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Abstract. We list the automorphisms of simple hypersurface singularities,
which allow symmetric smoothings. The monodromy group acting on the
character subspaces in the homology of a symmetric smoothing is shown to
be a unitary reflection group.

In paper [7], generalising Arnold’s approach to boundary singularities,
we studied smoothings of simple hypersurfaces invariant under a unitary
reflection of finite order. The reflection splits the homology with complex
coefficients of a symmetric Milnor fibre into a direct sum of the character
subspaces H,. The monodromy in the space of hypersurfaces with the same
symmetry preserves the splitting. It was observed in [7] that the monodromy
on each of the H, is a finite group generated by unitary reflections [13].
This way unitary reflection groups, G(m, 1, k) and seven exceptional groups,
made their first appearance in singularity theory addressing one of the long-
standing questions of Arnold on realisations of the Shephard-Todd groups
[1].

Later, in [8], some other Shephard-Todd groups were shown to be the
monodromy groups of simple function singularities equivariant with respect
to the action of finite order elements of SU(2).

In the present paper we continue this programme and study arbitrary
finite order automorphisms of the zero levels of simple function-germs whose
action can be extended to some of the smoothings. This generalises the
approaches of [7, 8] and, as it is explained by Slodowy in his paper [14]
in this volume, is directly related to the classification of Springer’s regular
elements in Coxeter groups [15]. We show that the monodromy in the space
of the symmetric smoothings is still a Shephard-Todd group. In addition
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to [7, 8], we obtain the group Gip (new in singularity theory) and two
other realisations of the series G(m,1,k). The relation between the two
realisations of G(m,1,k) is analogous to the relation between the Weyl
groups By and Cy. The realisation of G(m, 1, k) obtained in [7] was of the
B-type.

For the cases not considered in [7, 8], we construct distinguished sets
of generators of the H,. We show how symmetric Dynkin diagrams of the
simple functions can be folded into diagrams of the equivariant singularities.
We also describe the skew-Hermitian analogues of the unitary reflection
groups under consideration.

We finish the paper by giving a singularity theory interpretation of the
rank 2 groups G2, G2p and Gag, and showing how their Dynkin diagrams
can be obtained by folding those of Eg and Eg.

1. The unitary reflection groups

A complex reflection in C¥ is a unitary transformation identical on a hy-
perplane, which is called the mirror of the reflection. The complete list of
finite irreducible groups generated by complex reflections was obtained by
Shephard and Todd [13]. It contains the Coxeter groups as a proper subset.

The Shephard-Todd list consists of three infinite series (Weyl groups Ay,
cyclic Z,, and three-index G(p,q,k)) and 34 exceptional groups. Now we
shall briefly recall the description of the groups we will deal with in detail
in this paper. In our considerations a mirror is identified by its normal,
which we call a root.

1.1. GROUPS G(P,Q, K)

The group G(p, q,k) (all the parameters are natural numbers, g divides p,
and k > 2) is a subgroup of U (k). It is generated by the rotation through
2mq/p corresponding to the root u; (the u; are mutually orthogonal unit
coordinate vectors) and by k reflections of order 2 defined by the roots

Uy — Uy, U3 — U, «n. Uk — Uk 1 and up — e/ Pyy .

For example, in two cases, when either ¢ = p or ¢ = 1, just k reflections are
sufficient to generate the group.
The series contains Coxeter groups:

G(2a27 k) = Dk: ’ G(27 17 k) = Bk ’ G(p7p72) = IQ(p) .

Information about generating reflections of a group can be represented
by a graph analogous to a Dynkin diagram of a Coxeter group (cf. [4, 11]).
Our conventions are as follows:
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— a vertex of a graph represents a root;

— the Hermitian square of a root is written beside the vertex (square 2
is omitted);

— the order of the reflection is written at the vertex (order 2 is omitted);

— the Hermitian product (v1,v2) of the roots is written on an oriented
edge v1 — vo;

— there is no edge between two orthogonal roots;

— the product —1 is not written;

— orientation of an edge equipped with a real number is omitted.

Figure 1 shows graphs of the groups G(m,1,k) and G(2m, 2, k).

Gmlk @—o—o0— -0

G(@2m,2k)

Figure 1. Graphs of the groups G(m,1,k) (k vertices) and G(2m,2,k) (k+ 1 vertices).
Notation: a = e™/™,

Remark 1.1 It is convenient to include the groups G(1,1, k) in the series.
According to the above description, the group G(1,1, k) is the permutation
group of the coordinates in C*. Hence CF splits into the standard represen-
tation of A1 on the hyperplane 1 +...4+x; = 0 and the one-dimensional
trivial representation.

It is also natural to set G(m,1,1) = G(mgq,q,1) = Zp,.

The orbit space of any Shephard-Todd group is smooth. It contains the
discriminant ¥ of the group, that is, the space of its irregular orbits.

The basic invariants of G(p, ¢, k) have degrees p,2p,...,(k — 1)p,kp/q
(hence the order of the group is p*k!/q). In particular, for ¢ = 1 and p > 1,
the degrees are proportional to those of the Weyl group Bj. Moreover,
explicit consideration of the invariants easily implies that the discriminants
of G(p,1,k) and By are isomorphic.

Remark 1.2 Usually an exceptional Shephard-Todd group is denoted G,
where s is its number in the original list in [13] (the second line in the list
is occupied by a series, therefore, the Weyl group Gy = G(6,6,2) provides
no confusion). Of course, such a notation is not very illustrative. For this
reason, we used mainly the notation of [3] in [7]: G(m,1,k) = B,(cm), Gy =
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AP, G5 = BV, Gy = A, Gis = AD), Gos = A, Gos = C5Y) and
Gz = Af) (see also the table in the next section). For example, in A,(Cm), the
order 2 of the standard generators (transpositions) of the group Ay = Sk11

is changed to m. See [7] for further details.

1.2. GROUPS G19 AND Goo

Both groups are of rank 2. The group G1g is generated by two reflections,
one of order 3 and the other of order 4. The degrees of its basic invariants
are 12 and 24, and X(G1g) =~ X(Bs). As an abstract group, Gy is a quotient
group of Brieskorn’s [2] braid group associated to the Weyl group By (that
is, generated by two elements, a and b, subject to the relation (ab)? = (ba)?)
by the relations a® = id and b* = id. Therefore, it is natural to denote G
by B{M),
Y D2

The group Gag is generated by two order 3 reflections in C2. The degrees
of the basic invariants are 12 and 30. The discriminant is isomorphic to that
of I»(5), which is a 5/2 parabola. The relations defining Gy are ababa =
babab (coming from the I5(5) braids) and a® = b* = id. In a natural sense,
Gy = 12(5)(3).

Consider the general case of a finite rank 2 group generated by two
reflections, a and b, subject to the relations abab... = baba ... (q factors
on each side) and a" = b® = id. It has a graph as shown in Figure 2. One
of the possible choices of the real weight w is

2
v _\Fcos(% — %) +cos <t

P T iy T
Sll’lrSlIlS

; (1)

see [5].

O—w—=0O

Figure 2. The standard diagram of a group generated by two reflections.

For Gy, another choice of w exists, with cos 3% in (1) instead of cos(Z —
%) = cos 5. The two choices correspond to two rank 2 representations of
G1p each: the eigenvalue of a can be either w = €2™/3 or @, and that of b
either ¢ or —i.

For G, another choice also exists: with cos “Z instead of cos 2X in (1).
Again, the choices provide two representations each: the operators a and b
must have the same eigenvalue which can be either w or &.
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The four exact representations of each of the two groups described here
will be referred to as the standard representations.

1.3. GROUPS G2 AND Gs2

These are also rank 2 groups. Each is generated by three order 2 reflections.
The degrees of the basic invariants are respectively 6 and 8, and 12 and 20.
The discriminants are 4/3 and 5/3 parabolas (that is, Fs and Eg curves).

Figure 3 shows that the two groups form a mini-series of four with Ay
and G(4,2,2) (cf. Figure 1 for the latter). The sum of the three roots in
each case is zero. The diagrams of the figure can easily be obtained from
those in [11].

The change of the sign of 7 in Figure 3 gives one more exact representa-
tion of each of the groups except for Ao. Two further exact representations
of Gao correspond to the angle 27/5 used instead of 7 /5.

These two representations of G12 and four of Goy will be also referred
to as their standard representations.

w/ \wz=—1+2i cosg

w

Figure 8.  The diagrams of Az, G(4,2,2), Gi2 and Gaa, provided q is 2, 8, 4 or &
respectively.

2. Automorphisms of simple singularities

2.1. MILNOR REGULAR AUTOMORPHISMS

Let f be a holomorphic function-germ on (C"*!,0). Consider a diffeomor-
phism-germ g of (C"*1,0) sending the hypersurface f = 0 into itself. Tt
multiplies the function f by a certain function ¢ not vanishing at the origin.
In what follows we assume g has finite order, hence c is just a constant, a
root of unity.

Consider now the space O(g,c) of all holomorphic function-germs on
(C"*1,0) multiplied by ¢ under the action of g. The group R, of biholomor-
phism-germs of (C"*1,0) commuting with g acts on O(g,c). The equiva-
lence relation induced on O(g, ¢) is a nice geometric equivalence in the sense
of Damon [6]. Therefore, the standard theorem on versal deformations holds
for it. In particular, the base of an R -miniversal deformation of a function
in O(g, c) is smooth.
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Definition 2.1 (cf. [14]) An automorphism g of a hypersurface f = 0 is
Milnor regular if an R 4-versal deformation of function f contains members
with smooth zero sets.

This implies that either f is g-invariant (hence ¢ = 1 and an Rg-
miniversal deformation contains the free term) or ¢ is an eigenvalue of the
operator dual to g (hence an Ry-miniversal deformation contains a linear
form). The latter condition is not sufficient for regularity.

Notice that an R -miniversal deformation F, of a function f € O(g,c)
can be extended to an ordinary R-miniversal deformation F' of f. To get F,
back from F' one has to take only those members of F' which are in O(g, c).
Similarly, the equivariant discriminant $4(f) of f, that is, the set of those
members of the family F; whose zero-sets are singular, can be viewed as a
section of the ordinary discriminant X(f) of the family F'.

Milnor regularity implies that the zero set V' of a generic member of an
R 4-versal deformation is a Milnor fibre of f and allows one to consider the
intersection form on the middle homology H, (V) without any complica-
tions. The automorphism ¢ induces an automorphism of H,(V'), which we
also denote by g, slightly abusing the notations. The space H,(V; C) splits
into a direct sum of the eigenspaces H, of g (the x are the corresponding
eigenvalues).

2.2. THE LIST OF AUTOMORPHISMS

Now assume f is a simple function-germ on (C"*1,0). We shall be more
interested in the splitting H, = @, H, of its vanishing homology by an
automorphism ¢ than in the element g itself. Therefore, it is sufficient for
our purposes to consider only the case r + 1 = corank f and then extend
the automorphisms to the stably equivalent functions in any consistent way.
Recall that, in this minimal dimension and with f in its quasi-homogeneous
normal form, the reductive automorphism group Aut(f) of f = 0 is just
the group C\ {0} of quasi-homogeneous dilations of C" ! if f is of the type
Ap, Dygq or E,. For the other singularities, the group Aut(f) is a direct
product of the group of the quasi-homogeneous dilations and either S3 (for
Dy) or Z; (for all the other Deyep)-

A case-by-case analysis (which is too straightforward, lengthy and bor-
ing to write about) provides the following result.

Theorem 2.2 The complete list of Milnor reqular automorphisms of simple
hypersurface singularities in C® is given in the two tables below.

The completeness here is in the following sense. One starts with Ccorank f
and the automorphisms considered up to the groups they generate. In this
setting, a function and an automorphism are brought to a simultaneous
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normal form (f’,¢') by a choice of coordinates. After this, the function is
stabilised to three variables and the automorphism extended to provide a
table pair (f,g). Any other, stabilisation and extension of (f’,g’) results
in absolutely the same decomposition of the homology of a Milnor fibre
into the sum of character subspaces as does (f,g). A priori, the character
assignments to individual subspaces may change at this point. However,
this does not affect the monodromy on the subspaces, which will be our
main concern.

In the table, in each of the cases we write out monomials eq,...,e;
spanning an equivariant miniversal deformation (here 7 is the equivariant
Tjurina number). We list all the characters for which dim H, = 7. A kth
root of unity is denoted by ¢ if it is completely arbitrary, and by ¢, if it is
arbitrary primitive.

For the characters listed, the table gives the monodromy representations
on the H, (the order of x is denoted o). If 7 = 1, we give the eigenvalue
of the only Picard-Lefschetz operator on H,. The equivariant monodromy
is studied in more detail in the next section.

We keep the notation of [13] for the unitary reflection groups. The no-
tation used for 7 > 1 invariant functions is that from [7]. The notation for
the equivariant singularities studied in [8] is slightly altered.

The singularity Dy occurs in the table in two normal forms. One of
them is more convenient for expressing automorphisms involving order 3
elements of S3 and the other for those involving the transpositions.

In all the series, 7 =k > 1.

Remark 2.3 One of the immediate observations the table provides, as
an extension of properties of Arnold’s simple boundary singularities, is as
follows.

Let D(f) be the set of weights of parameters of a quasi-homogeneous
R-miniversal deformation F' of a simple singularity f. Assume that the
weights are normalised so that the largest of them is the Coxeter number
of the related Weyl group X (then, of course, D(f) coincides with the set
D(X) of degrees of basic invariants of X).

Now, for an automorphism g of f = 0, denote by D(f,g) C D(f) the set
of weights of the parameters of the g-equivariant miniversal deformation F
of f. Let X, be the unitary reflection group which is the monodromy group
of a character subspace H,, where x is of the maximal order, X, C X.In all
the table cases, D(f,g) = D(X,) (for all other x, such that rk H, = 7, the
set D(f,g) is a multiple of the set of the degrees of the monodromy group)
and hence D(X,) C D(X). Moreover, the discriminants of the function and
of the group, ¥4(f) and X(X,), are diffeomorphic.

See [14] for an explanation of these facts.
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function | g:z,y,2 — | |g| {e:} X monodromy notation
on H,
Ap: e /Mgy 2| mo| 1,2™, ¥, €m #1 Gloy,1,k); B,(cm)
"t n+1==km .., gk m () ifk=1
+yz '
e2mi/my, m z, ™t €m G(oy,1,k); Akm L,
e /My 2 g?mr (x)if k=1
n=km gk Dm+1
Dy : wr z 3 1 G AP
: > Ys Y €3 4 5
z3 + 93
+22 wz, wly, z 3 1, zy 1 G2 G2
wT, Wy, z 3 1 €3 Zs = (—x) Dy|Z;
. 3
—r, —wy, iz | 12 T €12 Z, <X > Dy[Z1
D‘n: _2,7”'/27”7"3 2m ) Jyzma Xm = _1: G(OX: 17 ); ka+1|Z2m;
n>4: e2i/my 2, Ly bm |k H =1 <—X1_m> Cpif m=1
z2y n—1=km fk=1
+yn—1
+2° e iimy, 2m | x,y™ ", X" =-1]| G(20,2,2,k); Dim [ Zom
e—21ri/my’ 2m—1’”.’ <X—
e27ri/2mz’ y(kfl)mfl fk=1
n=km

3. Monodromy on the character subspaces

Now we shall demonstrate that the monodromy on the character subspaces
for the automorphisms listed is that given in the table. We proceed case-
by-case for the automorphisms not considered in [7, 8].

3.1. CODIMENSION ONE SINGULARITIES

The characters for the table singularities with 7 = 1 can easily be calcu-
lated from the cohomological point of view, using the residue-forms. The
monodromy eigenvalues are obtained from weighted-homogeneous consid-
erations. We do this in detail for one of the automorphisms, for illustration.
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function g:ix, Y,z — lgl {e;} X monodromy notation
on H,
Eg : T, —Y, 2 2 | 1,z,9y% zy? -1 Fy = Gas Fy
z® + g
+22 wx, Y, z 3 1,9,y €3 Gas Ags)
T, 1y, 2 4 1,z +14,—1 Gg on Hy;; Ag‘l)
A2 on Hfl
we, —Y, 2 6 1,y° €6 Gs BéS’S)
wx, iy, z 12 1 €12, —€3 (—X) E6|Z12
_ 2wi/8, - 3
z, e Y, 12 8 z eg, 1 <X > E¢/Zsg
627{i/9$, wy, 18 Yy €18 Zg = <X4> Ee/le
2
—w’z
Er: T, Wy, 2 3 1,z,° €3 G C§3)
2% + oy ‘
+2° wz, e*™/%, 2 9 1 €9,1 (—=x) E7|Zy
eﬁwi/7m’ e47rz'/7y, 7 y €7 (_X> E7/Z7
627ri/7z
Es : wx, Y, 2 3| 1Ly y%°8 €3 G32 Af)
z3 + y5
+2° z, eX/y 2 5 1,z €5 Gis Ags)
wz, 23y, 2 15 1 €15 Z3o = (—x) Eg|Zs
—ZT Y, 1z 4 y:$,y3,$y2 +4 G31 ES/Z4
—iz, iy, e>/%z | 8 y, £y> €8 Gy Es/Zs
—we, —Yy, iz 12 y,y° €12 G1o B£4’3)
—z, ¥™/%y, —iz | 20 T €20 Zs = (x) Esg/Zs




10 V. V. GORYUNOV

Example 3.1 E4/Zg. The equivariant miniversal deformation is
F(z,y,z;0) =2 +yt + 22+ ax.

Set fo = Fla=const and V,, = {fo = 0} C C3. Assume « # 0. Consider the
monomial residue-forms generating Hy(V,; C):

pdrdydz/dfe, ¢=1,9,9% 2,3y, 39y

Put § = €2™/8. Qur automorphism g : (z,vy,z) — (§*z,dy,§22) multiplies
the above forms respectively by 62, 6%,6%,67,1, . These are the characters.
The monodromy is defined by the homotopy « - €2™, ¢ € [0, 1], raised
in the weighted-homogeneous way to Ciy,z,a. This ends up with the trans-
formation
h:(x,y,2) = (6%, 6%y, 6%2) = g°(2,y, 2)

of 3-space. Hence h has eigenvalue x* on H,.

3.2. SINGULARITIES OF HIGHER CODIMENSION

For each automorphism we shall construct distinguished sets of generators
of the H,. After this we shall show that the corresponding Picard-Lefschetz
operators do generate the unitary reflection group claimed.

We start the construction in the traditional way, fixing a generic point
* in the base C” of an equivariant miniversal deformation of the function
f. Let V. C C"t! be the smoothing corresponding to *.

Denote by m the order of our Milnor regular automorphism g. Let V' C
V be the subset of all points with non-trivial stationary subgroups under
the action of Z,, = (g). In all our cases, V' has positive codimension in V,
not necessarily 1. Consider the quotient varieties, W = V/Z,, and W' =
V'!|Z,,, and the integer relative homology group H,(W,W';Z).

Let 3y C C7 be the discriminant of our equivariant singularity. Consider
a generic line £ C C” passing through the point *, and a set of paths {v;}
in £ from * to all the points of £ N X . As usual, we assume that the paths
have no mutual- or self-intersections, except for the common starting point.

In all the table cases, except for Dy|Z3, it turns out that exactly one
relative cycle is contracted by the homotopy of (W, W’) corresponding to
motion along the path 7; to its end-point. Moreover, the set of cycles van-
ishing along all the paths 7; generates the torsion-free H, (W, W'; Z). This
is what we call a distinguished set of generators of this homology group. No-
tice that, for all our table singularities with 7 > 1, the rank of H,.(W, W'; Z)
is 7.

Let e be one of the vanishing cycles on (W, W’) just obtained. Since
g acts freely on V \ V', it has m independent preimages ey,...,€p,_1 In
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H.(V,V';Z). Assume that they are ordered so that the automorphism g
permutes them cyclically:

g.et—>e ey ...~ ep_1H €.

For each mth root x of unity, the cycle
m—1

€x = Z X ‘es (2)
s=0

is in the x-eigenspace H,,(V, V', C) of the relative action of g.
The action of g splits the exact sequence of the pair into the exact
sequences of the character subspaces:

0— Hy,=H,,(V;C) = H., (V,V';C) = Hy_1,(V;C) — ...

The rank of the relative homology group here does not depend on the
choice of x, this is just the rank of H,(W,W';Z). On the other hand,
H,_1,(V',C) = 0 if x is a primitive mth root of unity (more generally,
if x* # 1, where Z,, /d 18 a stationary subgroup of a codimension 1 subset
of points in V, d # m). Therefore, if x = &, then the rank of H, is
maximal possible, 7, for all our table singularities (except for D4|Z3 when it
is maximal, 2 = 741, for x = 1). In fact, the primitive character subspaces
provide the most interesting cases since the monodromy on them projects
to those on the other character subspaces.

Definition 3.2 The element e, in (2) is called a wvanishing x-cycle on
V if it belongs to the kernel of the boundary operator H,,(V,V';C) —
H,_1,(V';C). The set of vanishing x-cycles corresponding to the distin-
guished set of generators of H,(W,W';Z) is called distinguished.

Of course, x-cycles in a distinguished set are naturally ordered by the

counter-clockwise order in which the corresponding paths in ¢ leave the
base point. However, in all our cases the equivariant Dynkin diagrams are
just straight chains and therefore an arbitrary order can be achieved (see
[10]).
Remark 3.3 The above is in fact a generalisation of Arnold’s construction
used for boundary function singularities. The first step towards this gen-
eralisation was taken in [7]. The distinguished generating sets of vanishing
Xx-cycles obtained in [8] can also be produced by the algorithm described
here.

The 7 > 1 singularities which did not appear in [7, 8] are Agp/Zm,
Dims1|Zm and BS*®. We deal with them in turn. Each of them is con-
sidered in two particular dimensions, one odd and one even. The intersec-
tion forms are Hermitian and skew-Hermitian respectively. Stabilisation by
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adding a generic quadratic form in two new variables to a function (with
the automorphism action appropriately extended) changes the sign of the
intersection form [9] but does not affect the monodromy group.

Diagrams of the equivariant functions will be obtained from Dynkin
diagrams of the ordinary singularities in C"*!. The conventions to draw
the latter are standard:

— the square of each root is (—1)+1)(r+2)/2 ((—1)’" + 1);
— in the skew-symmetric case, an edge a — b means (a,b) = 1;

— in the symmetric case, a dashed edge is drawn for the intersection
number (—1)"/2 and a solid edge for the negative of this.

3.2.1. Apm/Zm
For m = 3, this singularity was studied in [8]. Now we consider arbitrary
m.

Hermitian case. Take the singularity in just one variable: f(z) = ghm+1
with g(z) = e?™/™z. The family
P\ BUmEL 2™ Nz = apa(2™) (3)

is its equivariant miniversal deformation. The discriminant of the family
is that of the Weyl group Bj corresponding to the polynomial py) having
either zero or multiple roots.

We take a function f.(z) = zp.(z™), such that p, has all its roots
real positive and simple, for a marked generic member of (3). Consider the
zero-set of f,:

V:{O,e%is/maj, s=0,....m—-1, j=1,...,k} CC.

We order the real numbers a; so that 0 < a1 <ag <... < a;.

A distinguished basis of vanishing x-cycles on V' can be obtained by
varying the free term of p,. For example, such a basis can be taken to
consist of

(i) a short x-cycle X ™5 x 9 a1] vanishing at the origin (for x = 1,
the term m[0] must be subtracted from this sum);

(i) k—1 long x-cycles X" X*s([e%is/maj] — [627”'5/maj,1]), j=2,...,k.
The self-intersection number of a long x-cycle is 2m, and of a short y-cycle
either m? + m if x = 1 or m otherwise.

The Dynkin diagram of the chosen basis is drawn top left in Figure 4.
The upper half of the figure also shows how this diagram can be obtained
by m-folding of the symmetric Dynkin diagram of the ordinary singularity
Agm- According to the expressions in (i) and (ii), each of the k character
cycles is a linear combination of m ordinary vanishing cycles situated on

e?ms/m
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one of the concentric circles of the Ay, diagram (these are orbits of the

Zm-action). In the linear combination, the crossed cycle is taken with the

coefficient 1, the cycle counter-clockwise next to it with the coefficient x !,

the next one with the coefficient x~2, and so on.

Awm/Zm

ZmO

m

2m<>

// \\ 1)/ (1 x)

o (@]

Figure 4. Folding symmetric Dynkin diagrams of Agm to the character diagrams of
Arm/Zm, X # 1, k = 4 and m = 6. The Hermitian diagrams, of the one-variable
singularities, are in the upper half of the figure. The skew-Hermitian diagrams, of the
two-variable functions, are in the lower half.

Skew-Hermitian case. Addition of #2 to the family (3) provides a miniver-
sal equivariant deformation of the function z¥™*! + t2 associated with the
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Milnor regular automorphism g : (z,t) — (e2™/™g, €2™/2™¢) of order 2m.
Now x™ = —1. Similar to the Hermitian version, one can obtain a Dynkin
diagram of the equivariant function by m-folding of that of the ordinary
singularity as shown in the lower half of Figure 4.

Picard-Lefschetz operators. One of the possible versions of the Ay, /Z,
singularity in C"t! is provided by the addition of the quadratic form
Zgrﬁ] y;%j to the above one- or two-variable function, with the automor-
phism g multiplying all the y; by e2™/M and acting trivially on the zj. The
character subspaces in the homology are H,, x™ = (—1)". The intersection
form on H, is the one we had in the one- or two-dimensional case multiplied
by (~1)F/2.

The Picard-Lefschetz operator on H, corresponding to the short y-cycle
e has the eigenvalue (—1)"x and acts by the formula

he: cr e+ (—1)O2(1 _ (¢, e)e/m. (4)

The monodromy operator on H,, associated with a long x-cycle e, is in-
duced by the product of the m commuting Picard-Lefschetz operators of
the ordinary singularity corresponding to the vertices on the related circle
of the symmetric Ag,, diagram. The operator is

he: ¢ c+ (=1)TEFD2(c e)e/m. (5)

Clearly, for r = 0, the unitary reflections (4) and (5), associated with the
vertices of the top left diagram of Figure 4, do generate the Shephard-Todd
group G(oy,1,k) (see Remark 1.1 for the x =1 and k = 1 cases).

3.2.2. Dgma1|Zop,
Skew-Hermitian case. We start with the two-variable singularity. It has
the invariant miniversal deformation

22y + "+ Ay L Ay™ 4+ A = 22y + (™), (6)

with respect to the automorphism g(z,y) = (e~ 2™/2™g, €27/™My) of order
2m.

The quotient W of an invariant Milnor fibre V' under the action of Zo,,
is diffeomorphic to a coordinate line C,, v = y™, with a puncture at the
origin. The subset W’ C W of irregular orbits consists of m points, roots
of the equation py(v) = 0. Hence, the discriminant of (6) is also isomorphic
to the discriminant of By.

Similar to what was done for the previous singularity, we mark a point
* in the base of deformation (6), so that the polynomial p,(v) has all its
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roots real positive and simple. This choice easily provides the Dynkin di-
agram for a character subspace H, C H;(V;C), x™ = —1, which is the
top left diagram of Figure 5. This diagram can also be obtained by m-
folding of a symmetric Dynkin diagram of the ordinary Dy, 1 singularity
as shown in the upper half of the figure. For a better symmetry, we intro-
duced there an auxiliary cycle (drawn fine, not participating in the actual
Dyt1 diagram) which is the negative of the sum of all the cycles in the
bold D,y +1-subdiagram. Each vanishing cycle in the Dy, +1|Z2y, diagram is
a linear combination of the m cycles in the Dy,,,+1 diagram situated on one
of the concentric circles: they are taken with the coefficients 1, x 1, x2,. ..,
starting from the crossed cycle and going counter-clockwise.

The lowest vertex in the character diagram corresponds to the polyno-
mial py(v) of (6) having a zero root. Any other vertex corresponds to py(v)
getting a double root.

Hermitian case. Similar diagrams for the one-variable stabilisation of the
above, with the automorphism g acting trivially on the added coordinate,
are drawn in the lower half of Figure 5.

Picard-Lefschetz operators. In C™t!, with g acting trivially on the 2-
jet, the cycle in H,, x™ = —1, corresponding to the lowest vertex of the
character diagram has self-intersection number

(e,e) = ()2 (1) — 1) (1 = X)m

Its Picard-Lefschetz operator has eigenvalue (—1)"x and, therefore, acts by
the formula

he: e et (L)@ (68 7

€ c c+ ( ) m(l _ )—() e ( )

This operator is induced on H, by the classical monodromy defined by the
bold D;,4;-subdiagrams in Figure 5.

The vanishing x-cycle corresponding to any other vertex of the character
diagram has self-intersection number

(6,6) — (_1)(r+1)(r+2)/2 ((_1)1' + l)m.

Its Picard-Lefschetz operator on H, comes from the product of m commut-
ing reflections on H,(V; C) corresponding to the vertices on the appropriate
circle in the Dy, 41 diagram. It acts on H, by the formula (5).

In fact, division of the lowest root in the Dyy,11/Z9,, diagrams by
X — 1 reduces them to the character diagrams of Figure 4. The operator
(7) transforms into (4). Therefore, the monodromy groups on the charac-
ter subspaces of the equivariant A- and D-singularities are the same. In
particular, in the Hermitian D-case, we do obtain the groups G(oy, 1, k).
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Q o]

Dun+1/ Z 2m Dim+1 \ /

Oo=——0 (=]

ka+1‘ Z 2m

O—Zm

m(1-X)

(M)
me-2+x+%) &

Figure 5. Folding symmetric Dynkin diagrams of the Dgpm41 singularity t0 Dygm+1|Zom
diagrams, k = 4 and m = 6. The two-variable case is in the upper half of the figure, and
the three-variable is in the lower.

Remark 3.4 To be more precise, the correspondence observed here is be-
tween all the character subspaces of Dy, +1/Z2m and Ak, /Zy, in the skew-
Hermitian case, and between all the character subspaces of Dy, +1/Z2, and
just half of those of Aoy, /Zop, in the Hermitian. This follows just from the
comparison of the character sets.

Remark 3.5 The above folding of the Dy, diagrams could be done in
two steps: via factorisation by the action of Zs = (¢g™) followed by the
further Z,,-factorisation. The intermediate output here is Arnold’s Cj,,
singularity, with its Zs-anti-invariant homology. This, for example, imme-
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diately eliminates the generator of the rank 1 character subspace H,—; of
Dit1|Zom, which is the difference of the two cycles at the whiskers of the
central Dy, 1-subdiagram in our figures.

3.2.3. B{*Y
Hermitian case. The singularity has a two-parameter equivariant miniver-
sal deformation

4+ % + By’ + ay + 2. (8)
This corresponds to the Milnor regular automorphism g(z,y,2) = (—wz,
—y,1z) of the Eg surface. The bifurcation diagram of the family is isomor-
phic to the discriminant of By and consists of two strata:

245 = {b* =4a} and  Dy|Zi2 = {a = 0}.

The rectangular Dynkin diagram of the ordinary singularity Eg folds to a
diagram of the equivariant function in two steps (see Figure 6):

(i) fusion to the A513) diagram corresponding to the 4-subspace in the
vanishing homology of Eg on which g* is the multiplication by 3 (the
cycles in it have self-intersection numbers —3, and an edge a — b has
weight (a,b) = 3/(1 — €3));

(ii) further 2-folding of Az(ls) (this picks up the character subspace Hy=_cs¢,

of the B24’3) singularity; the vertices of the diagram corresponding to
the reflections of orders 3 and 4 are v1 = e; + €4e4 and v9 = e9 + xe3

respectively).
3 4,3
Eg 0—— “o AY “o B)?
7 M=
o——o0 S ® V2 @
A AM—=
\\\ % g
o—= ©)
/'/ (S
o0—oO 40

Figure 6. The two-step folding of the Eg diagram to the diagram of the B§4‘3) singularity.
The weights of the vertices and edges are omitted.

The intersection form thus obtained is

1
—6 1 ez—1
1 1— XE3 )
g3—1 ez—1
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From this,

(v1,v2)(vo,v1)  cos{s cos 22

(v1,v1)(v2,v2) 2sinZsinZ’ 2sinZsinZ

depending on the choice of €3 and e4. Therefore, the four options to choose
e3 and &4 correspond to the four standard representations of G1g (see Sec-
tion 1.2) acting on the subspaces Hy—_.,,.

In terms of the Picard-Lefschetz operators he; of Af’) (each with the
eigenvalue e3), the Picard-Lefschetz operators h,, generating the represen-
tation of G1p on H,—_.,., are

hy, = he, he, and hyy = heyheshey = hegheyhey 9)

€3 —E&3 1 0
(0 1) = (e d)

Skew-Hermitian case. For the two-variable singularity (no z in (8)), the
characters x of g on the first homology of the curve are +e3. Constructing
the diagram of B§4’3), we again first obtain the Ag)’) diagram for the 4-
dimensional y2-eigenspace of g2 in the first homology. This diagram looks

absolutely the same as in Figure 6, but with a modified interpretation: now

with matrices

the self-intersection of each cycle is 3%;—’:} and an edge a — b has weight
(a,b) = —3/(1 — x?). For a distinguished basis in the two-dimensional
eigenspace H, of g one can take v; = e — x3es and vy = ey — yes. The
generators (9) of the equivariant monodromy group now have the matrices

S22 G2
X X 10
(0 1) = ()

In particular, we get a finite group, G(6,1,2), if x = —e3.

4. Three rank 2 groups

Among various relations between the sets of degrees of basic invariants of
Shephard-Todd groups, similar to those observed in Remark 2.3, there are
relations giving rise to singularity theory interpretations of three further
rank 2 unitary reflection groups:

(i) D(Gao) = D(H4) N D(G32), corresponding to Gog = Ha N G32 in Eg;

(ii) D(GQQ) = D(H4) N D(G31), related to Goo = H4 N G31 in Ej;
(iii) D(G12) C D(Fy) C D(Es), corresponding to G12 C Fy C Fg.
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We write out appropriate two-parameter subfamilies of the R-versal
deformations of Eg and Ejg, and show that their monodromy groups are ex-
actly the expected Gog, Goo and G12. This time symmetry will be combined
with special distribution of singular points on critical levels.

4.1. GROUP Gy

O.Shcherbak showed [12] that there exist two 4-parameter subfamilies in an
R-miniversal deformation of Fg whose discriminant is that of the Coxeter
group Hy. Those are either functions with all critical points of type Ao or
functions having four critical levels with two Morse points on each of them.
Consider the latter subfamily:

2+ oz + B +9°/5+ P (yz + 6) +y(yz + 0)* + 22, (10)

Under the monodromy action, the vanishing homology of Fg breaks up into
the sum of the standard representation of H; and its conjugate.
Intersect the family (10) with the invariant miniversal deformation of

A513) (whose monodromy group is Gsg, see the table). This is the same
as taking the invariant part of the family with respect to the Zs-action,

9(z,y,2) = (wz,y, 2):
8+ B+y° /5 + 6y° + 8%y + 22 (11)

These are functions having two critical levels, with two As points on each
of them.

The family obtained has discriminant 2542 + 46° = 0 isomorphic to
the discriminant of the group Gogy. Therefore, the monodromy group has
two generators, a and b, satisfying the relation ababa = babab. Moreover,
a® = b® = id since an elementary degeneration in (11) involves only Aj
points on the zero-level and the Coxeter number of the Weyl group As is
3.

The relations obtained are those defining Goy. Hence the monodromy
group of the family (11) is an 8-dimensional representation of Gag.

In fact we obtain the sum of all four standard rank 2 representations of
G99 mentioned in Section 1.3. Indeed, consider the 4-dimensional character
space H,—., of g in the vanishing homology of Eg. On H,,, the restriction
of the whole AL(IS) monodromy (with four Ay points situated on indepen-
dent levels) to the subfamily (11) corresponds to the zig-zag folding of the
diagram in the middle of Figure 6. The order 3 operators h¢, he, and he, he,
split H,, into two invariant subspaces, generated by

u; = ej + 53(6% + 5%)63 and ug = eg — €3(e5 + &5)ea
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(the two subspaces differ by the choice of the values of the expressions in
the brackets). For these vectors,

(u1,uz2)(u2,u1) 14+cosZE  1+cos?E

(ul,ul)(ug,uQ) N QSiDQ% ’ 231n2%

depending on the value of €5 + €5. Now, comparison with Section 1.3 yields
the desired identification of the representations of Gag.

Remark 4.1 The sum of the spaces of two of these representations of Gy,
with the same value of €5 4+ &5 and different e3, is the space of one of the
two representations of Hy on the vanishing homology of the Eg singularity.

4.2. GROUPS WITH EQUILATERAL TRIANGULAR DIAGRAMS

4.2.1. Goo
The part of the Hy family (10) contained in the equivariant versal deforma-
tion of the Fg/Z4 singularity (the monodromy group of the latter is G31)
is

2+ oz +1y° /5 + 0y + 2y + 22, (12)

Its discriminant, 2503 = 276°, is the discriminant of the group Gas. A
generic degeneration is 4 Morse points on the zero level V,, 5 C Cg’y,z.

Consider the line £ = {§ = dp}, where d is a real negative constant, in
the base of deformation (12). Take V; 5, for the marked Milnor fibre. The
line £ intersects the discriminant at three points, with coordinates ag, wag
and w?ag, where oy is real. We take the straight paths on £ from (0, dg) to
the discriminantal points to define vanishing cycles on Vg g, .

The real part of the plane curve V,, 5, N {# = 0} is the sabirification of
Ejg that yields the rectangular Dynkin diagram of Eg. The product of the
four commuting Picard-Lefschetz operators, corresponding to the cycles on
V0,6, vanishing at the nodes of this curve, is an elementary Picard-Lefschetz
operator in the family (12).

The two quadruples of cycles on V; 5, vanishing at (way, d) and (w?ay,
dp) are obtained from those vanishing at (ag,dy) by multiplication of z by
w? and w.

The intersection diagram of the twelve vanishing cycles on Vj 5, is given
in Figure 7. The sum of three cycles on each of the four horizontal levels
of the prism is zero. It is easy to spot an embedding of the rectangular Ejg
diagram into our diagram.

The three generators of the monodromy group of the family (12) are the
products of the Euclidean reflections in the cycles in one vertical quadruple
in Figure 7. The vanishing homology of Eg splits into the sum of four rank 2
invariant subspaces. The elements spanning these subspaces are the linear
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Gzz w 2

-2 W: ;;;W: 1+¢,(e,+E)

-2
Figure 7. Folding Es diagram to G2 diagram.

combinations of the cycles in each quadruple taken with the coefficients
shown in Figure 7 (the coefficients are defined by a horizontal level of the
diagram). Different choices of the numbers €4 and €5 + &5 give four different
rank 2 subspaces.

Rescaling the spanning vectors to make their squares —2, we get the tri-
angular intersection diagram shown at the bottom of Figure 7. Comparing
it with the Ggo diagram of Figure 3, we see that the four rank 2 subspaces
obtained provide all four standard representations of Gas.

4.2.2. Gig
Consider now the subfamily

® + oz +y* + By? + /8 + 22 (13)

of the miniversal deformation of Eg. Its discriminant, («/3) + (8/4)* = 0,
is the discriminant of the group Gia.

This time the elementary degeneration is three Morse points on the
zero-level situated symmetrically with respect to the change of sign of y
(thus, one of them is on y = 0). For a real point of the discriminant having
B > 0, the real part of the curve V, g N {z = 0} is the open trefoil yielding
the rectangular Dynkin diagram of Eg. The product of the Picard-Lefschetz
operators on the vanishing homology of Ejg corresponding to the nodes of
the trefoil is an elementary monodromy operator in the present situation.
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Considerations similar to the Gy case provide the prismatic diagram
of Figure 8(a). Again the sum of the cycles on each of the three horizontal
levels here is zero. The generators of the monodromy group I' of the family
(13) are the products of the Euclidean reflections corresponding to the
vertices in the vertical triplets.

GlZ w -2

-2 W:;W: 1+€4\/§

-2

Figure 8. Obtaining G12 diagram from Egs, and G(4,2,2) from Dy.

The linear combinations of the cycles in each of the vertical triplets,
with the coefficients shown in the figure, span one of the three rank 2
representations of I'. Scaling the spanning vectors to make their squares
—2, we obtain the equilateral triangular intersection diagram of Figure
8(a). Comparison with Section 1.3 shows that two possible values of ¢4
provide the two standard representations of G1s.

The sum of the two G12 representations described is the anti-invariant
part of the homology of Eg with respect to the change of sign of y (that
is, the Fy vanishing homology). The sign change acts on the prismatic
diagram as the reflection in the medial triangle followed by the change of
orientation of all the cycles. Therefore, the third rank 2 representation of
I" in the homology of Ej is just Az acting on the span of the differences of
the corresponding vertices of the top and bottom faces of the prism.

4.2.3. The mini-series

The Eg prism of Figure 8(a) is one store shorter than that of Figure 7.
Cutting off one level more (Figure 8(b)), we get the diagram corresponding
to the equivariant mini-versal deformation of Ds/Z, (cf. the table where it
is given in a different normal form):

2 +az+y>+ By + 2. (14)
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Here g(z,y,2) = (—x,—y,4z). We can assume that g sends the vertices of
the top face down to the underlying vertices of the bottom, and those from
the bottom up to the negatives of those on the top. The monodromy group
of (14) is G(4,2,2), and the discriminant, o® = 83, of the family is that of
the reflection group. The elementary degeneration is 2A4;.

The linear combinations of the vertical pairs of the cycles with the co-
efficients shown in Figure 8(b) span the rank 2 subspace H,—., in the ho-
mology of Dy4. The result of the folding operation is the equilateral diagram
of G(4,2,2) (cf. Figure 3).

The degenerate prism, counsisting of just one triangular level, corre-
sponds to the Ay R-versal family z3 + ax + 8 + 32 + 22 and a non-generic
line £ = {a = const} in its base.

Remark 4.2 There is an interesting feature in all four examples of this
subsection: the discriminant of the related two-dimensional unitary reflec-
tion group has the same singularity as the non-deformed singular curve
Vo N {z = 0}. Does this have any explanation avoiding explicit calcula-
tions?

Acknowledgements. I am very grateful to Peter Slodowy for highly useful
discussions. He also brought to my attention a series of papers by Yano
[16, 17, 18] who studied a different, but related topic of finding Saito’s
flat coordinates for certain unitary reflection groups. Unfortunately, Yano
abandoned the area leaving his investigations unfinished.
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