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Abstract

In 1891 Hurwitz published a conjecture yielding the number of
topological types of rational functions on C! with fixed orders of poles
and fixed critical values assuming the functions Morse on the comple-
ment to the poles. Recently there appeared two combinatorial proofs of
the conjecture by Goulden and Jackson, and Strehl. We give an inde-
pendent proof, from the point of view of singularity theory, in the spirit
of Arnold’s investigations on Laurent polynomials. We are basing on
the study of geometry of the moduli space of ordered tuples of points
on the line and the properties of the corresponding Lyashko-Looijenga
mapping. Also we show that the variety of topological types of Morse
functions in our context is an Eilenberg-MacLane K (mr, 1)-space.

The topological type of a meromorphic function on a curve with a non-
fixed complex structure is its equivalence class up to homeomorphisms of the
domain.

In [7] Hurwitz conjectured a formula (we quote it in section 3.2) giving the
number of some special factorisations of a permutation into transpositions.
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This allows one to immediately find the number of topological types of generic
meromorphic functions on CP! with fixed orders of poles and fixed critical
values.

In [4] the Hurwitz formula, in its particular case of simple poles that is
for generic coverings of the Riemann sphere by itself, was rediscovered and
proved by Crescimanno and Taylor. Influenced by this work, Goulden and
Jackson rediscovered the Hurwitz formula in its full and gave its combina-
torial proof without relating the general case to the enumeration of certain
functions on the complex line [6]. Shortly after this another combinatorial
proof of the formula, which followed Hurwitz’s own hints given in [7], was
found by Strehl [17].

Unfortunately, it is not easy to trace the natural geometry of the problem
behind rather long and complicated calculations of any of the combinatorial
proofs, and we failed to do this. On the other hand, the elements of this
geometry were uncovered by Arnold in his recent work [1] on Laurent poly-
nomials. There a singularity theory approach considered earlier in [5] was
used. Arnold obtained the enumeration of topological types of generic Lau-
rent polynomials with fixed critical values via the study of the mapping which
associates to a function the unordered set of its finite critical values.

Such a mapping was first introduced by Lyashko [2, 13] and Looijenga
[12] who in particular showed that on the space of monic polynomials of
fixed degree it is a finite covering, the number of whose sheets is just the
number of the factorisations given by the Hurwitz formula for the cyclic
permutations. Since the topological types of generic polynomials are in a one-
to-one correspondence with the trees with ordered edges, this also provided
an easy proof of the Cayley theorem on enumeration of such trees [12].

In the present paper, we are studying the version of the Lyashko-Looijenga
mapping defined on the space of meromorphic functions on CP! with fixed
orders of all its n poles. It turns out that it is still a finite covering which
is regular out of the bifurcation diagram of functions. This happens in spite
of the domain now being non-smooth unlike the case of ordinary or Laurent
polynomials: now it contains as a direct factor the base V,, of the versal defor-
mation of the configuration L;, of the coordinate axes in C" which is singular
in codimension 5 for n > 3. To prove the Hurwitz formula basicly means to
calculate the degree of the Lyashko-Looijenga mapping. This reduces to the
calculation of the (quasi-homogeneous) degree of V,,. Since V,, projects onto
the compactification W, of the moduli space of ordered n-tuples of points



on the Riemann sphere, the degree in question comes out as the intersection
number of certain divisors on W,,.

The approach of the paper looks promising for enumeration of topological
types of non-generic meromorphic functions on CP!. For this it could be
mixed up with the way of consideration of degenerate polynomials introduced
in [11, 19, 20]. For a closely related question of the classification of degenerate
branched coverings of the 2-sphere up to homeomorphisms of both the source
and target see [9].

The paper is organised as follows. In section 1 we reduce the consider-
ation of rational functions on the line with fixed orders of the poles to the
singularity problem of studying functions on smoothings of Lj;. We extract
all the information about the base V,, which is used later on. In section 2 we
formulate the theorem on the non-degeneracy of the Lyashko-Looijenga map-
ping (the proof is postponed until section 4), calculate its degree and state
the homotopy type of the complement to the bifurcation diagram of rational
functions. In section 3 we relate the obtained degree to the enumeration of
the topological types of rational functions, and to the combinatorial prob-
lems of enumeration of the graphs with ordered edges and so-called minimal
factorisations of a permutation into transpositions. The original Hurwitz
formula is that giving the number of such factorisations. Finally, in section
5, we consider an elementary approach to obtain the variety V,, which avoids
a consideration of any versal deformation.
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1 Rational functions
and deformations of coordinate axes

1.1 Reduction to smoothings
of the coordinate axes arrangement

Any meromorphic function with n poles on CP! can be written in the form

Pl(ﬁ) "‘Pz(ﬁ) t... +pn(ﬁ) ;

where the p; are polynomials, z is an affine coordinate and the poles are
situated at the pairwise distinct finite points (.

Declare the argument of each of the p; to be an independent variable z;.
Then the above function is the restriction of the polynomial

pi(z1) + ..+ pu(2a)
to the curve in C" given by the quadratic equations
zizi+ (25— 2)[(G—G) =0, 1#].
We include the obtained curve into the family
zizi+e(z; —2)[(G—¢) =0, i#],

and send ¢ to zero.
This shows that our curve can be considered as a deformation of the curve

The latter is the union of n coordinate axes in C" usually denoted by L;..
Thus the study of meromorphic functions on CP! with n poles reduces
to the study of polynomial functions on smoothings of L.

1.2 The versal deformation of LZ

Consider the miniversal deformation of L;. in the form due to D. S. Rim
(14, 16]:

(2 — aij)(zj — aj5) = (@i — ag;) (a0 — aj;) i,5,0>0, i #Fj#LF#1, (1)
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with its base V, lying in the coordinate space C™™~1 of the a;j, © # j, and
defined there by the conditions

(aie — aij)(aze — azi) = (Gim — i) (@jm — ;i) (2)
of independence of the right-hand sides in (1) of the choice of ¢, and

J

The base V, is (2n—3)-dimensional. The Vs is just C3. The V, is the Segre
cone over CP! x CP3? and thus has an isolated singularity. For n > 4, V,, is
singular in codimension 5 and birational to the cone over CP™ 3 x CP"~! [16].
More precisely, the latter concerns the smoothing component of V,, since, for
n > 5, it is still a conjecture of Stevens that the mentioned equations for V),
define a variety without embedded components.

The geometrical sense of the equations of V,, is as follows. Consider a
generic member v of the versal family. This is a rational curve in C" with n
punctures. Consider its projection 7; onto the z;-axis. The punctures project
to the points z; = a;;, 7 # 4, and infinity. The composition 7, o7y obtained
from two different projections of 7 is a projective transformation of CP!
with the n marked points. The quadratic equations (2) of V, just mean that
the double ratios of the marked points are preserved by the transformation,
and vanishing of the sums };a;; is just a projective normalisation which
eliminates possible non-minimality of the deformation.

This also explains why the dimension of V, is 2n — 3. Indeed marking
of n — 1 arbitrary finite points with zero sum on, say, the z;-axis in C"
provides us with n — 2 degrees of freedom. To restore the corresponding
curve v C C" from such an ordered set of points, we need to specify n — 1
projective identifications m; o m; * of the Oz, with all the other coordinate
axes. Since one of the marked points is sent to the infinity by m; o 7' and
the sum on the Oz; of the others (including that coming from z; = o0) has to
vanish, there is exactly one degree of freedom in choosing each of the 707 .
Remark 1.1 Restriction of any polynomial from C" to a smoothing v of
L} can be considered as that of a polynomial p;(21) + ... + pa(2,). This is
a meromorphic function on CP! with n poles at the punctures of v whose
orders are the degrees of the p;. This reverses the reduction of the previous
section.



1.3 The degree of the base

For our further considerations we need some information about the geometry

of V,.

Theorem 1.2 The degree of the base V,,, n > 2, of the versal deformation
of L™ is n™73.

Proof. We have to show that the number in the claim is the number of
points in the intersection of V,, with a generic affine subspace A of codimen-
sion 2n — 3 in the ambient linear space

c"m ) ={3"q;=0,i=1,...,n} c C""7V.
J

It is convenient to represent the ambient space as a direct product of n
spaces

C?_z={(aﬂ,...,di\i,...,am),ZaU=0}, Z=1,,n
J

Projectivising each of these we get a mapping
p:CM"=2) P =CP"3x...x CP"3.

The equations of V,, are invariant with respect to individual dilations of
the C?~2. Hence the image of V, under p is an (n — 3)-dimensional variety
W, C P. From the duscussion of the geometrical sense of the equations of
V), in the previous section, it follows that W, is the closure of the space of
ordered n-tuples of distinct points on the projective line considered up to
automorphisms of the line. Thus W, is a compactification of the moduli
space of such tuples.

To keep track of the intersection ), N A under p let us separate the
variables in the equations of A writing them as

Zasizcs, s=0,...,2n—4,

where each of the ag; is a homogeneous linear form just in n — 1 variables
a;j, and all the constants ¢, except for ¢, are just zeros.
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Lemma 1.3 The mapping p establishes a one-to-one correspondence between
the sets V, N A and W, N A, where A' C P is the variety

a1 Ay
rank <n.

a2n74,1 a2n74,n

Proof of the Lemma. We write a; for a point of C?~? and a, for its image
in CP?~% under the projectivisation.

For a generic point (@,,...,a,) in A’ (we can assume the set W, N A’ to
contain just such points), the rank condition of the lemma means that there
exists a unique point (b : ... : b,) € CP"! such that

blozsl(al) + ...+ bnasn(an) =0 (4)

for all s = 1,...,2n — 4. Thus the line {t(byay,...,bya,),t € C} Cc C™"=2)
satisfies all the homogeneous equations of A, and the non-homogeneous one
(that with s = 0) determines the unique value of ¢ for the unique point of
intersection of this line with A. O

The points of A’ are singled out on W, as the intersection of W, with
common zeros of n —3 n X n-minors of the matrix in the lemma. Each of
the minors is a linear function in a; when all the other a; are fixed. Thus each
of the n — 3 divisors corresponding to the minors is the sum H; + ...+ H,,
where H; is the lifting to P of the hyperplane section against the natural
projection P — CP?7®. Hence the degree we are looking for is just the
evaluation of (H; + ...+ H,)" 3 on the canonical class [W,]. Now the claim
of the theorem follows from

Lemma 1.4 For any (n — 3)-tuple iy, ...,i, 3 of integers between 1 and n,

Proof. Let 1; : W, — CP"™3 be the projection onto the ith factor of P.
The composition v; o 1); " is easily checked to be a Cremona transformation
and thus a birational equivalence. Therefore, in general, the intersection of

the n — 3 hyperplanes meets W, just at one point and does this transversally.
O

Remark 1.5 We conjecture that the space W, is in fact the Grothendieck-
Knudsen moduli space M, [10, 8.



1.4 The quasi-homogeneous degree

In what follows we will need a quasi-homogeneous version of Theorem 1.2.

Consider a subvariety V' of dimension r in the coordinate space CV. As-
sume V' to be invariant under the one-parameter group of quasi-homogeneous
transformations (zq,...,zy) — (t“'z1,...,t"Yxy), t € C\ 0, where the w;
are positive rational numbers which we call the weights of the coordinate
functions. Let U be the set of common solutions of r equations

f,'(l'):Ci, 7:2]_,...,7“,

where the f; are generic quasi-homogeneous functions of degrees d; and the
¢; constants. Assume that U is a complete intersection which meets V just
transversally, and p = p(dy,...,d,) is the number of points in V NU. Then
the ratio

w/ H d;
i=1

does not depend on the choice of the d;. This number will be called the
quasi-homogeneous degree of V' (with respect to the weights w;).

Example 1.6 The quasi-homogeneous degree of CV itself is 1/ Hj—vzl w;.

Now we return to our variety V,. Take arbitrary natural numbers kq, ...,
k., and assign weights 1/k; to the coordinates a;; on crn=1 5 cn=2) 5y,

Theorem 1.7 The quasi-homogeneous degree of V,,, n > 2, with respect to
the chosen weights of the coordinate functions is

(ki 4.+ k)" ko ky

Proof. This will be almost word-to-word to that of Theorem 1.2. We
denote similar objects by the same symbols and just point out the arising
differences.

This time for the variety A we take the set of common solutions of the
Pham-type equations

Qg1+ ...+0g, =c5, s=0,...,2n —4,



where each ay; is a generic homogeneous degree k; form in the coordinates
on C!? which does not depend on the other variables, and, as earlier, all
the constants except for ¢, vanish.

We have to show that the number of points in V,, N A is that appearing
in our present theorem.

The first correction to adjust the proof of Theorem 1.2 for the quasi-
homogeneous case arises in the analog of Lemma 1.3. This time the projection
p provides a mapping of degree k; - ... -k, from V, N A to W,, N A’. Indeed,
equations (4) now imply

s (th) %1 ay) + .. 4 g ((thy)/*a,) =0, 5> 0,
for some ¢t € C which is uniquely determined by the Oth equation:
Oé()l((tbl)l/klal) + ...+ Oé()n((tbn)l/knan) = Cy

e tb1a01(a1) +...+ tanOn(an) =Co-

The second correction to be done is that the n—3  n xn-minors defining
the meeting points of A" and W,, are now each of the class kyH,+...+k,H,.
O

2 Lyashko-Looijenga mapping

2.1 Bifurcation diagram of rational functions

From the above discussion, we see that a rational function on CP! with n > 1
poles of fixed orders kq,...,k, is a polynomial

P/\(Zl, . :Zn) = Zfl -+ /\1712{“171 + ...+ )\I,kl_lzl + ...+

+ 2 AT L Ak12n + Ao (5)

restricted to a smoothing of L7 (we reduce the coefficients of the zzkl to 1s by
rescaling of the z;).

Closing the space of such restrictions by allowing non-smooth curves we
arrive at consideration of the family of functions on curves in C" over the
base V, x Ci "1 (from now on we set k = ky + ... + k,). This family will
be the main object of our study.



A generic member of the family is a degree k£ Morse function on a rational
curve with » punctures. Due to the Riemann-Hurwitz formula, it has k4+n—2
distinct critical values. Note that the dimension of the base V, x Ci—*! ig
also k +n — 2, the fact which is heavily exploited in what follows.

Definition 2.1 The set ¥ C V, X C’,{_"H of functions having less than
k+n — 2 distinct critical values is called the bifurcation diagram of rational
functions.

There are three generic ways to drop the number of critical values corre-
sponding to the three components of the hypersurface X:

Ym, Mazwell stratum: two different critical points on a smooth curve are
on the same level;

Y., caustic: there is a degenerate critical point on a smooth curve;
Y,: the curve is not smooth.

Note that the pair (V, x C¥ "1 %) is trivial in the \-direction.

Example 2.2 The family of rational functions with 3 simple poles consists
of the restrictions of the functions # +y + 2z + § from C? to the family of
curves defined by the condition

r Yy o«
rank(ﬂ vty z><2
Here the base is smooth and «, 3,7, 6 are the parameters. Due to the men-
tioned triviality the bifurcation diagram is well-represented by its intersection
with the 3-space 6 = 0.

The projectivisation in CP? = {(a : 3 : v :0)} of the bifurcation diagram
is a nodal cubic ¥, with the tangent lines at all its three inflection points
forming the component Y. This is shown on the left-hand side of the figure
below (the node of the cubic is the isolated real point in the centre). On the
right-hand side of the figure we give the spatial version of the other real form
of the diagram.
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2.2 The covering

The Viéte mapping identifies the set of all unordered r-tuples of complex
numbers with the space C" of monic polynomials in one variable of degree
r. This space contains the discriminant hypersurface A of polynomials with
multiple roots.

Definition 2.3 The Lyashko-Looijenga mapping for rational functions is
the mapping
L: VY, x Cktt — chn=?

which sends a function on a curve to the unordered set of its critical values
counted with the multiplicities.

Of course, at first this mapping is defined just as a mapping
L' (VyxCHMH\E - CHPP\A

which sends a Morse function on a smooth curve to an unordered (k+n —2)-
tuple of distinct numbers. Then one can easily verify (see, e.g. [5, 1]) that £’
extends to generic points of ¥. For example, the value of a generic function
at a node has to be counted as critical of multiplicity 2. In what follows we
are using both £ and L.

Theorem 2.4 The Lyashko-Looijenga mapping L is a proper finite covering.
As a mapping from (V, x CE-"OH\ T to CH"=2\ A it has no branching.

The version of this theorem for ordinary polynomials in one variable is
the theorem of Lyashko and Looijenga [3, 12]. For Laurent polynomials it
was proven in [5]. We prove Theorem 2.4 for arbitrary n > 2 in Section 4.
Now we extract some corollaries from it.
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Corollary 2.5 The complement (V, x CF=")\ ¥ to the bifurcation dia-
gram of rational functions is an Filenberg-MacLane K(m,1)-space, where
15 a subgroup of index

k"3 (k 4+ n —2)! —
( )i:Hl(ki—l)!

in the Artin’s group B(k +n —2) of braids on k+mn —2 threads.

Proof. We have to show that the number in the corollary is the degree of
the Lyashko-Looijenga mapping.

The mapping £ is quasi-homogenious: its coordinate functions get weights
1,2,...,k +n — 2 when we assign the following weights to the parameters
involved (recall the settings of (1) and (5)):

Wta”=1/kz, Wt)\w:S/kZ, Wt)\():l

Since the quasi-homogenious degree of a direct product of two varieties is
the product of their quasi-homogenious degrees, applying Theorem 1.7 and
Example 1.6 we have

deg £ = (k4+n—2)!-deg(V, x CF)

=(k+n—2)-degV, -degC’“’"le

= (k+n—2)!- k" 3Hk/H

k—l
=1 k

which is the required number. O

Remark 2.6 The corollary remains valid for both ordinary, with £ > 1, and
Laurent polynomials [3, 12, 5, 1] in spite of those cases not being covered by
Theorem 1.7.

Remark 2.7 The family of functions (5) on the family of curves (1-3) which
we studied in this section is a miniversal deformation of the function zf* +

..+ 2zF» on the arrangement of the coordinate axes in C" for the natural
equivalence of functions on curves. The setting here involves deforming both
a function and a curve. This equivalence will be a subject of a separate

paper.
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3 Topological types of rational functions

3.1 The enumeration

Consider two holomorphic mappings, f and f’, from closed complex curves
I' and IV to CP!. We say that they are of the same topological type if there
exists a commutative diagram

r — 1
I\ /f
CP!

in which the horizontal arrow is a homeomorphism.
Mark a point (infinity) on the CP! and call its inverse images poles.

Theorem 3.1 The number of topological types of meromorhpic functions on
CP! with poles of orders ky, ..., k, and fized critical values, assuming that
on each finite critical level there is just one critical point and this point is
Morse, is

k"3 (k4 mn —2)1 2 kR
Here k = ki +...+k, and N = n!-...-n,!, where the n; are the cardinalities

of the sets of equal numbers among the k;, n1 + ... +ng, = n.

Remark 3.2 To be precise there are three cases not covered by the theorem:
M(1)=M(2)=M(1,1) =1.

Proof. We assume n > 2. For the cases n = 1,2 see [1].

All the topological types of Theorem 3.1 are present in the fibre of the
Lyashko-Looijenga mapping £'. The points in the fibre giving the same type
are obtained from each other by permuting the coordinates z; in C" (see (5))
corresponding to the poles of the same order, and by multiplying z; by a root
of unity of order k;. This provides the action of the group

G=28,, xX...x8, XLy, X...x1Z,

on V, x CF "1\ ¥ (here S, is the full symmetric group on ¢ elements).
The action is easily verified to be free. The Lyashko-Looijenga mapping £’
factors through the factorisation 75 by this action:

V’n < Ck—n—H \ D) N ﬂl,...,k i) Ck—|—n—2 \ A ,

n
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Here 7Ty, . 1, is the variety of all the topological types when the distinct Morse
critical levels vary. The number of types under the question is the degree of
the covering L which is the ratio of the degree of £' and order of G. Now
the claim follows from Corollary 2.5. O

As a by-product we have obtained:

Corollary 3.3 (cf. [1]) The variety Ty, . x, of all topological types of mero-
morphic functions on CP! with poles of orders ky,... k,, k =k +...+k,,
and with k+n — 2 distinct critical values is naturally covered by the space
V, x CE="tL\ S of Morse functions on smoothings of L with the poles of
the same orders. The degree of this unramified covering is

n
nll-...-nS!-HkZ-.
i=1

Moreover, Ty, .. k. 15 itself the space of an unramified covering of CE=2\ A
of degree M(ky,...,k,).

Corollary 3.4 The variety Ty, . ., of the topological types is an FEilenberg-

MacLane K(m,1)-space for a subgroup © of index M (ky, ..., k,) in the braid
group B(k+n — 2).

3.2 Graphs associated to meromorphic functions

A way to associate a graph to a meromorphic function on a complex curve
was suggested first by Zdravkovska in [18]. This approach allows one to
establish an equivalence between the topological types of meromorphic func-
tions and classification of certain graphs. Our exposition below follows that
of Arnold [1].

Consider a holomorphic degree k¥ mapping f : I' — CP! of a connected
compact Riemann curve. Assume it is a Morse function on the complement
to the poles. Take an arbitrary finite non-critical value ¢, of f. Its inverse
images will be the k vertices of our graph. The number of the edges of the
graph is going to be equal to the number m of finite critical values of f.
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The naturally ordered edges come out when we connect ¢, with all the
finite critical values t,,...,t,, of f by a system of m paths t,t; in C without
mutual and self-intersections. Here, after choosing the 1st critical value, the
indices are assigned to the others according to the counter-clockwise order
in which the paths leave t,. Now the edge number 7 connects the two points
of f~1(¢,) merging in the homotopy of the fibres f~'(t) while ¢ follows the
path t,t;.

The graph thus obtained is connected since I' was such. It follows imme-
diately from the Riemann theorem that any connected graph with ordered
edges can be obtained in this way. By the Riemann-Hurwitz theorem, the
genus g of the curve I involved is determined by the formula

2—29g=k—m+n,

where n is the number of poles of f.

The monodromy interpretation relates to the ith edge of the graph the
transposition 7; of its endpoints. The permutation ¢ = 7,,0...07 € S} is
called the Cozeter element of the graph [1]. If k,...,k, are the orders of
the poles of f, k; + ...+ k, = k, then o has cyclic type (ki,...,k,), that is
it is the product of n independent cycles of these orders.

Theorem 3.5 ([1]) Consider meromorphic functions on connected Riemann
curves which have n poles of orders ky,. .., k,, are Morse on the complement
to the poles and have m fized finite critical values. The number of topological
types of such functions is equal to the number of graphs with k,+. ..+ k,, ver-
tices and m ordered edges whose Cozeter element has cyclic type (ky, ..., k).

Thus the number M (ky,...,k,) in Theorem 3.1 is the number of graphs
with k£ vertices and k£ + n — 2 ordered edges whose Coxeter element has
cyclic type (ki,...,k,), k1 + ...+ k, = k. In fact, at this point the history
developed in the opposite direction: for the first time this number came out
as the number of the topological types within the interpretation given in
[15] to the combinatorial result of Goulden and Jackson [6] related to the
enumeration of graphs with ordered edges.

The setting of [6], repeating that by Hurwitz [7], was as follows.

Consider a permutation o of cyclic type (k1, ..., k,) on theset {1,2,...,k},
k=ki+ ...+ k,. Denote by M(c) the number of its factorisations into a
product of transpositions ¢ = 7,, o ... o7 such that

15



® T,...,T,, generate the symmetric group Si;
e m is minimal with respect to the previous requirement.

The first requirement means that o is the Coxeter element C(O) of some
connected edge-ordered graph © (equipped with an appropriate order of its
vertices so that ¢ = C(©)). The second requirement corresponds to the case
of the genus zero curve.

Theorem 3.6 ([6], Hurwitz conjecture [7])

(o) = B3k +n—2) [ ﬁ .

=1

Proof. To obtain M(c) from the number M(ki,...,k,) of the graphs
with ordered edges is to count the ambiguity in ordering the vertices of the

graph O for which C(©) = o

e having a cycle of length k; in o we can assign its elements in the proper
order to the vertices of © participating in any cycle of C'(©) of the
same length;

e this proper order is defined just up to a cyclic permutation. O

The given argument just repeats the factorisation mg of the previous
section.

Remark 3.7 Note that M (o) is the number of Corolary 2.5, that is the
degree of the Lyashko-Looijenga mapping L.

4 Proof of Theorem 2.4

To prove Theorem 2.4 we need to show that £71(0) = 0 and that the mapping
L is a local diffeomorphism out of the bifurcation diagram.
We will assume n > 2. For n = 1,2 see [3, 12, 5, 1].
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4.1 The inverse image of the origin

We are searching for points in the base V, x CF "2 of our family (Section
2.1) corresponding to the pairs {curve v, function Py on it} in which the
function has just one critical value, zero. Its total multiplicity is & +n — 2.

First assume 7 being smooth. Expressing all the variables in terms of,
say, z; we write function Py as a ratio of polynomials f(z;)/g(z,) where f is
of degree k. For this ratio to have critical value 0 of multiplicity r at some
point, polynomial f must have a root of multiplicity r + 1 at the same point.
Thus the number of distinct critical points is 2 —n < 0.

Now let curve 7y be singular. This means that it consists of smoothings -,
of curves Ly;", n, > 0, Y, n, = n, each lying in its own affine n,-dimensional
complex subspace C" whose direct sum is the ambient C". The C™ are
just parallel translations of the corresponding coordinate planes in C™. The
points of pairwise intersections of the C™ are exactly the points where the
v, meet each other providing the singularities of v. The values of Py at these
points are considered as critical. The curve v is connected.

Let +' be one of the smooth curves 7,. Consider the restriction P’ of Py
to 7. In fact this is the restriction of the polynomial from the corresponding
C" = C™ of the same sort as P, itself (see (5)) but just in n’ variables.
Similarly to the setting of &, let £’ be the sum of the degrees of the summands
of P'.

As earlier, the sum of the multiplicities of all the critical values of P’ is
k' +n' — 2, and we want all these values to be zero. Let d be the number
of singular points of v situated on 7' which are not critical for P'. We want
P' to vanish at them as well. Besides this, function P’ can have some other
simple zeros.

Considering P’ as a ratio of polynomials in just one variable, with the
numerator of dergee k', we see that our requirements imply that the number
of critical points of P’ is at most 2 —n' —d. Thus n’ = 1, function P’ being a
polynomial on 7 = C!, and only one singular point of 7 is on /. This point
is the only zero of P'.

Since ' was an arbitrary component of -y, this forces v = L? and A = 0.
Hence £71(0) = 0.
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4.2 Local diffeomorphism

We will show that £ is a local diffeomorphism out of the bifurcation diagram
calculating a related Jacobian matrix in some coordinate representation and
showing that it cannot degenerate.

Let us slightly alter the realisation of the variety V, in the space C™"=1,
with the coordinates a;;, 7 # j, taking for it the same quadratic equations
(2) as in Section 1.2, but changing the n linear ones to

aln:a2n:"':a’n—l,n:an1:0'

Now we choose a local chart on V, so that any smoothing of L;. would
show up in this chart. For such a chart the 2n — 3 coordinates a5, a3, - - -,
151,091,031, +,0p_11,0n,—1 Can be taken.

Our settings sum up to the following data in the pole matrix:

oo *x % ... x % 0

* oo T ... 7T 7 0

* 7 oo ... T 70

(aij) : :
77 .. 00 7T 0

* 7 7 ?7 o 0

o 7 7 7 % 00

Here the stars mark the coordinates in the chosen chart. Given particular
values of the marked elements (so that there are no given coinciding numbers
in any of the lines) all the other entries of the matrix (question marks) can
be restored from the quadratic equations of V.

We start our calculations. Solving the relations

(zi — aig)(2; — aji) = (@ — aij)(aje — a),
with ¢ = 1 and appropriate £, we express all the z; in terms of z;:

(a1n — alj)(ajn - ajl) aj121 .
zj =aj + = , J=2,...,n—1,
21 — ay4 21 — Qg4

and
(al,n—l - aln)(an,n—l - anl) al,n—lan,n—l
Zp = 0p1 + = .
21 — Q1 21
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This transfers the family Py(zy,...,2,) of (5) into a family of functions
(Q).(2) in just one variable z = z; with the parameters A € Ck—+! and the
above chosen 2n — 3 of the a;;. The mapping £ being a local diffeomorphism
is equivalent to the matrix of the velocities of all the k£ +n — 2 critical values
of @), being non-degenerate once the critical values are distinct.

The latter velocities are just the first derivatives of () with respect to all its
k-+n—2 parameters evaluated at its k+n — 2 critical points. Writing @, ,(2)
as p1(21(2)) + ... + pu(2n(2)) + Ao (cf. (5)), we see that those derivatives are

k1i—1 _k1—2 ko—1 ko—2 kn—1 _kn—2
z , 2 27 S~ LN AN /s RN A
and

a9 - 25) s QS]SWI—L
(9aj1 a’jl 8Zj( '7)

da,; oz — ay; 0z

aQ Zn—1 apn—l a'n,n—l apn
8al,n71 B a1,n—1 O02n_1 (2n-1) + z Oz, (z0),
8Q — afl,n—l 8pn

(2n)

Up to addition of the other velocities and multiplication by non-zero

constants, 3‘9(% can be replaced by z;-gj, a%?]— by z;-g" +1, 2 <j<n-—1 (here one

0y n—1 z 0z,

needs to recall what z;(z) is), and aafg,l by zkn.
Doing similar linear transformations of the velocities once again we arrive
at the set of k£ + n — 2 functions

2l k2 1,27 L et R
(z—ay) ®2tD (2 —ap) ™, (2 —ap) ..., (6)
(2 — a1,n—1)_(k"_1+1), (2 — a1,n—1)_k”_l, (= aim) T

For the diffeomorphness required it is sufficient to show that those functions
are linearly independent at arbitrary k + n — 2 distinct points on the z-line
once they are defined at those points. Note that all the a,; are distinct and
non-zero.
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Multiplying all the functions in (6) by their common denominator we
get k + n — 2 polynomials of degree less than k + n — 2 which are linearly
independent. Indeed any solution g = g(z) of the differential equation

dk+n—29

dzktn—=2 — 0
with prescribed values of its derivatives of orders 0,1, ...,k +k,—1 at z = 0,
and of orders 0,1,...,k; at z=a4;, j = 2,...,n — 1, is a linear combination

of these polynomials. Now the matrix of values at r distinct points of any r
functions forming a linear basis in the space of polynomials in one variable
of degree less than r is non-degenerate.

This shows that the critical locus of the Lyashko-Looijenga mapping is
contained in the bifurcation diagram 3 of rational functions. In fact it is the
union of the caustic and the Maxwell stratum [5, 1].

5 An elementary approach to the variety ),

Here we show how, in the study of meromorphic functions on the projective
line, to come to the consideration of the base of the miniversal deformation
of the arrangement of the coordinate axes in C™ without using any notion of
a versal deformation at all.

First of all note that a function on CP! with a simple pole at a point £ is
an affine coordinate z on the line, 2(£) = co. Hence a meromorphic function
with distinct poles &, ..., &, € CP! is a function

pl(zl) + ... +pn(2n) —+ )\0,

where the z; are (dependent) affine coordinates, z;(&;) = 0o, Ay € C, and the
polynomials p; may be assumed to have no free terms and their degrees are
the orders of the poles.

We set

a; =z(&),  J#4,

being the coordinates of the finite poles in the charts.

For n > 1, we get rid of the most of the ambiguity in our choice of the z;
fixing the origins by the requirements

> a; =0,

Yk
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and leaving just a finite number of options after rescaling the z; to make the
highest coefficient of each of the p; to be 1 (cf. (5)).

Since the coordinate change z; = 2;(z;) is an automorphism of the projec-
tive line, the coordinates z; of a point of CP! in different charts are subject
to the doulbe-ratio relations in which a; = a;; = oo:

Z; — a'ij Qip — Qj; _ Zj - ajj a,jg - a’ji

7

Qi — aij Z; — Qg Cng — CLJ] Z] — aji

that is
(2 — a’z’j)(zj - ajz') = (@ — a'z'j)(ajl - ajz') ) (7)

In particular, this holds for the coordinates of the pole &,,:
(@im — i) (Qjm — aji) = (@i — ai;)(a — ag;) -

Thus we are ending up with the quadratic equations which, along with
the above conditions of vanishing of the sums °; a;;, are just the equations
(3) and (2) of the variety V,. The deformation (7) is exactly what we called
the miniversal deformation of L} in section 1.2.

Allowing the &; to vary still being distinct and taking into account that
the a;; are well-defined only modulo the multiplication by the roots of unity
of the order equal to the degree of p;, we see that the closure of the set
of points (ajg,...,0nn-1) € C™™=1D which we are able to obtain from the
rational functions in the above way is just the smoothing component of V.
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