.11 have zero Maslov index. The Maslov indices
of all the three fronts participating in both versions of the main skein relation
coincide. The zigzag skeins relate the change of the Maslov index by +1 to
the divisibility of the polynomial by x. In the chain of calculations of the
polynomial of a particular front, the zigzag skeins are used only to reduce the
number of cusps. Thus, for each of the three theories of plane fronts under
consideration, we get

Corollary 6.3 In the ring of genuine polynomials in the framing variable,
the HOMFLY polynomial of a front is divisible by z'* , where p is the Maslov
index of the front.

6.3 The Bennequin-Tabachnikov number estimates
in terms of the HOMFLY polynomial

The unframed analogs of the HOMFLY polynomials are
P,(L) =27 UP(L) and Py, (L) =a2"""BPy(L),

where, as in Section 2.3, wr(L) is the writhe of a framed link L either in the
solid torus or in R?.

The non-Laurent polynomiality of the framed versions of the polynomials,
in the strengthening of Corollary 6.3, implies (cf. [6])

Theorem 6.4 Let L be an oriented unframed link in the standard contact
manifold M ~ R3 or M = ST*R?. Let 2" be the minimal power of the
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framing variable x in the corresponding unframed version of the HOMFLY
polynomial of L. Then, for any Legendrian representative L of L,

ﬂ+|/’t|2_r’

where 3 and p are the Bennequin-Tabachnikov number and Maslov index of
L.

For R? this is the theorem of Fuchs-Tabachnikov [8].

Example 6.5 (cf. Example 2.8) With no information on pu, for the left-
handed (2, g)-torus links in R? the estimates of Theorems 2.5 and 6.4 are the
same: [ > 2 — q. For the right-handed series the estimate of Theorem 2.5 is
stronger than that of Theorem 6.4: 3 > 2q instead of 8 > 2 4 g¢.

For a generic non-oriented Legendrian knot, the number || is well-defined.
Nevertheless, one cannot sthrengthen Theorem 2.5 on the Kauffman polyno-
mial estimate to include |u| similarly to Theorem 6.4: the (2,5)-torus knot
of Fig.7 has |u| = 1 and its Bennequin number is equal to the negative of the
lowest power of the framing variable in the unframed version of the Kauffman
polynomial.

7 Extra variable?

A generic homotopy in the space of all Legendrian curves which are not
necessary immersions involves one more front perestrioka in addition to those
listed in Section 1.2. This is passing through a ramphoid cusp which is locally
a parabola of degree 5/2:

& 312 & 5/2 % 3/2

At the bifurcation instant the Legendrian curve is not an immersed one.

The existence of the ramphoid cusp perestroika implies that the zigzag
surgery used in all the definitions of all the front polynomials in this paper
is in fact a multi-step local homotopy in the space of all fronts:

N e R
P i SN
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In this sequence, the change of topology of the Legendrian link takes place
only at the ramphoid cusp bifurcation. Here both the Bennequin-Tabachni-
kov number and Maslov index are changing by =+1.

Unfortunately, all our definitions respect only the change in the canonical
framing and do not respect the change of the Maslov index at all. Apparently
there should exist certain refinements of the Kauffman and/or HOMFLY
polynomials for Legendrian links which contain at least one more variable
responsible for the Maslov index.

Acknowledgements. The authors are thankful to H. R. Morton and
S. Tabachnikov for very useful discussions.
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